The key feature of these programmes is the flexibility and choice we offer. You will have the opportunity to tailor your degree to match your own interests and career aspirations. The programme offers comprehensive coverage of the fundamentals of biology and chemistry, which underpin the study of biochemistry. You can choose from a broad range of modules encompassing cell and molecular biology, medicinal chemistry, microbiology, protein engineering and biotechnology in line with your requirements and interests. You will also have the opportunity to choose some free choice modules from more than 1,500 modules offered in the many subjects taught at the University of East Anglia.
The third year of your degree will be spent in the work place. The School has established work links throughout the UK. A work placement is not guaranteed, and students will be expected to source placements themselves. Those who have not successfully secured a placement by the end of the second year will be transferred to the BSc Biochemistry (C700) programme and enter Year 3.
Dr. Richard Bowater
Biological Sciences offer 11 different full-time undergraduate degree programmes (plus three part-time degrees) in a range of subjects. Approximately 150 new undergraduates join us each year to study Biological Sciences (including a range of specialised programmes), Biomedicine, Biochemistry and Ecology.
Our students also have the opportunity of studying abroad for a year in either Europe, North America or Australasia, or spending a year in industry. Indeed we are one of a very few departments in the UK able to offer such a comprehensive spectrum of biology-related degree programmes.
Two of the distinguishing features of the degree courses we offer are excellence and choice. You are able to choose from a large number of degree programmes composed of a wide range of teaching modules. Lectures and seminars introduce the latest ideas and understanding of biology, and you will gain a thorough training in modern experimental methodology through hands-on practical or fieldwork sessions.
Why Study Biology?
The biological sciences comprise a broad range of inter-linked disciplines which encompass the study of life from the molecular level, through cells, tissues and organisms, to populations and ecosystems.
As well as being intellectually interesting, advances in the Biological Sciences have direct relevance to our everyday lives. Examples of this are to be found in new medical treatments, increased agricultural output, the protection of endangered species and the development of new food products. These breakthroughs have improved the quality of life for millions of people over the past few decades, and led to a greater understanding of our impact on the environment and the need for better resource management and conservation.
Some examples of recent advances include:
The development of new vaccines
The development of rapid and accurate diagnostic tests for infectious diseases
The production of recombinant hormones in bacteria, e.g. insulin for the treatment of diabetes
The development of new techniques for the forensic detection of crimeThe development of disease and drought resistant strains of crop plants
The designation of thousands of wildlife reserves and national parks worldwide to protect and conserve endangered species and areas of special ecological interest
The development of biological control techniques to combat weeds and pests thereby reducing the use of herbicides and insecticides
The development of bioremediation – using naturally occurring plants or microbes to clean up pollution, e.g. oil spills
Continuing research into the biological sciences is essential if we are to overcome problems such as cancer, HIV and tuberculosis, find ways to treat or cure genetic diseases such as Muscular Dystrophy and Cystic Fibrosis, unlock the secrets encoded in the Human Genome Sequence, protect endangered species, conserve ‘at risk’ habitats, and combat threats such as bioterrorism and emerging infectious diseases. Biological Scientists are at the forefront of biomedical, pharmaceutical, agricultural and ecological research, so if you are looking for an exciting, flexible field of study with excellent career prospects, both within science and in the wider employment market, then look no further than the biological sciences.
This module is in part integrated with CHE-1C1Y. The first half of the module brings together fundamental concepts associated with the bonding and structure of inorganic and organic materials, including atomic structure, electron configurations, ionic and covalent bonding, and intermolecular forces. The second half of the module builds on the bonding and structural ideas to explain the structure of the Periodic Table. Trends, comparisons and contrasts will be drawn between the elements of the s/p block metals, non-metals and the transition metals. Spectroscopic and other experimental techniques are employed.
This 10 credit module comprises laboratory and related IT experiments/ modules relating to aspects of the core chemistry lecture modules. Each student's choice of experiments will depend on the specific degree programme being followed.
Compatible with CHE 1C3Y, or a free-standing module with workload greater than average for 20 credits. The module introduces bonding and hybridisation, conjugation and aromaticity, mechanism and functional groups; principles which are elucidated in topics: electrophilic substitution and addition, organometallic nucleophiles, polar multiple bonds, enolate, Claisen, and Mannich reactions, the Strecker synthesis, stereochemistry (enantiomers and diastereoisomers), SN1/SN2 and E1/E2 reactions, and epoxidation / 1,2-addition to alkenes. Finally, synthesis (alkanes, alkenes, alkynes, alcohols, alkyl halides, ethers, amines, ketones, carboxylic acids) and bio-organic chemistry are introduced.
The unit aims to provide an introduction to the basic aspects of biochemistry, cell biology. Basic biochemical processes will be explored, as well as catalysis and enzymology. There will be an introduction to the nature of the living cell, its membranes, and organelles, how cells communicate and also how they are visualised. This unit will also provide an introduction to developmental biology.
The module aims to provide an introduction to the basic aspects of biochemistry, molecular biology and genetics. The module explores the fundamental properties of macromolecules, DNA structure, synthesis and replication, as well as the structure and function of proteins. The genetic code, genes and their expression will be covered as well as the rapidly expanding area of molecular biology. The module also covers chromosome structure, mechanisms of heredity, medical genetics and cytogenetics.
THIS MODULE IS RUNNING IN 2012/3 ONLY. BIO-1A15 is open to students registered on Biochemistry, Biomedicine, Biological and Medicinal Chemistry, Science with a Foundation Year and Natural Science degree programmes. This module aims to provide students with an introduction to the physical principles that underpin understanding of biological systems, drugs and the interactions between them. Topics that are discussed include thermodynamics, kinetics, acid-base chemistry, electrochemistry and spectroscopy. Students must have A-Level chemistry or equivalent. THIS MODULE IS ONLY AVAILABLE TO YEAR 1 STUDENTS. THIS MODULE IS NOT AVAILABLE TO VISITING/EXCHANGE STUDENTS.
This small-group seminar module is year-long, involving a minimum of 18 one-hour sessions. It addresses a number of biochemical problems related to material covered in BIO-1A13, BIO-1A14 and PHAN1HE1. For students lacking a background in Maths or Physics it will establish principles needed to understand physical chemistry in a biochemical context. You will be asked to use a range of literature- and web-based methods to prepare for the different sessions. The module will provide experience in both oral and written communication of science, and in problem solving. Assessment is by a mixture of essay and problem solving exercises and contribution to seminars.
Option A Study (10 credits)
Students will select 10 credits from the following modules:
The module provides students without A-level Mathematics with the basic skills necessary for the appreciation of the more mathematical and quantitative aspects of chemistry. It includes an introduction to differential and integral calculus. It is not available to students with A-level Mathematics.
This module provides students without A-level Physics with an introduction to the basic physical principles necessary for a more complete understanding of chemistry and related subjects. It is not available to students with an A-level of grade C or above in Physics.
Compulsory Study (80 credits)
Students must study the following modules for 80 credits:
This module builds on the principles of biochemistry taught in BIO-1A14. Selected topics in intermediary metabolism are covered in greater depth and extended to include the specific roles of coenzymes in metabolic pathways. In turn this leads to a discussion of the roles of hormone-receptor interactions and signal transduction in metabolic regulation. The recent contributions of structural biology to cellular bioenergetics are acknowledged in both the lecture series and associated practical classes, whilst ATP utilization is illustrated by consideration of the active transport of molecules across membranes in both prokaryotes and eukaryotes.
The unit is an introduction to aspects of physical chemistry relevant to biology. Topics include: protein structure and stability,interatomic and intermolecular forces and their influence on biomoloecluar structure, X-ray crystallography, electronic, fluorescence and circular dichroism spectroscopies, hydrodynamic techniques, ligand binding to macromolecules, and enzyme kinetics. The coursework involves practical laboratory work and course tests. Students are required to have taken on of the laboratory units CHE-1C0Y, CHE-1E0Y or CHE-1H0Y in addition to the PP/PS units above, before taking this unit.
This module is concerned with the broad aspects of medicinal chemistry, from the discovery of lead compounds and the recognition of biological activity, to the production of pharmaceuticals. Biological activity is discussed in terms of metabolism, pharmacokinetics, and structure-activity relationships (SAR). Drug targets and their exploitation in drug therapies are also discussed. The medicinal chemistry content of this module contains aspects of both chemistry and biology. Therefore the course is started with a series of chemistry 'introductory' seminars relevant to BIO students and a series of biology seminars are provided containing underlying principles relevant to CHEM students.
The module provides an introduction to the principles of molecular biology. The programme starts with the structure of DNA, genes and genomes, followed by characterisation of the information flow including the mechanisms and regulation of transcription and translation. Protein folding, modification and turnover are described together with reactions concerning DNA (replication, recombination and repair). The module ends with a detailed description of methods used for the experimental manipulation of genetic material (gene isolation, DNA sequencing, polymerase chain reaction, molecular cloning, transgenic plants and animals and global functional genomics).
Option A Study (40 credits)
Students will select 40 credits from the following modules:
This module explores the molecular organisation of cells and the regulation of dynamic cellular changes, with some emphasis on medical cell biology. Dynamic properties of cell membranes, cell signalling, growth factor function and aspects of cancer biology and immunology. Regulation of the internal cell environment (nuclear organisation and information flow, cell growth, division and motility), the relationship of the cell to its extracellular matrix and the determination of cell phenotype. Aspects of cell death, the ageing process, developmental biology, mechanisms of tissue renewal and repair. It is strongly recommended that students taking this module should also take BIO-2B02 or BIO-2B17.
This module will describe the basis of heredity, describing both the functions and the structures of genes and whole genomes. Examples will be taken from bacterial, animal and plant systems and will be considered from both functional and molecular points of view. The influence of the "new genetics" on medicine, agriculture and society will also be covered. Practical work will involve a molecular genetic analysis of a symbiotic, nitrogen-fixing bacterium and a molecular mapping exercise of traits that confer disease resistance in plants. It is strongly recommended that students taking this module should also take BIO-2B02 (Molecular Biology).
The major emphasis of this unit is on the mechanisms that regulate human body organ systems and their interplay. Considerable attention is directed to cell physiology, which serves as the basis for body functions. In particular, the nervous, muscle, sense organ, renal, cardiac, respiratory, circulatory, gastrointestinal, endocrine, and reproductive systems are dealt with in detail. Practical work involves physiological experiments on these systems and histopathology of some tissues. (CHE-1C24 IS AN ACCEPTABLE ALTERNATIVE TO BIO-1A58 AS A PREREQUISITE).
The central theme of the module is the chemistry of the p and d block elements: structure and bonding, coordination complexes and the organometallic chemistry of main group and transition metals. The module includes laboratory work. Students are required to have taken one of the laboratory module CHE-1C0Y, CHE-1E0Y or CHE-1H0Y as well as CHE-1C3Y before taking this module.
The topics covered in the module include an introduction to organic synthesis, carbon-carbon bond forming reactions, aromaticity, heterocyclic chemistry, and stereochemistry and mechanism. The module includes laboratory work. Students are required to have taken one of the laboratory modules CHE-1C0Y, CHE-1H0Y or CHE-1E0Y as well as CHE-1C1Y before taking this module.
Compulsory Study (120 credits)
Students must study the following modules for 120 credits:
This module represents the year (at least 30 weeks) spent on work placement by students registered on a BIO programme incorporating a year in industry. The student will have an industrial supervisor and a UEA-based mentor. Students on placement will be required to keep a detailed diary including project plans, updates and deliverables for any project in which they participate and this will be regularly reviewed by the mentor. Before and twice during the placement, the mentor will formally liaise with the company through the industrial supervisor to ensure the work carried out by the student is meeting the learning objectives of the programme. Assessment is on a pass/fail basis following submission of a written report at the end of the placement. Restricted to School of Biological Sciences students on a year in industry programme (with C104 or C720).
Compulsory Study (60 credits)
Students must study the following modules for 60 credits:
An alternative to the laboratory or field based project (BIO-3D1Y). The module involves the student undertaking their own rigorous analysis of existing biological data (either from the literature or from biological databases). The source of the data for analysis is provided by the project supervisor. The project report is usually submitted at the end of the Spring Semester. Projects may also be available for suitably qualified year long visiting students registered in BIO.
The unit sets out to explain the molecular basis of the often complex catalytic mechanisms of enzymes in biological systems. Covered are the underlying principles of enzyme catalysis and techniques for the study of enzyme mechanism and structure. These provide a foundation for discussions of the mechanisms of specific enzyme families such as the aspartic proteinases (e.g. the HIV-1 proteinase), of enzymes involved in DNA replication and ATP synthesis. Many of the examples presented are of relevance in medicine. An extended practical based on the kinetics of a model enzyme, chymotrypsin, helps underpin concepts learnt in the unit.
Open to all BIO finalists (or BIO-3D2Y, Data Analysis, or BIO-3C40, Scientific Research Skills) except those on C180/2/3/4 (who take BIO-3C9Y). Projects involve extensive data collection, either in the laboratory or field, of a particular topic supervised by a member of staff of BIO or an affiliated institute. Topics are chosen in consultation with the supervisor. The project report is submitted at the end of the Spring Semester. Projects may also be available for suitably qualified year long visiting students registered in BIO.
Option A Study (40 credits)
Students will select 40 credits from the following modules:
This module is concerned with the structure and function of cells and it has a strong emphasis on experimental methodologies used to study cell dynamics. Topics to be covered include: DNA cloning and gene expression, microscopy and image analysis, cell junctions and communication, mechanics of cell division, cell signalling in motility, cytoskeleton, extracellular matrix and tissue function, growth factors and proliferation and cell differentiation. The module also includes three demonstrations of current techniques used to study cells and review sessions where students have an opportunity to ask questions on aspects of cell biology.
The module deals with the mechanisms involved in signal recognition, transduction and response in animal cells. Topics include the molecular basis of receptor activation and the way in which this is interpreted either in changes in second messenger levels or in protein-protein interactions and ultimately in changes in protein kinase activities. The module then goes on to look at some of the effects on cell behaviour that result from signal input. (With the agreement of the module organiser, students who have taken BIO-2B01 but not BIO-2B06 may be allowed to take this module.)
The module will explore the experimental and computer-based methods for studying the structure and function of membrane proteins. The principles explored will be illustrated with examples of topical interest. The module will also consider the biosynthesis of integral membrane proteins and the mechanisms by which proteins are targeted into, or across, biological membranes. The structure, specialisation and differentiation of biological membranes will also be explored.
This module will provide a description of contemporary biological studies of genomes. There will be a focus on a molecular understanding of gene expression within organisms, with a particular emphasis on regulatory processes that affect expression at the genome level. Topics to be covered include comparative and functional genomics, organization of prokaryotic and eukaryotic genomes, global regulation of genome expression and mechanisms involved in maintaining genome integrity. Lectures and the associated practical will also provide a thorough grounding in technologies that analyse genomes and their gene products.
This module aims to provide a detailed coverage of the biology of selected infectious microorganisms, in the context of host responses to pathogens. The properties of organs, cells and molecules of the immune system are described, along with the mechanism of antibody diversity generation, and the exploitation of the immune response for vaccine development. Examples of microbiological pathogens are used to illustrate major virulence strategies. The impact of genomics on the study of infection, and on mechanisms used by pathogens to evade host responses will be discussed. The unit's theme is the molecular and cellular biology events at the host-pathogen interface.
This unit describes how molecular genetics can analyse the microbial world. The power of genomics and post-genomics in revolutionising our understanding of bacterial diversity, physiology and other specialised properties will be highlighted. The ways in which bacteria, such as Caulobacter, Streptomyces and Bacillus form complex structures will be described in terms of complex cascades of gene regulation. The Unit also deals with bacterial response to stress and with prokaryotic behaviour, including chemotaxis, communication between cells and communication between bacteria and eukaryotes.
The aim of this unit is to provide a thorough understanding of the concepts and principles of developmental biology from bacteria through to vertebrates. Special emphasis will be placed on vertebrate developmental biology and where applicable this will be compared to human development. Students will gain an understanding of the molecular basis of pattern formation and morphogenetic events during embryogenesis.
Host-pathogen interactions are illustrated with examples of the molecular basis for the pathogenicity of viruses, bacteria and fungi towards plants. Emphasis is also given to the molecular recognition of pathogens by plants, to the intracellular signalling pathways that result in expression of plant disease resistance, and to the nature of resistance mechanisms. There is no pre-requisite for this module but knowledge of molecular biology and plant biology are advantages.
The module examines examples of biogenesis, chemical synthesis, and biological action, of selected products and pharmaceutical chemicals. The emphasis is on the organic chemistry of these topics, not enzymology and pharmacology. Even though CHE-2F8Y is listed as a Pre-requisite it can be alternatively taken at the same time as this module.
This unit provides most of the core description of heterocyclic chemistry in the organic chemistry lecture programme in CHE, surveying the synthesis and reactivity of pi-deficient and pi- excessive heterocycles. This level-3 course also continues the discussion of organic synthesis, building on the introduction to carbon-carbon bond forming reactions, synthesis design and retrosynthetic planning presented in earlier years. The course includes an introduction to stereoselective synthesis and transition metal mediated bond-formation procedures - topics which can be taken on further in a level-4 option course.
This unit builds on CHE-3H81 Protein Structure and Chemistry, covering how protein structures can be altered by biological and chemical procedures, and the principles underlying the design of proteins for specific tasks. Examples of engineered proteins designed for particular industrial and medical uses are considered.
This module provides an introduction to the diversity of protein structure , their properties and to interactions between proteins and metal ions. Lectures cover protein structure, protein electrostatics, stability and folding, molecular modelling, the chemical principles of protein-metal interactions, spectroscopic techniques for studying protein metal centres and techniques used in protein structure determination. The module is taught in the first part of semester one.
Option B Study (20 credits)
Students will select 20 credits from the following modules:
This module is concerned with the structure and function of cells and it has a strong emphasis on experimental methodologies used to study cell dynamics. Topics to be covered include: DNA cloning and gene expression, microscopy and image analysis, cell junctions and communication, mechanics of cell division, cell signalling in motility, cytoskeleton, extracellular matrix and tissue function, growth factors and proliferation and cell differentiation. The module also includes three demonstrations of current techniques used to study cells and review sessions where students have an opportunity to ask questions on aspects of cell biology.
The module deals with the mechanisms involved in signal recognition, transduction and response in animal cells. Topics include the molecular basis of receptor activation and the way in which this is interpreted either in changes in second messenger levels or in protein-protein interactions and ultimately in changes in protein kinase activities. The module then goes on to look at some of the effects on cell behaviour that result from signal input. (With the agreement of the module organiser, students who have taken BIO-2B01 but not BIO-2B06 may be allowed to take this module.)
The module will explore the experimental and computer-based methods for studying the structure and function of membrane proteins. The principles explored will be illustrated with examples of topical interest. The module will also consider the biosynthesis of integral membrane proteins and the mechanisms by which proteins are targeted into, or across, biological membranes. The structure, specialisation and differentiation of biological membranes will also be explored.
This module will provide a description of contemporary biological studies of genomes. There will be a focus on a molecular understanding of gene expression within organisms, with a particular emphasis on regulatory processes that affect expression at the genome level. Topics to be covered include comparative and functional genomics, organization of prokaryotic and eukaryotic genomes, global regulation of genome expression and mechanisms involved in maintaining genome integrity. Lectures and the associated practical will also provide a thorough grounding in technologies that analyse genomes and their gene products.
The major emphasis of this unit is on the mechanisms that regulate human body organ systems and their interplay. Considerable attention is directed to cell physiology, which serves as the basis for body functions. In particular, the nervous, muscle, sense organ, renal, cardiac, respiratory, circulatory, gastrointestinal, endocrine, and reproductive systems are dealt with in detail. Practical work involves physiological experiments on these systems and histopathology of some tissues. (CHE-1C24 IS AN ACCEPTABLE ALTERNATIVE TO BIO-1A58 AS A PREREQUISITE).
This module aims to provide a detailed coverage of the biology of selected infectious microorganisms, in the context of host responses to pathogens. The properties of organs, cells and molecules of the immune system are described, along with the mechanism of antibody diversity generation, and the exploitation of the immune response for vaccine development. Examples of microbiological pathogens are used to illustrate major virulence strategies. The impact of genomics on the study of infection, and on mechanisms used by pathogens to evade host responses will be discussed. The unit's theme is the molecular and cellular biology events at the host-pathogen interface.
The central theme of the module is the chemistry of the p and d block elements: structure and bonding, coordination complexes and the organometallic chemistry of main group and transition metals. The module includes laboratory work. Students are required to have taken one of the laboratory module CHE-1C0Y, CHE-1E0Y or CHE-1H0Y as well as CHE-1C3Y before taking this module.
This unit describes how molecular genetics can analyse the microbial world. The power of genomics and post-genomics in revolutionising our understanding of bacterial diversity, physiology and other specialised properties will be highlighted. The ways in which bacteria, such as Caulobacter, Streptomyces and Bacillus form complex structures will be described in terms of complex cascades of gene regulation. The Unit also deals with bacterial response to stress and with prokaryotic behaviour, including chemotaxis, communication between cells and communication between bacteria and eukaryotes.
A broad module covering all aspects of the biology of microorganisms, providing key knowledge for specialist Level 3 modules. Detailed description is given about the cell biology of bacteria, fungi and protists together with microbial physiology, genetics and environmental and applied microbiology. The biology of disease-causing microorganisms (bacteria, viruses) and prions is also covered. Practical work provides hands-on experience of important microbiological techniques, and expands on concepts introduced in lectures. The module should appeal to biology students across a wide range of disciplines and interests.
The aim of this unit is to provide a thorough understanding of the concepts and principles of developmental biology from bacteria through to vertebrates. Special emphasis will be placed on vertebrate developmental biology and where applicable this will be compared to human development. Students will gain an understanding of the molecular basis of pattern formation and morphogenetic events during embryogenesis.
Host-pathogen interactions are illustrated with examples of the molecular basis for the pathogenicity of viruses, bacteria and fungi towards plants. Emphasis is also given to the molecular recognition of pathogens by plants, to the intracellular signalling pathways that result in expression of plant disease resistance, and to the nature of resistance mechanisms. There is no pre-requisite for this module but knowledge of molecular biology and plant biology are advantages.
The module examines examples of biogenesis, chemical synthesis, and biological action, of selected products and pharmaceutical chemicals. The emphasis is on the organic chemistry of these topics, not enzymology and pharmacology. Even though CHE-2F8Y is listed as a Pre-requisite it can be alternatively taken at the same time as this module.
This unit provides most of the core description of heterocyclic chemistry in the organic chemistry lecture programme in CHE, surveying the synthesis and reactivity of pi-deficient and pi- excessive heterocycles. This level-3 course also continues the discussion of organic synthesis, building on the introduction to carbon-carbon bond forming reactions, synthesis design and retrosynthetic planning presented in earlier years. The course includes an introduction to stereoselective synthesis and transition metal mediated bond-formation procedures - topics which can be taken on further in a level-4 option course.
This unit, which will consist of lectures and practical classes, will provide an appreciation of modern plant biology with an emphasis on development, signalling, and response to the environment. It will encompass genetic, molecular, biochemical and physiological perspectives and provide an understanding of the major aspects of plant cell structure, function and metabolism, including photosynthesis and respiration, an understanding of inter- and intracellular signalling and an understanding of how plants perceive and respond to the physical and biological environments.
This unit builds on CHE-3H81 Protein Structure and Chemistry, covering how protein structures can be altered by biological and chemical procedures, and the principles underlying the design of proteins for specific tasks. Examples of engineered proteins designed for particular industrial and medical uses are considered.
This module provides an introduction to the diversity of protein structure , their properties and to interactions between proteins and metal ions. Lectures cover protein structure, protein electrostatics, stability and folding, molecular modelling, the chemical principles of protein-metal interactions, spectroscopic techniques for studying protein metal centres and techniques used in protein structure determination. The module is taught in the first part of semester one.
Disclaimer
Whilst the University will make every effort to offer the modules listed, changes may sometimes be made arising from the annual monitoring, review and update of modules and regular (five-yearly) review of course programmes. Where this activity leads to significant (but not minor) changes to programmes and their constituent modules, there will normally be prior consultation of students and others. It is also possible that the University may not be able to offer a module for reasons outside of its control, such as the illness of a member of staff or sabbatical leave. Where this is the case, the University will endeavour to inform students.
Year In Industry
Completion of a Year in Industry programme will ensure you graduate with relevant work experience, putting you one step ahead of other students. This exciting degree programme provides you with this opportunity.
There is no greater asset in today’s competitive job market than relevant work experience. A Year in Industry will give you first-hand knowledge of not only the mechanics of how your chosen field operates but it will also greatly improve your chances of progressing within that sector as you seal valuable contacts and insight. These courses will also enhance your studies as theory is transformed into reality in a context governed by very real, time and financial constraints.
Our Industrial Links
We have well-established commercial connections throughout the UK and beyond and can help you to identify and compete for appropriate industrial opportunities. These might be in large pharmaceutical companies, small biotechnology, hospital or research institute laboratories. Placements have included GlaxoSmithKline, Cellzome and the John Innes Centre.
Financial Benefits
A big attraction to this type of course, apart from the enhanced career prospects, is that students will pay much reduced tuition fees for that year (see fees and funding tab). And, of course, you are typically paid by the placement provider during the year, which is a great way to help fund your continued studies.
For the latest on financial arrangements for our Year in Industry students please visit the UEA Finance webpage.
How it Works
The Year in Industry degree programmes are four years duration with the work placement taking place during your third year. They are a minimum of nine months full-time employment and a maximum of 13 months.
Throughout the work placement, you will maintain close contact with an assigned mentor at UEA who will also visit you at least once during the year. You will also be supported by an industrial supervisor. You keep a regularly updated work diary, so that your mentor will be able to ensure you are fulfilling all of the necessary learning objectives. Assessment of the year will be via a written report marked by both supervisors and a presentation.
We expect students to seek their own work placements. Not only will this ensure that you work within your preferred field, it will also provide you with the essential job-hunting skills you will require after graduation. We will, of course, offer our guidance whilst students are identifying and negotiating placement opportunities.
Please note that we cannot guarantee any student a work placement as this decision rests with potential employers and students will be expected to source these placements themselves. Limited support will be available from the University The Faculty of Science will provide support for students trying to obtain a placement in preparation for the year in Industry placements and students are expected to make use of any help offered within the Faculty/School as well as the Careers Centre. If you were unable to secure a work placement by the end of your second year you will have the option to apply to be transferred onto the equivalent three-year degree programme without a Year in Industry. If you have not successfully secured a work placement by the end of your second year you will be transferred onto the equivalent three-year degree programme.
For further information, please contact: Dr Richard Bowater, e-mail: R.Bowater@uea.ac.uk or Professor Ian Clark, e-mail: I.Clark@uea.ac.uk, Year in Industry Co-ordinators, School of Biological Sciences.
Entry Requirements
A Level:
AAB to include Chemistry and AS Level Maths or Physics at grade B
International Baccalaureate:
33 points with 3 HL subjects at grade 6 to include Chemistry and SL Maths or Physics at grade
Scottish Highers:
AAABB to include Chemistry and either Maths or Physics
Scottish Advanced Highers:
AAB to include Chemistry and either SL Maths or Physics at grade B
Irish Leaving Certificate:
AAAABB at Higher Level including Chemistry and either Maths or Physics
Access Course:
See below
European Baccalaureate:
80% overall, including 8.0 in Chemistry and either Maths or Physics
Students for whom English is a Foreign language
We welcome applications from students from all academic backgrounds. We require evidence of proficiency in English (including writing, speaking, listening and reading). Recognised English Language qualifications include:
IELTS: 6. overall (minimum 5.5 in any component)
TOEFL: Internet-based score of 78 overall (minimum 20 in Speaking component, 17 in Writing and Listening components and 18 in Reading components.
PTE: 55 overall (minimum 51 in any component).
If you do not meet the University's entry requirements, our INTO Language Learning Centre offers a range of university preparation courses to help you develop the high level of academic and English skills necessary for successful undergraduate study.
Interviews
The majority of our candidates will not be called for interview. However, for some students an interview will be requested. These are normally quite informal and generally cover topics such as your current studies, reasons for choosing the course and your personal interests and extra-curricular activities.
Gap Year
We welcome applications from students who have already taken or intend to take a gap year, believing that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry and may wish to contact the appropriate Admissions Office directly to discuss this further.
Special Entry Requirements
A2-level Chemistry and Grade B in AS Level Maths or Physics are required for this course. In addition to this, applicants are asked to have two other A2-level subjects. General Studies and Critical Thinking are not accepted.
Intakes
The School's annual intake is in September of each year.
Alternative Qualifications
We encourage you to apply if you have alternative qualifications equivalent to our stated entry requirement. Please contact us for further information.
Pass the Access to HE Diploma with Distinction in 45 credits at Level 3, including 12 Level 3 credits in Chemistry and 6 Level 3 credits in either Maths or Physics.
GCSE Offer
Students are required to have Mathematics and English Language at a minimum of Grade C at GCSE Level.
Fees and Funding
Undergraduate University Fees
We are committed to ensuring that Tuition Fees do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. Full time UK/EU students starting an undergraduate degree course in 2013 will be charged a tuition fee of £9,000. The level of fee may be subject to yearly increases. Full time International students starting an undergraduate degree course in 2013 will be charged a tuition fee of £14,400. The level of fee may be subject to yearly increases.
Year in Industry Fees
For Home/EU students opting for Year in Industry the tuition fee is currently £1,250. The Year in Industry tuition fee will be subject to an annual increase. International Students are required to pay 25% of their annual tuition fee to UEA during their year in Industry and will be calculated based on the current tuition fee for that year.
The School of Biological Sciences has 2 £1,000 year one scholarships available for 2013 entry. The Scholarship deadline is 15th March 2013. Please contact the Admissions office at bio.ug.admiss@uea.ac.uk for more information.
The University offers around £1 million of Scholarships each year to support International students in their studies. Scholarships are normally awarded to students on the basis of academic merit and are usually for the duration of the period of study. Our University international pages gives you more details about preparation for studying with us, including Fees and Funding http://www.uea.ac.uk/international
UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The system allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it must be sent to UCAS so that they can process it and send it to your chosen universities and colleges.
The UCAS code name and number for the University of East Anglia is EANGL E14.
Further Information
If you would like to discuss your individual circumstances with the Admissions Office prior to applying please do contact us: