Biological Sciences

BSc BIOCHEMISTRY WITH A FOUNDATION YEAR

Key details 

BSC BIOCHEMISTRY WITH A FOUNDATION YEAR

Start Year
2021
Attendance
Full Time
Award
Degree of Bachelor of Science
UCAS course code
8C70
Entry Requirements
CCC

Assessment for Year 1

Each module will be assessed through a combination of coursework and formal tests or examinations. Feedback will be offered after each assessment.

Admissions Live Chat   
Register interest   
Virtual Open Day   

Assessment for Year 2

Reflecting the range of learning outcomes, we use a number of assessment methods: formal examinations, project reports, course tests, practical and fieldwork reports, poster and oral presentations, essays and worksheets. The balance of coursework and examinations varies dependent upon module choices. For example, at Level 5, the majority of modules are assessed through 40% coursework, 60% examination, although a small number of modules are 100% coursework.

Admissions Live Chat   
Register interest   
Virtual Open Day   

Assessment for Year 3

Reflecting the range of learning outcomes, we use a number of assessment methods: formal examinations, project reports, course tests, practical and fieldwork reports, poster and oral presentations, essays and worksheets. The balance of coursework and examinations varies dependent upon module choices. For example, at Level 5, the majority of modules are assessed through 40% coursework, 60% examination, although a small number of modules are 100% coursework.

Admissions Live Chat   
Register interest   
Virtual Open Day   

Assessment for Year 4

Reflecting the range of learning outcomes, we use a number of assessment methods: formal examinations, project reports, course tests, practical and fieldwork reports, poster and oral presentations, essays and worksheets. The balance of coursework and examinations varies dependent upon module choices. For example, at Level 5, the majority of modules are assessed through 40% coursework, 60% examination, although a small number of modules are 100% coursework.

Admissions Live Chat   
Register interest   
Virtual Open Day   

Year 0 (Foundation Year)

Compulsory Modules (80 Credits)

Code CHE-3004A (20 Credits)

A module designed for you, if you are on a Science Faculty degree with a Foundation Year. You will receive an introduction to the structure and electronic configuration of the atom. You will learn how to predict the nature of bonding given the position of elements in the periodic table and therefore. You will be introduced to the chemistry of key groups of elements. You will become familiar with key measures such as the mole and the determination of concentrations. The module includes laboratory work. No prior knowledge of chemistry is assumed.

Code CHE-3003B (20 Credits)

A course in chemistry intended to take you to the level required to begin a relevant degree in the Faculty of Science. The module will help you to develop an understanding of: reactions of functional groups in organic chemistry; basic thermodynamics; spectroscopic techniques; transition metal chemistry and practical laboratory skills.

Code BIO-3002A (20 Credits)

The topics covered on the module will give you a basic grounding in biological processes including the fundamental characteristics of living things; basic metabolic processes; an understanding of evolution and knowledge of the levels of biological organisation with some focus given to organ systems. This module also gives you the opportunity to develop key transferable skills which may include lab skills, report writing, assignment preparation, researching and evaluating evidence, giving and responding to presentations.

Code BIO-3001B (20 Credits)

The topics covered will give you a basic grounding in biological processes including the fundamental characteristics of living things; basic metabolic processes; an understanding of evolution and knowledge of the levels of biological organisation with some focus given to organ systems. This module also gives you the opportunity to develop key transferable skills such as lab skills, report writing, assignment preparation, researching and evaluating evidence, giving and responding to presentations.

Optional A Modules (20 Credits)

Code MTHB3001A (20 Credits)

Taught by lectures and seminars to bring students from Maths GCSE towards A-level standard, this module covers several algebraic topics including functions, polynomials and quadratic equations. Trigonometry is approached both geometrically up to Sine and Cosine Rule and as a collection of waves and other functions. The main new topic is Differential Calculus including the Product and Chain Rules. We will also introduce Integral Calculus and apply it to areas. Students should have a strong understanding of GCSE Mathematics.

Code MTHB3005A (20 Credits)

This is a course in mathematics for students who have studied Maths at GCSE level gaining a grade B/C or equivalent and/or more than two years ago. The course includes some AS level material relevant to science. This module is reserved for students on the Chemistry, Biology, Pharmacy, Environmental Science or Computing Foundation Years.

Code PHY-3011A (20 Credits)

In this module you will begin your physics journey with units, accuracy and measurement. You will then progress through the topics of waves, light and sound, forces and dynamics, energy, materials and finish by studying aspects of electricity. The module has a piece of coursework which is based around PV cell technology.

Optional B Modules (20 Credits)

Code MTHB3002B (20 Credits)

Following MTHB3001A (Basic Mathematics I), this module brings students up to the standard needed to begin year one of a range of degree courses. The first half covers Integral Calculus including Integration by Parts and Substitution. Trigonometric identities, polynomial expressions, partial fractions and exponential functions are explored, all with the object of integrating a wider range of functions. The second half of the module is split into two: Complex Numbers and Vectors. We will meet and use the imaginary number i (the square root of negative one), represent it on a diagram, solve equations using it and link it to trigonometry and exponential functions. Strange but true: imaginary numbers are useful in the real world. The last section is practical rather than abstract too; we will be looking at three dimensional position and movement and solving geometric problems through vector techniques.

Code MTHB3006B (20 Credits)

This module is ideal for you if you are studying a Science Faculty degree with a Foundation Year or Computing with a Foundation Year and have completed study of the module Introductory Mathematics for Scientists. You will build on the knowledge gained during the Mathematics for Scientists introduction module and advance your skills.

Code PHY-3010B (20 Credits)

This module follows on from Introductory Physics and continues to introduce you to the fundamental principles of physics and uses them to explain a variety of physical phenomena. You will study gravitational, electric and magnetic fields, radioactivity and energy levels. There is some coursework based around the discharge of capacitors. The module finishes with you studying some aspects of thermal physics, conservation of momentum and simple harmonic motion.
 

 

Year 1

Compulsory Modules (120 Credits)

Code CHE-4101Y (20 Credits)

After a shared introduction to atomic structure and periodicity, you will be introduced to the concepts of bonding and hybridisation, conjugation and aromaticity, the mechanistic description of organic reactions, the organic functional groups, the shapes of molecules and stereochemical issues including the concepts of enantiomers, diastereoisomers and racemates.

Code CHE-4301Y (20 Credits)

After a shared introduction to chemical bonding, atomic and molecular structure and chemical principles, this module will provide you with an introduction to the structures, properties and reactivities of molecules and ionic solids. The first few lectures of this module are integrated with the module ‘Chemistry of Carbon Based Compounds’ and is supported and illustrated by the bonding, structure and periodicity experiments of the first year practical modules, Chemistry Laboratory A or Research Skills in Biochemistry. The latter part will concentrate more on fundamental aspects of inorganic Chemistry. Emphasis will be placed on the relationships between chemical bonding and the structures and properties of molecules.

Code CHE-4602Y (20 Credits)

If you are a Biochemistry student, this module will provide you with practical and research skills. In the laboratory, you will experience experimental and computational aspects of different areas of chemistry: organic, inorganic, analytical and physical. The experiments and simulations provide practical chemistry skills, complementing lectures in other first year modules. In seminars and workshops, you will develops skills such as analysing data, using references critically, and presenting results in different formats.

Code BIO-4007Y (20 Credits)

To understand Life we have to study and understand the molecular properties of life's components. For any biochemist these are cells, energy, macromolecules, biochemical reactions and transport (of energy or chemical components). The tools we use as scientists in our quest for understanding life are various physical and analytical methods. You will be introduced to the basic principles of thermodynamics, chemical equilibria, electrochemistry, and reaction kinetics. You will conclude the module by having a look at various physical and analytical techniques that are being used in current Biochemistry. This lectures will introduce you and provide you with essential information about some of the physical principles that underpin our understanding of molecular and cellular systems. The complementary seminar series will help to consolidate your understanding through applying this knowledge to selected topics in biochemistry and provide you with the opportunity to develop skills in problem solving, data analysis, scientific writing, and presentation. The module is also enriched with six math workshops. In these workshops you are going to consolidate but also further develop basic and more advanced mathematical skills that directly relate with this module but that will also assist you for the duration of your degree.

Code BIO-4016B (20 Credits)

This module will provide an introduction to fundamental aspects of biochemistry and cell biology. The essential roles played by proteins and enzymes in signalling, transport and metabolism will be considered in terms of their structures. You will discover how living cells are visualised and the nature of cell membranes and organelles.

Code BIO-4018A (20 Credits)

This module explores how information is stored in DNA, how it is expressed, copied and repaired, and how DNA is transmitted between generations. It has significant focus on the application of molecular biological and genetics knowledge, including animal, plant and microbial biotechnology and synthetic biology.

 

Year 2

Compulsory Modules (80 Credits)

Code BIO-5002A (20 Credits)

This module aims to develop your understanding of contemporary biochemistry, especially in relation to mammalian physiology and metabolism. There will be a particular focus on proteins and their involvement in cellular reactions, bioenergetics and signalling processes.

Code BIO-5003B (20 Credits)

You will be given a background to the fundamental principles of molecular biology, in particular the nature of the relationship between genetic information and the synthesis, and three dimensional structures, of macromolecules. You will also gain practical experience of some of the techniques used for the experimental manipulation of genetic material, and the necessary theoretical framework. The module also includes an introduction to bioinformatics, the computer-assisted analysis of DNA and protein sequence information.

Code CHE-5601Y (20 Credits)

This module will equip you with an understanding of the principles and techniques used in contemporary biophysical chemistry. You will learn experimental techniques for measuring thermodynamic and kinetic properties of biological molecules. You will gain firm grounding in the physical principles describing those properties and their use to provide quantitative descriptions of those properties. Using predominantly examples from protein biochemistry you will explore three major themes; i) spectroscopic properties of biomolecules, ii) thermodynamic and kinetic properties of proteins and enzymes, and, iii) methods defining biomolecule size and mass. Through weekly seminars you will benefit from putting your knowledge into practice, communicating your ideas and growing your confidence in quantitative data analysis and problem solving. During laboratory based practical work, you will develop your skills in sample preparation together with the collection and interpretation of spectroscopic data. Your participation in this module will give you the knowledge to appreciate how, and why, biophysical chemistry contributes to advances in medicine, sustainable energy solutions and healthy ageing.

Code CHE-5150Y (20 Credits)

Medicinal chemistry is a highly interdisciplinary area and this module is designed to introduce a variety of topics in the field of medicinal chemistry. Some of the topics that will be discussed in a series of lectures include, Molecular and biomolecular interactions, Biomolecules: Proteins and nucleic acids, Phases of drug action, Pharmacokinetics, Proteins and receptors as drug targets, DNA as a drug target and development of antitumor agents.

Optional A Modules (20 Credits)

Code BIO-5005B (20 Credits)

This module explores the molecular organisation of cells and the regulation of cellular changes, with some emphasis on medical cell biology. Dynamic properties of cell signalling, growth factor function and aspects of cancer biology and immunology. Regulation of the internal cell environment (information flow, cell growth, division and motility), the relationship of the cell to its extracellular matrix and the determination of cell phenotype. Aspects of cell death, developmental biology, mechanisms of tissue renewal and repair. It is suggested that students taking this module should also take BIO-5003B (Molecular Biology) or BIO-5009A (Genetics).

Code CHE-5301B (20 Credits)

In this module, you’ll study the structure, bonding and reactivity patterns of inorganic compounds. The module is a prerequisite for the 3rd level inorganic course Inorganic Compounds: Structure and Functions. You’ll cover the electronic structure, spectroscopic and magnetic properties of transition metal complexes (ligand field theory), the chemistry of main group clusters, polymers and oligomers, the structures and reactivities of main group and transition metal organometallics, and the application of spectroscopic methods (primarily NMR, MS and IR) to inorganic compounds. You’ll have laboratory classes linked to the lecture topics and so you will need to have completed either of the level 4 practical modules, Chemistry Laboratory (A) or Research Skills in Biochemistry.

Optional B Modules (20 Credits)

Code BIO-5009A (20 Credits)

The aim is to provide you with an appreciation of genetics at a fundamental and molecular level and to demonstrate the importance and utility of genetic studies. Genetics and molecular biology lie at the heart of biological processes, ranging from cancer biology to evolution.

Code CHE-5101A (20 Credits)

This course builds on Chemistry of Carbon-based Compounds (the first year organic chemistry course). You will cover four main topics. The first 'aromaticity' includes benzenoid and hetero-aromatic systems. The second major topic is the organic chemistry of carbonyl compounds. Spectroscopic characterisation of organic compounds is reviewed and the final major topic is 'stereochemistry and mechanisms'. This covers conformational aspects of acyclic and cyclic compounds. Stereoelectronic effects, Neighbouring Group Participation (NGP), Baldwin’s rules, Cram’s rule and cycloaddition reactions are then discussed.

 

Year 3

Compulsory Modules (120 Credits)

Code BIO-6019Y (20 Credits)

This module will provide an understanding of how to conduct an independent, hypothesis driven research project. Projects involve extensive data collection, either in the laboratory or field, of a particular topic supervised by a member of staff of Biological Sciences or an affiliated institute. Topics are chosen in consultation with the supervisor. The project report is submitted at the end of the Spring Semester. Students may be moved to the module 'Integrated Laboratory Research Project' based on Stage 2 results. Some supervisors require particular module enrolment for placement in their laboratory.

Code BIO-6023Y (40 Credits)

Primarily an alternative to the ‘Research Project’ module, this module provides you with an introduction to biological research. It provides you an insight into the development of a hypothesis or questions to test, experimental design, and critical analysis. You will develop crucial research and work skills, including group work.

Code BIO-6001A (20 Credits)

The module sets out to explain the molecular basis of the often complex catalytic mechanisms of enzymes concentrating particularly on their relevance to and applications in biotechnology and medicine. An extended practical based on the kinetics of a model enzyme, chymotrypsin, helps underpin concepts learnt in the module.

Code CHE-6601Y (20 Credits)

The structural basis of the function of many proteins has been elucidated and this, together with the ready availability of chemical and biochemical techniques for altering proteins in a controlled way, has led to the application of proteins in a wide variety of biological and chemical systems and processes. These include their use as industrial catalysts and medicines, in organic syntheses and in the development of new materials. This module provides an introduction to the principles underlying this rapidly expanding and commercially-relevant area of the molecular biosciences and gives insights into their applications.

Optional A Modules (0-40 Credits)

Code BIO-6003A (20 Credits)

How do cells receive and react to information from their external environment? What is the molecular basis for how cells respond to external signalling cues and how does this relate to physiological processes? In this module you will study cellular signalling by ion channels, G protein-coupled receptors, enzyme-linked receptors; the associated signal transduction mechanisms and relevance to human physiology and disease. The module includes aspects of the molecular basis of cellular signalling, structure-function relationships and pharmacology. You will study the molecular basis of cellular signalling by three principle receptor families, namely ion channels, G protein-coupled receptors and enzyme-linked receptors. You will build on your knowledge of cell biology and human physiology to deepen your understanding of cellular signalling. You will learn through lectures and independent study.

Code CHE-5301B (20 Credits)

In this module, you’ll study the structure, bonding and reactivity patterns of inorganic compounds. The module is a prerequisite for the 3rd level inorganic course Inorganic Compounds: Structure and Functions. You’ll cover the electronic structure, spectroscopic and magnetic properties of transition metal complexes (ligand field theory), the chemistry of main group clusters, polymers and oligomers, the structures and reactivities of main group and transition metal organometallics, and the application of spectroscopic methods (primarily NMR, MS and IR) to inorganic compounds. You’ll have laboratory classes linked to the lecture topics and so you will need to have completed either of the level 4 practical modules, Chemistry Laboratory (A) or Research Skills in Biochemistry.

Optional B Modules (0-40 Credits)

Code BIO-5006A (20 Credits)

The module studies the biochemical, physiological and developmental processes of plants.

Code BIO-5015B (20 Credits)

A broad module covering all aspects of the biology of microorganisms, providing key knowledge for specialist modules. Detailed description is given about the cell biology of bacteria, fungi and protists together with microbial physiology, genetics and environmental and applied microbiology. The biology of disease-causing microorganisms (bacteria, viruses) and prions is also covered. Practical work provides hands-on experience of important microbiological techniques, and expands on concepts introduced in lectures. The module should appeal to biology students across a wide range of disciplines and interests.

Code BIO-6004A (20 Credits)

This module provides an overview of the uses of microorganisms in biotechnological principles. It provides training in the basic principles that control microbiological culture growth, the microbial physiology and genetics that underpin the production of bioproducts such as biofuels, bioplastics, antibiotics and food products, as well as the use of micro-organisms in wastewater treatment and bioremediation.

Code BIO-6005B (20 Credits)

This module will provide you with a detailed understanding of cutting-edge developments in microbial cell biology. You will cover essential techniques used to carry out modern day molecular microbiology. These techniques will be further explained to you in the context of work done on model microbial systems in research conducted on the Norwich Research Park (NRP). The module is taught to you by world-leading research scientists from the NRP and focuses on the structure and analysis of bacterial genomes, the bacterial cytoskeleton, sub-cellular localisation, cell shape and cell division and intercellular communication between bacteria and higher organisms. You will also have research-led seminars delivered by NRP PhD students.

Code BIO-6006B (20 Credits)

Do you want to learn about the key topics within cell biology and understand how these relate to human diseases? You will learn about the structure and function of cells in health and disease through a combination of practical demonstrations, where you will experience some of the imaging techniques used in the study of Cell Biology. You will also participate in a workshop, where you will learn how to design experiments. This module will provide you with a solid understanding of aspects of cell structure, function and related diseases concerning: ubiquitination; the cytoskeleton; cell division; cell signalling in motility and wound healing; the extracellular matrix; growth factors and proliferation; cell differentiation and adult stem cells and apoptosis.

Code BIO-6009A (20 Credits)

On this module you will learn about the various roles of genes in cancer cell signalling, the cell cycle, cell death processes such as apoptosis, metastasis and angiogenesis, and discuss the potential for novel therapies. The use of animal models and the problems with drug resistance will be discussed. You will develop key skills in the critical analysis of primary cancer research papers. We work closely with experts at the Norfolk & Norwich University Hospital wherever possible, enabling you to gain an in-depth appreciation of cancer as a disease process from both the scientific and clinical viewpoints.

Code BIO-6012A (20 Credits)

You will study the mechanisms that drive embryonic development, including the signals and signalling pathways that lead to the establishment of the body plan, pattern formation, differentiation and organogenesis. Your lectures will cover different model organisms used in the study of development with a focus on vertebrate systems. The relevance of embryonic development to our understanding of human development and disease is a recurring theme throughout the module, which also covers stem cells and organoids and their role in enhancing our understanding of development and disease, healthy tissue maintenance and drug discovery.

Code CHE-6101Y  (20 Credits)

You will cover several key topics required to plan the synthesis of organic compounds, and to understand the properties displayed by organic compounds. The first topic is on synthesis planning, strategy and analysis, supported by a study of further important oxidation and reduction reactions. The second topic is on the various types of pericyclic reactions and understanding the stereochemistry displayed by an analysis of frontier orbitals. The third topic is on the use of organometallic compounds in synthesis with a particular emphasis on the use of transition metal based catalysts. The fourth topic is the synthesis of chiral non-racemic compounds, and describes the use of chiral pool compounds and methods for the amplification of chiral information, including asymmettric reductions and oxidations.The final topic is on physical organic chemistry and includes aspects of radical chemistry.

Code CHE-6301Y (20 Credits)

This module concentrates on two important themes in contemporary inorganic chemistry: (i) the role of transition metals in homogeneous catalysis; (ii) the correlation between the structures of transition metal complexes and their electronic and magnetic properties. The structure and bonding in these compounds will be discussed as well as their applications in synthesis. There will be a series of problem-solving workshops interspersed with the lectures.

Optional C Modules (0-40 Credits)

Code BIO-5004A (20 Credits)

This module will provide you with an understanding of the themes and principles of physiology and a detailed knowledge of the major human organ systems. An understanding of how disease affects the ability of organ systems to maintain the status quo will be an important part of this course.

Code BIO-5005B (20 Credits)

This module explores the molecular organisation of cells and the regulation of cellular changes, with some emphasis on medical cell biology. Dynamic properties of cell signalling, growth factor function and aspects of cancer biology and immunology. Regulation of the internal cell environment (information flow, cell growth, division and motility), the relationship of the cell to its extracellular matrix and the determination of cell phenotype. Aspects of cell death, developmental biology, mechanisms of tissue renewal and repair. It is suggested that students taking this module should also take BIO-5003B (Molecular Biology) or BIO-5009A (Genetics).

Code BIO-6010B (20 Credits)

This module provides a detailed coverage of the biology of selected infectious microorganisms, in the context of host and responses to pathogens. The properties of organs, cells and molecules of the immune system are described, along with the mechanism of antibody diversity generation, and the exploitation of the immune response for vaccine development. Examples of pathogens are used to illustrate major virulence strategies.

Code BIO-6013A (20 Credits)

This module will provide you with knowledge of the biological analysis of genomes. This will focus on our understanding of genome composition, organisation and evolution, and the global regulation of gene expression. When you have completed this module you will understand contemporary methods that inform us about the biology of genomes.

Code CHE-6151Y (20 Credits)

This module is to provide an awareness of new bond construction in advanced organic chemistry. It has aspects of natural product chemistry and the associated bioactivity of natural compounds. The module will illustrate how advanced synthetic chemistry can be used to construct compounds that might find applications in the pharmaceutical industry.

 

Admissions Live Chat   
Register interest   
Virtual Open Day   

Entry Requirements

A Levels

CCC. Science A-Levels must include a pass in the practical element.

BTEC

MMM

Scottish highers

BBCCC

Scottish highers advanced

DDD

Irish leaving certificate

6 subjects at H4

Access course

Pass the Access to HE Diploma with 45 credits at Level 3

European Baccalaureate

60%

International Baccalaureate

28 points overall

GCSE offer

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE.

Additional entry requirements

We welcome applications from students with non-traditional academic backgrounds.  If you have been out of study for the last three years and you do not have the entry grades for our three year degree, we will consider your educational and employment history, along with your personal statement and reference to gain a holistic view of your suitability for the course. You will still need to meet our GCSE English Language and Mathematics requirements.

If you are currently studying your level 3 qualifications, we may be able to give you a reduced grade offer based on these circumstances:

• You live in an area with low progression to higher education (we use Polar 4, quintile 1 & 2 data)

• You will be 21 years of age or over at the start of the course
• You have been in care or you are a young full time carer
• You are studying at a school which our Outreach Team are working closely with

Alternative Qualifications

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level. 

Interviews

Most applicants will not be called for an interview and a decision will be made via UCAS Track. However, for some applicants an interview will be requested. Where an interview is required the Admissions Service will contact you directly to arrange a time. 

 

Gap year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry on your UCAS application. 

 

Intakes

This course is open to UK applicants only.

 

Course Reference Number: 1545017

Fees and Funding

Tuition Fees

Information on tuition fees can be found here.

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds. 

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

Course related costs

Please see Additional Course Fees for details of course-related costs. There are compulsory textbooks for some of the modules on this course and there will be costs associated with these.

Course Reference Number: 1545017

How to apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The application allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it is sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The Institution code for the University of East Anglia is E14.

FURTHER INFORMATION  

Please complete our Online Enquiry Form to request a prospectus and to be kept up to date with news and events at the University. 

Course Reference Number: 1545017
Key details
Attendance
Full Time
Award
Degree of Bachelor of Science
UCAS course code
8C70
Entry Requirements
CCC
Our Biochemistry with a Foundation Year course is designed to help you gain the skills, knowledge and confidence you need to progress on to a degree in biochemistry.  During your foundation year you’ll be assigned an adviser from the School of Biological Sciences who’ll guide you through your course to make sure that you’re ready to progress onto the specific degree course of your choice.  It’s the ideal choice if you’re looking for a solid foundation in the core subjects relating to the study of life and the processes and interactions driving life on Earth. You’ll learn alongside students from across the other Science Schools, and at the end of the Foundation Year you will be equipped with the fundamental skills you need to succeed in your future studies in your chosen area of biochemistry – and to unleash your learning potential. 
Schools
Biological Sciences
See more