Physics

# BSc PHYSICS WITH A FOUNDATION YEAR

Key details

## BSC PHYSICS WITH A FOUNDATION YEAR

Start Year
2021
Attendance
Full Time
Award
Degree of Bachelor of Science
UCAS course code
F301
Entry Requirements
CCC
Duration (years)
4

### Assessment for Year 1

We employ a range of assessment methods to best reflect each module and what we hope you will gain from it.

Assessments will usually feature a combination of practical reports, data handling, project work, dissertations, course tests and examinations.

Your foundation year results will not count towards your final degree classification, but they are important should you wish to transfer to a different degree programme.

## Year 0

#### Compulsory Modules (80 Credits)

Code MTHB3002B (20 Credits)

Following MTHB3001A (Basic Mathematics I), this module brings students up to the standard needed to begin year one of a range of degree courses. The first half covers Integral Calculus including Integration by Parts and Substitution. Trigonometric identities, polynomial expressions, partial fractions and exponential functions are explored, all with the object of integrating a wider range of functions. The second half of the module is split into two: Complex Numbers and Vectors. We will meet and use the imaginary number i (the square root of negative one), represent it on a diagram, solve equations using it and link it to trigonometry and exponential functions. Strange but true: imaginary numbers are useful in the real world. The last section is practical rather than abstract too; we will be looking at three dimensional position and movement and solving geometric problems through vector techniques.

Code MTHB3001A (20 Credits)

Taught by lectures and seminars to bring students from Maths GCSE towards A-level standard, this module covers several algebraic topics including functions, polynomials and quadratic equations. Trigonometry is approached both geometrically up to Sine and Cosine Rule and as a collection of waves and other functions. The main new topic is Differential Calculus including the Product and Chain Rules. We will also introduce Integral Calculus and apply it to areas. Students should have a strong understanding of GCSE Mathematics.

Code PHY-3011A (20 Credits)

In this module you will begin your physics journey with units, accuracy and measurement. You will then progress through the topics of waves, light and sound, forces and dynamics, energy, materials and finish by studying aspects of electricity. The module has a piece of coursework which is based around PV cell technology.

Code PHY-3010B (20 Credits)

This module follows on from Introductory Physics and continues to introduce you to the fundamental principles of physics and uses them to explain a variety of physical phenomena. You will study gravitational, electric and magnetic fields, radioactivity and energy levels. There is some coursework based around the discharge of capacitors. The module finishes with you studying some aspects of thermal physics, conservation of momentum and simple harmonic motion.

#### Optional A Modules (40 Credits)

Code CHE-3003B (20 Credits)

A course in chemistry intended to take you to the level required to begin a relevant degree in the Faculty of Science. The module will help you to develop an understanding of: reactions of functional groups in organic chemistry; basic thermodynamics; spectroscopic techniques; transition metal chemistry and practical laboratory skills.

Code CHE-3004A (20 Credits)

A module designed for you, if you are on a Science Faculty degree with a Foundation Year. You will receive an introduction to the structure and electronic configuration of the atom. You will learn how to predict the nature of bonding given the position of elements in the periodic table and therefore. You will be introduced to the chemistry of key groups of elements. You will become familiar with key measures such as the mole and the determination of concentrations. The module includes laboratory work. No prior knowledge of chemistry is assumed.

Code CMP-3002A (20 Credits)

In taking this module you will learn about a wide range of topics that are fundamental to computing science. You will study areas such as history of computing, the binary system, logic circuits, fetch and execute cycles as well as components that made up of modern computer systems. Internet related technologies will also be covered. In the practical work for the module you will use a range of tools and techniques appropriate to the topic being studied.

Code CMP-3005A (20 Credits)

Introductory Programming introduces a number of programming concepts at the start of your programming career, using a modern programming language common to many digital industries. We structure learning through lectures, delivering core materials, and tutor supported exercises to reinforce learning, and to prepare students for programming in their following studies.

Code MTHB3003B (20 Credits)

This module extends material beyond Basic Mathematics I and Basic Mathematics II, and takes the most useful topics from the equivalent of the Further Maths A-level syllabus: - Simple common sets. - Notions of mathematical rigour and proof by induction. - Ideas of function such as f(x)=(ax+b)/(cx+d) for curve sketching, including identifying asymptotes. - Trigonometric functions and corresponding identities, including graph sketching aided by the derivative as the slope of a curve. - The hyperbolic functions sinhx, coshx and tanhx. - The Maclaurin Series Expansions. - Matrices and determinants (2x2 and 3x3) and their link with vector-cross-product. Examples of matrix-transformations of the plane and of space. - Separable variable first-order differential equations for modelling the motion of objects (once Integration has been covered in Basic Mathematics II). E.g. a car decelerating within a specified breaking distance; a body falling with air-resistance. All this has proved to set up students well for what follows in the degree course.

## Year 1

#### Compulsory Modules (120 Credits)

Code PHY-4001Y (20 Credits)

This module gives an introduction to important topics in physics, with particular, but not exclusive, relevance to chemical and molecular physics. Areas covered include optics, electrostatics and magnetism and special relativity. The module may be taken by any science students who wish to study physics beyond A Level.

Code MTHA4007Y (20 Credits)

Computation and modelling are essential skills for the modern mathematician. While many applied problems are amenable to analytic methods, many require some numerical computation to complete the solution. The synthesis of these two approaches can provide deep insight into highly complex mathematical ideas. This module will introduce you to the art of mathematical modelling, and train you in the computer programming skills needed to perform numerical computations. A particular focus is classical mechanics, which describes the motion of solid bodies. Central to this is Newton’s second law of motion, which states that a mass will accelerate at a rate proportional to the force imposed upon it. This leads to an ordinary differential equation to be solved for the velocity and position of the mass. In the simplest cases the solution can be constructed using analytical methods, but in more complex situations, for example motion under resistance, numerical methods may be required. Iterative methods for solving nonlinear algebraic equations are fundamental and will also be studied. Further examples drawn from pure mathematics and statistics demonstrate the power of modern computational techniques.

Code CHE-4202Y (20 Credits)

This module introduces students to the major areas of classical physical chemistry: chemical kinetics, chemical thermodynamics, and electrolyte solutions as well as spectroscopy. Chemical kinetics will consider the kinetic theory of gases and the rate of processes, in particular either in the gas phase or in solution. The appropriate theoretical basis for understanding rate measurements will be developed during the course, which will include considerations of the order of reaction, the Arrhenius equation and determination of rate constants. Thermodynamics deals with energy relationships in large assemblies, that is those systems which contain sufficient numbers of molecules for 'bulk' properties to be exhibited and which, are in a state of equilibrium. Properties discussed will include the heat content or enthalpy (H), heat capacity (Cp, Cv), internal energy (U), heat and work. The First Law of Thermodynamics will be introduced and its significance explained. It is very important that scientists have an understanding of the behaviour of ions in solution, which includes conductivity and ionic mobility. The interaction of radiation with matter is termed spectroscopy. Three main topics will be discussed: (i) ultraviolet/visible (UV / Vis) spectroscopy, in which electrons are moved from one orbital to another orbital; (ii) infrared (vibrational) spectroscopy, a technique which provides important information on the variety of bond types that a molecule can possess; (iii) nuclear magnetic resonance spectroscopy (NMR), which allows 'molecular skeletons' to be identified.

Code ENV-4015Y (20 Credits)

You will cover differentiation, integration, vectors, partial differentiation, ordinary differential equations, further integrals, power series expansions, complex numbers and statistical methods as part of this module. In addition to the theoretical background there is an emphasis on applied examples. Previous knowledge of calculus is assumed. This module is the first in a series of three maths modules for those across the Faculty of Science that provide a solid undergraduate mathematical training. The follow-on modules are Mathematics for Scientists B and C. Recommended if you have grade A*-C at A-level Mathematics, or equivalent.

Code PHY-4004Y (20 Credits)

One half of the module will cover the physics of acoustics, especially with relation to music and musical instruments. The Matlab programming environment will be introduced and used to analyse a series of sounds. These analyses will form the basis for a written report on those sounds. The other half of the module will be a practical laboratory. A variety of experiments will be carried out and the data analysis written up in report format.

## Year 2

#### Compulsory Modules (100 Credits)

Code PHY-5003Y (20 Credits)

This module explores physics as an empirical science through a series of laboratory experiments that probe key concepts and physical laws. The laboratory sessions will be underpinned by associated teaching surrounding the studied phenomena, and will complement topics addressed in other modules in the physics course.

Code CHE-5250Y (20 Credits)

You’ll cover the foundation and basics of quantum theory and symmetry, starting with features of the quantum world and including elements of quantum chemistry, group theory, computer-based methods for calculating molecular wavefunctions, quantum information, and the quantum nature of light. The subject matter paves the way for applications to a variety of chemical and physical systems – in particular, processes and properties involving the electronic structure of atoms and molecules.

Code PHY-5004Y (20 Credits)

Exploring fundamental aspects of thermodynamics and condensed matter physics, you’ll be introduced to ideas about the electronic structure based on the free-electron Sommerfeld and band theories, along with the concept of phonons and their contribution to the heat capacity of a solid. Also you’ll consider the structure, bonding and properties of solids, in particular electronic conductivity and magnetism, as well as atomic structure and atomic spectroscopy, and Entropy in terms of a macroscopic Carnot cycle and the statistical approach. Two important distributions of particles will be treated; Bose-Einstein and Fermi-Dirac. Changes of state, 1st and 2nd order phase transitions and the Clausius–Clapeyron equation will be described.

#### Optional A Modules (0-20 Credits)

Code CHE-5201Y (20 Credits)

The module covers a number of areas of modern physical chemistry which are essential to a proper understanding of the behaviour of chemical systems. These include the second law of thermodynamics and entropy, qunatum mechanics, the thermodynamics of solutions and chemical kinetics of complex reactions. The module includes laboratory work. Due to the laboratory-based content on this module students must have completed at least one Level 4 module containing laboratory work.

Code CMP-5020B (20 Credits)

You will be introduced to a number of programming concepts at the start of your programming career, using a modern programming language common to many digital industries, with specific focus on applications within STEM fields. We structure learning through lectures, delivering core materials, and tutor supported exercises to reinforce learning, and to prepare you for programming in your following studies.

Code CMP-5027A (20 Credits)

A practical introduction to electronics, this module is structured to consider analogue electronics and digital electronics in turn. Topics you’ll cover include passive and active components, including op-amps, transistors, logic gates, flip-flops and registers. Circuits you’ll study include amplifiers, oscillators, modulators, combinational and sequential logic and state machines. You’ll spend much of your time doing practical work – underpinned by lectures – where you will build prototypes circuits, as well as designing and building Printed Circuit Boards (PCBs).

Code ENG-5002B (20 Credits)

This module builds on understanding in wind, tidal and hydroelectric power and introduces theories and principles relating to a variety of renewable energy technologies including solar energy, heat pumps and geothermal sources, fuel cells and the hydrogen economy, biomass energy and anaerobic digestion. You will consider how these various technologies can realistically contribute to the energy mix. You will study the various targets and legislative instruments that are used to control and encourage developments. Another key aspect of the module is the study and application of project management and financial project appraisal techniques in a renewable energy context.

Code ENG-5004B (20 Credits)

You will build on the introductory material you gained in first year engineering mechanics. An appreciation of why dynamics and vibration are important for engineering designers leads to consideration of Single-degree-of-freedom (SDOF) systems, Equation of motion, free vibration analysis, energy methods, natural frequency, undamped and damped systems and loading. Fourier series expansion and modal analysis are applied to vibration concepts: eigenfrequency, resonance, beats, critical, under-critical and overcritical damping, and transfer function. Introduction to multi-degree of freedom (MDOF) systems. Applications to beams and cantilevers. MathCAD will be used to support learning.

Code ENV-5004B (20 Credits)

In this module you will learn about the processes that shape the Earth's shallow subsurface, and how to detect and map subsurface structures and resources. Physical properties of solid materials and subsurface fluids will be explored, including how fluid movement affects these properties. Methods to image the subsurface will be introduced using real datasets, collected by the class where possible. We will apply the theory to real-life problems including risk mitigation, engineering and resource exploration. This module will include fieldwork on campus where possible, specialist computer software, and some light mathematical analysis (trigonometry, rearranging linear equations, logarithms).

Code ENV-5022B (20 Credits)

This module examines the complexities of the transition to low carbon energy systems. It draws on a range of disciplines, theories and perspectives to critically examine many of the key challenges. It begins by exploring how we can understand energy systems and how they differ across space and time. The module draws on historical analyses to understand how energy systems have evolved in the past, as well as examining the different ways in which we can imagine the future of energy. Students will gain an in-depth understanding of the complexities of changing energy systems, enabling them to critically engage with debates around future “energy transitions”, the role that innovation and emergent technologies might play, and the various challenges of shifting towards renewable based energy systems.

Code ENV-5043A (20 Credits)

The weather affects everyone and influences decisions that are made continuously around the world. From designing and siting a wind farm to assessing flood risk and public safety, weather plays a vital role. Have you ever wondered what actually causes the weather we experience, for example why large storms are so frequent across north western Europe, especially in Winter? In this module you will learn the fundamentals of the science of meteorology. We will concentrate on the physical processes that underpin the radiation balance, thermodynamics, wind-flow, atmospheric stability, weather systems and the water cycle. We will link these to renewable energy and the weather we experience throughout the Semester. Assessment will be based entirely on a set of practical reports that you will submit, helping you to spread your work evenly through the semester. You will learn how Weather is a rich fusion of descriptive and numerical elements and you will be able to draw effectively on your own skill strengths while practising and developing others, guided by Weatherquest’s Meteorologists.

## Year 3

#### Compulsory Modules (80 Credits)

Code PHY-6003Y (20 Credits)

This module explores concepts in physics through a series of advanced laboratory experiments, working in teams. The experiments are underpinned by associated teaching in other modules of the Physics course.

Code PHY-6004Y (20 Credits)

This individual research module is compulsory for all students registered on a Physics degree. It comprises supervised research in at least one area of physics. It may involve research partners in other Schools at UEA. The project can involve collection and analysis of data in the laboratory or from a telescope, and/or development of a piece of equipment, and/or development of software or a theoretical/numerical model, and/or analysis of pre-existing data from a variety of sources. It must include independent scientific analysis. It will be assessed by a written report, a presentation, and an online research journal maintained throughout the project.

Code PHY-6002Y (20 Credits)

On this module you will study a selection of advanced topics in classical physics that provide powerful tools in many applications as well as provide a deep theoretical background for further advanced studies in both classical and quantum physics. The topics include analytical mechanics, electromagnetic field theory and special relativity. Within this module you will also complete a computational assignment, developing necessary skills applicable for computations in many areas of physics

#### Optional A Modules (0-20 Credits)

Code CHE-5201Y (20 Credits)

The module covers a number of areas of modern physical chemistry which are essential to a proper understanding of the behaviour of chemical systems. These include the second law of thermodynamics and entropy, qunatum mechanics, the thermodynamics of solutions and chemical kinetics of complex reactions. The module includes laboratory work. Due to the laboratory-based content on this module students must have completed at least one Level 4 module containing laboratory work.

Code CMP-5027A (20 Credits)

A practical introduction to electronics, this module is structured to consider analogue electronics and digital electronics in turn. Topics you’ll cover include passive and active components, including op-amps, transistors, logic gates, flip-flops and registers. Circuits you’ll study include amplifiers, oscillators, modulators, combinational and sequential logic and state machines. You’ll spend much of your time doing practical work – underpinned by lectures – where you will build prototypes circuits, as well as designing and building Printed Circuit Boards (PCBs).

Code ENG-5002B (20 Credits)

This module builds on understanding in wind, tidal and hydroelectric power and introduces theories and principles relating to a variety of renewable energy technologies including solar energy, heat pumps and geothermal sources, fuel cells and the hydrogen economy, biomass energy and anaerobic digestion. You will consider how these various technologies can realistically contribute to the energy mix. You will study the various targets and legislative instruments that are used to control and encourage developments. Another key aspect of the module is the study and application of project management and financial project appraisal techniques in a renewable energy context.

Code ENG-5004B (20 Credits)

You will build on the introductory material you gained in first year engineering mechanics. An appreciation of why dynamics and vibration are important for engineering designers leads to consideration of Single-degree-of-freedom (SDOF) systems, Equation of motion, free vibration analysis, energy methods, natural frequency, undamped and damped systems and loading. Fourier series expansion and modal analysis are applied to vibration concepts: eigenfrequency, resonance, beats, critical, under-critical and overcritical damping, and transfer function. Introduction to multi-degree of freedom (MDOF) systems. Applications to beams and cantilevers. MathCAD will be used to support learning.

Code ENV-5004B (20 Credits)

In this module you will learn about the processes that shape the Earth's shallow subsurface, and how to detect and map subsurface structures and resources. Physical properties of solid materials and subsurface fluids will be explored, including how fluid movement affects these properties. Methods to image the subsurface will be introduced using real datasets, collected by the class where possible. We will apply the theory to real-life problems including risk mitigation, engineering and resource exploration. This module will include fieldwork on campus where possible, specialist computer software, and some light mathematical analysis (trigonometry, rearranging linear equations, logarithms).

Code ENV-5018A (20 Credits)

Processes in the Earth’s interior exert a profound influence on all aspects of the Earth’s system, and have done so throughout geological time. This module is designed to explore all aspects of those processes from the creation and destruction of tectonic plates to the structure of the Earth’s interior and the distribution and dissipation of energy within it. This will include: the theory and mechanisms of plate tectonics, the generation of magma and volcanism; the mechanisms behind earthquakes. The geological record of this activity, its evolution and impacts on the Earth will also be discussed.

Code ENV-5022B (20 Credits)

This module examines the complexities of the transition to low carbon energy systems. It draws on a range of disciplines, theories and perspectives to critically examine many of the key challenges. It begins by exploring how we can understand energy systems and how they differ across space and time. The module draws on historical analyses to understand how energy systems have evolved in the past, as well as examining the different ways in which we can imagine the future of energy. Students will gain an in-depth understanding of the complexities of changing energy systems, enabling them to critically engage with debates around future “energy transitions”, the role that innovation and emergent technologies might play, and the various challenges of shifting towards renewable based energy systems.

Code ENV-5043A (20 Credits)

The weather affects everyone and influences decisions that are made continuously around the world. From designing and siting a wind farm to assessing flood risk and public safety, weather plays a vital role. Have you ever wondered what actually causes the weather we experience, for example why large storms are so frequent across north western Europe, especially in Winter? In this module you will learn the fundamentals of the science of meteorology. We will concentrate on the physical processes that underpin the radiation balance, thermodynamics, wind-flow, atmospheric stability, weather systems and the water cycle. We will link these to renewable energy and the weather we experience throughout the Semester. Assessment will be based entirely on a set of practical reports that you will submit, helping you to spread your work evenly through the semester. You will learn how Weather is a rich fusion of descriptive and numerical elements and you will be able to draw effectively on your own skill strengths while practising and developing others, guided by Weatherquest’s Meteorologists.

#### Optional B Modules (20-40 Credits)

Code BIO-6018Y (20 Credits)

You will gain an understanding of how science is disseminated to the public and explore the theories surrounding learning and communication. You will investigate science as a culture and how this culture interfaces with the public. Examining case studies in a variety of different scientific areas, alongside looking at how information is released in scientific literature and subsequently picked up by the public press, will give you an understanding of science communication. You will gain an appreciation of how science information can be used to change public perception and how it can sometimes be misinterpreted. You will also learn practical skills by designing, running and evaluating a public outreach event at a school or in a public area. If you wish to take this module you will be required to write a statement of selection. These statements will be assessed and students will be allocated to the module accordingly.

Code CHE-6201Y (20 Credits)

The module covers a selection of advanced topics in Physical Chemistry including statistical thermodynamics, reaction mechanisms and theories of reaction rates, photochemistry, electrochemistry and diffraction techniques.

Code CHE-6250Y (20 Credits)

The module will consist of topics covering important areas of modern physical chemistry and chemical physics. The material will blend together experimental and theoretical aspects of photonics, condensed phase dynamics in molecular and macromolecular fluids and quantum and classical simulations.

Code EDUB6014A (20 Credits)

The aim of the module is to introduce you to the study of the teaching and learning of mathematics with particular focus to secondary and post compulsory level. In this module, you will explore theories of learning and teaching of mathematical concepts typically included in the secondary and post compulsory curriculum. Also, you will learn about knowledge related to mathematical teaching. If you are interested in mathematics teaching as a career or interested in mathematics education as a research discipline, then this module will equip you with the necessary knowledge and skills.

Code ENG-6001B (20 Credits)

This module is highly practical and will allow you to study how electricity is generated and how it is distributed to users. The first part studies DC and AC electricity and looks at how RLC circuits behave through complex phasor analysis. The second part will give you the chance to study electricity generators, beginning with magnetism and Faraday’s Law. Synchronous and asynchronous generators are studied along with application to conventional power stations and to renewable generation (e.g. wind). You'll also look at transformers and transmission lines with a view to distribution of electricity. Voltage conversion methods such as the rectifier, buck and boost converters are examined and finally electricity generation through solar is covered. Your lab classes will build on material from lectures which in turn forms the basis for coursework.

Code ENG-6002Y (20 Credits)

This module addresses the technical and financial aspects of nuclear power and solar energy, whilst letting you apply your knowledge from the Engineering Practice module to make ethical decisions incorporating health and safety risk assessments. Successful design of nuclear installations requires a detailed quantitative risk analysis within a regulatory framework that imposes high tolerances. Furthermore, you will obtain advanced knowledge and skills for the optimal design and performance analysis for cost-effective configurations of PV systems, solar thermal systems and hybrids to achieve sustainable development. Although these energies are considered cleaner, it is essential to consider the environmental impact and planning law, as well as changing the societal perception of both.

Code ENG-6007A (20 Credits)

Automatic control is essential in any field of engineering and science. Control systems are an integral part of robotic systems, manufacturing systems, self-driven vehicles and any industrial operation and household application involving control of temperature, humidity, flow, pressure, etc. A competent engineer should be familiar with the control theories commonly used nowadays and their practical application. In particular, this module is focused on the analysis and design of control systems based on the classical control theory. Among other topics, this module covers: -Systems modelling using Laplace transforms. -System identification. -Open-loop and closed-loop control systems and the importance of feedback. -Evaluation of systems stability and behaviour using different analysis tools like Bode plots, the Routh-Hurwitz criterion, the Root Locus method or Nyquist plots. -Design and tuning of different common types of controllers, like PID controllers and lead/lag compensators, to meet a variety of design requirements. -Digital control systems. -Programming and operation of PLCs (programmable logic controllers) and its use in automatic industrial systems. -Analysis and design of control systems using Matlab In order to reinforce the learning and engagement, different case studies of industrial applications from local companies are introduced and potentially a site visit.

Code ENV-5009B (20 Credits)

This module will build upon material covered in Meteorology I, by covering topics such as synoptic meteorology, weather hazards, micro-meteorology, further thermodynamics and weather forecasting. The module includes a major summative coursework assignment based on data collected on a UEA meteorology fieldcourse in a previous year.

Code ENV-5010K (20 Credits)

Weather is one of the most popular topics of conversation. But how, specifically, does it present risks and opportunities, to people, organisations and to the wider environment? In this module you will develop a clear understanding of these linkages and an evidence base to draw on in future roles in which weather is a factor. You’ll learn how to confidently source a diverse range of real-time weather information and you’ll practice analysing such data, leading subsequently to successful interpretation and effective communication, both written and in front of the camera. You’ll see, first hand, how meteorology depends upon computer systems for the efficient sharing, processing and visualisation of weather information. Being taught by weather practitioners with long experience of providing weather services to users, you will get the inside track on what it’s like to work in weather. Weather Forecasting is one central theme and application which will provide a focus for learning. How are forecasts made and delivered, who uses forecasts and what are their distinctive needs? Success in forecasting depends in part on a good physical understanding of atmospheric processes - through practical work, we’ll study those processes and use real examples of weather systems and events to reinforce the learning. At the end of the module, through an embedded week-long Easter residential fieldcourse, you’ll apply your enhanced process understanding and forecasting knowledge in a hands-on way to design and implement meteorological field experiments, testing hypotheses through the collection and interpretation of field data collected using weather sensors. You’ll write up your choice of fieldcourse experiment for assessment, after first receiving informal feedback on a related poster presentation.

Code ENV-6001B (20 Credits)

Geophysical hazards such as earthquakes, volcanic eruptions, tsunamis and landslides have significant environmental and societal impacts. This module focuses on the physical basis and analysis of each hazard, their global range of occurrence, probability of occurrence and their local and global impact. You will address matters such as hazard monitoring, modelling and assessment, and consider approaches towards risk mitigation and the reduction of vulnerability (individual and societal), with an emphasis on their practical implementation. Scenarios and probabilities of mega-disasters are also investigated. All the teaching faculty involved have practical experience of supplying professional advice on these hazards (and related risks) in addition to their own research involvement. A basic knowledge of physical science and of mathematics is assumed e.g. use of logs, exponentials, powers, cosines, rearrangement of equations.

Code ENV-6004A (20 Credits)

Our aim is to show how environmental problems may be solved from the initial problem, to mathematical formulation and numerical solution. Problems will be described conceptually, then defined mathematically, then solved numerically via computer programming. The module consists of lectures on numerical methods and computing practicals; the practicals being designed to illustrate the solution of problems using the methods covered in lectures. We will guide you through the solution of a model of an environmental process of your own choosing. The skills developed in this module are highly valued by prospective employers.

Code ENV-6025B (20 Credits)

What sets the mean global temperature of the world? Why are some parts of the world arid whilst others at the same latitudes are humid? This module aims to provide you with an understanding of the processes that determine why the Earth’s climate (defined, for example, by temperature and moisture distribution) looks like it does, what the major circulation patterns and climate zones are and how they arise. You will study why the climate changes in time over different timescales, and how we use this knowledge to understand the climate systems of other planets. This module is aimed at you if you wish to further your knowledge of climate, or want a base for any future study of climate change, such as the Meteorology/Oceanography.

Code PHY-6001Y (20 Credits)

In this module you will apply physics concepts and mathematical techniques to discover the astrophysics that govern the Universe at various scales, in both time and space. This includes stellar structure and evolution; stellar systems and populations; our Milky Way, other galaxies, and galactic systems; and the early Universe. You will also learn about the observational tools such as telescopes and detectors.

## Entry Requirements

CCC

MMM

BBCCC

DDD

6 subjects at H4

### Access course

Pass the Access to HE Diploma with 45 credits at Level 3

60% overall

28 points

### GCSE offer

You are required to have Mathematics and English Language at a minimum of Grade C or Grade 4 or above at GCSE.

We welcome applications from students with non-traditional academic backgrounds.  If you have been out of study for the last three years and you do not have the entry grades for our three year degree, we will consider your educational and employment history, along with your personal statement and reference to gain a holistic view of your suitability for the course. You will still need to meet our GCSE English Language and Mathematics requirements.

If you are currently studying your level 3 qualifications, we may be able to give you a reduced grade offer based on these circumstances:

• You live in an area with low progression to higher education (we use Polar 4, quintile 1 & 2 data)

• You will be 21 years of age or over at the start of the course
• You have been in care or you are a young full time carer
• You are studying at a school which our Outreach Team are working closely with

A-Level General Studies and Critical Thinking are not accepted.

#### Alternative Qualifications

UEA recognises that some students take a mixture of International Baccalaureate IB or International Baccalaureate Career-related Programme IBCP study rather than the full diploma, taking Higher levels in addition to A levels and/or BTEC qualifications. At UEA we do consider a combination of qualifications for entry, provided a minimum of three qualifications are taken at a higher Level. In addition some degree programmes require specific subjects at a higher level.

### Students for whom english is a foreign language

Applications from students whose first language is not English are welcome. We require evidence of proficiency in English (including writing, speaking, listening and reading):

IELTS: 6.5 overall (minimum 5.5 in all components)

We also accept a number of other English language tests. Please click here to see our full list

### Interviews

Most applicants will not be called for an interview and a decision will be made via UCAS Track. However, for some applicants an interview will be requested. Where an interview is required the Admissions Service will contact you directly to arrange a time.

### Gap year

We welcome applications from students who have already taken or intend to take a gap year.  We believe that a year between school and university can be of substantial benefit. You are advised to indicate your reason for wishing to defer entry on your UCAS application.

### Intakes

The annual intake is in September each year. This course is open to UK applicants only. Foundation courses for international applicants are run by our partners at INTO.

Course Reference Number: 1545293

## Fees and Funding

Tuition Fees

Information on tuition fees can be found here.

Scholarships and Bursaries

We are committed to ensuring that costs do not act as a barrier to those aspiring to come to a world leading university and have developed a funding package to reward those with excellent qualifications and assist those from lower income backgrounds.

The University of East Anglia offers a range of Scholarships; please click the link for eligibility, details of how to apply and closing dates.

## Course related costs

Course Reference Number: 1545293

## How to Apply

Applications need to be made via the Universities Colleges and Admissions Services (UCAS), using the UCAS Apply option.

UCAS Apply is a secure online application system that allows you to apply for full-time Undergraduate courses at universities and colleges in the United Kingdom. It is made up of different sections that you need to complete. Your application does not have to be completed all at once. The application allows you to leave a section partially completed so you can return to it later and add to or edit any information you have entered. Once your application is complete, it is sent to UCAS so that they can process it and send it to your chosen universities and colleges.

The Institution code for the University of East Anglia is E14.

#### FURTHER INFORMATION

Please complete our Online Enquiry Form to request a prospectus and to be kept up to date with news and events at the University.

Course Reference Number: 1545293
Key details
Attendance
Full Time
Award
Degree of Bachelor of Science
UCAS course code
F301
Entry Requirements
CCC
Duration (years)
4
To study physics is to ask questions; to interrogate everything. What’s the nature of matter? What are the origins of the Universe? What’s the basis for the mechanics of sound? And how will that ocean wave move next? Incredibly diverse, abstract and yet also creative, without physics, there would be no answers to many of these questions. Our foundation year is for students with a passion for the subject, but who don’t have the necessary academic qualifications. It will equip you with the knowledge and skills you need to progress onto our Physics degree course. Move onto the degree and you’ll be joining a multidisciplinary faculty with a thriving research community that includes specialist groups with expertise in geophysics, astrophysics, fluid mechanics, chemical physics and quantum physics. You will take advantage of top-class facilities, including spectroscopy and ultrafast laser equipment, high-tech geophysics apparatus and experimental wave tanks.

Schools
See more