How sexual competition and choice could protect species from extinction

Published by  News Archive

On 19th Jun 2020

The way animals compete and choose within their struggle to reproduce could have big consequences for extinction risk, according to new research from the University of East Anglia.

A new study, published today in Global Change Biology, shows how removing sexual competition and choice through enforced monogamy creates populations that are less resilient to environmental stress, such as climate change.

The research team looked at how flour beetles (Tribolium castaneum) coped with environmental and genetic stress after they had evolved under monogamous versus polyandrous mating patterns.

They say that their findings could help with conservation management, and where species are being bred in captivity.

Lead researcher Prof Matt Gage, from UEA’s School of Biological Sciences, said: “Species around the world are undergoing mass extinction due to a range of factors such as climate change, habitat loss and genetic bottlenecks.

“These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex.

“We used this extinction vortex scenario to experimentally measure the importance of sexual competition and choice for population resilience.”

The research team studied flour beetle populations that had been evolved in a lab for 10 years. While some lines of beetles were allowed to engage in a polyandrous mating pattern where each female was given a choice of five males every generation, another group were forced to be monogamous with no competition or choice.

After 95 generations of these two conditions, the team looked at how well the different lines coped with 15 further generations of different environmental and genetic stresses down a simulated ‘extinction vortex’.

Prof Gage said: “We mimicked ‘real life’ scenarios facing biodiversity today through repeated cycles of stress from food limitation, exposure to heatwaves, and being forced through a genetic bottleneck.

“We found that the beetles from the monogamous history of selection could not cope with environmental or genetic stress in the vortex. They were much more likely to decline, and all had become extinct by the end of the trial.

“So the removal of competition and choice from reproduction had created populations that were weaker when facing environmental and genetic stress.

“By contrast, the beetles with a polyandrous background, where males had been forced to compete and females had been given the opportunity to choose their mates for reproduction, declined much more slowly with 60 per cent of the population still alive at the end of the study.

“It’s not clear whether the forces that operate in the struggle to reproduce are positive or negative for population resilience. Darwin famously felt sick when he looked at the tail of a peacock because he could not understand how such a flamboyant structure could evolve if it hampered survival, but our study clearly shows how important this sexual selection is for maintaining wider population health.

“Our long-term experiment suggests that sexual selection is a positive force for population resilience by purging out bad genes and fixing in good genes, improving a population’s overall genetic quality and therefore resilience for facing harsh environments or genetic stress.”

The researchers say that their findings should apply to any species that reproduces sexually, experiences some degree of sexual selection, and faces environmental stress.

Prof Gage added: “We propose that, if an endangered species has an evolved mating pattern where competition and choice is evident, then that opportunity should wherever possible be given to maintain genetic health.”

The study was led by researchers at UEA in collaboration with colleagues at the Jagiellonian University (Poland) and ETH Zürich (Switerland). It was funded by the Natural Environment Research Council and the University of East Anglia.

‘Mating patterns influence vulnerability to the extinction vortex’ is published in the journal Global Change Biology on June 19, 2020.

Study biology at UEA

More world-leading research

Latest News

  News
Subtropical Atlantic Forest, Southern Brazil
15 Sep 2020

Study reveals impact of centuries of human activity in American tropics

The devastating effects of human activity on wildlife in the American tropics over the last 500 years are revealed in a new study published today.

Read more >
  News
Soldiers in a savannah
14 Sep 2020

Study examines how civil wars affect wildlife populations

A new study comprehensively reveals how civil wars impact wildlife in countries affected by conflict.

Read more >
  News
Union Jack and EU flag on cracked wall background

Amending Brexit deal will increase frictions within UK and beyond

The government’s decision to scrap part of its Brexit deal will increase frictions with the EU, as well as threatening the fragile political equilibrium in...

Read more >
Are you searching for something?
  News
testing for coronavirus in a lab
07 Sep 2020

Testing Initiative at UEA

UEA intends to offer coronavirus testing to all students and staff working on campus at the start of term.

Read more >
  News
04 Sep 2020

UEA lecturer makes Newton Prize shortlist

A University of East Anglia (UEA) Honorary Senior Lecturer, Sue Down, is part of a team that has been shortlisted for the 2020 Newton Prize. 

Read more >
  News
Researcher with gloved hand holding vial containing HIV blood sample, with more samples in the background
27 Aug 2020

The patients left behind by HIV research

People with HIV from BAME communities, women and heterosexual men are underrepresented in HIV studies – according to new research from UEA and Western Sydney...

Read more >
  News
Man viewing online healthcare app on smartphone screen
03 Sep 2020

New app to forecast life expectancy

Read more >
  News
Elderly woman's hands sorting pills into a pill organiser
02 Sep 2020

Stopping ‘risky’ medicines for older people in hospital

Read more >
  News
Foods containing vitamin C
27 Aug 2020

How Vitamin C could help over 50s retain muscle mass

Vitamin C could be the key to better muscles in later life – according to new research from UEA.

Read more >