How bacteria build an enzyme that destroys climate-changing laughing gas

Published by  News Archive

On 18th Apr 2019

New research from the University of East Anglia reveals how soil bacteria build the only known enzyme for the destruction of the potent global warming and ozone-depleting gas nitrous oxide.

Alongside carbon dioxide (CO2) and methane, the greenhouse gas nitrous oxide (N2O), commonly known as ‘laughing gas’, is now a cause for great concern, and there is much international focus on reducing emissions.

It is hoped that the findings, published today in the journal Chemical Science, will help pave the way for strategies to mitigate the damaging effects of this climate changing gas.

N2O has around 300 times the global warming potential of CO2 and stays in the atmosphere for about 120 years, where it accounts for around nine per cent of total greenhouse gas.

It also destroys the ozone layer with similar potency to the now banned chlorofluorocarbons (CFCs).

Atmospheric levels of N2O are rising year on year as microorganisms break down synthetic nitrogen fertilisers which are added to agricultural soil, to satisfy the food supply demands of an ever-increasing global population.

Prof Nick Le Brun from UEA’s School of Chemistry, said: “It is well known that some bacteria can ‘breathe’ N2O in environments where oxygen (O2) is limited.

“This ability is entirely dependent on an enzyme called ‘nitrous oxide reductase’, which is the only enzyme known to destroy N2O. It is therefore very important for controlling levels of this climate-changing gas.

“We wanted to find out more about how soil bacteria use this enzyme to destroy nitrous oxide.”

The part of the enzyme where N2O is consumed (called the ‘active site’) is unique in biology, consisting of a complex arrangement of copper and sulfur (a copper-sulfide cluster). Until now, knowledge of how this unusual active site is built by bacteria has been lacking. 

The UEA team discovered a protein called NosL, which is required for the assembly of the copper-sulfide cluster active site and makes the enzyme active.

They found that bacteria lacking NosL still produced the enzyme but it contained less of the copper-sulfide active site. Furthermore, when the same bacteria were grown with copper in short supply, the active site was completely absent from the enzyme. 

The team also showed that NosL is a copper-binding protein, indicating that it functions directly in supplying copper for the assembly of the copper-sulfide cluster active site.

Prof Le Brun said: “The discovery of the function of NosL is the first step towards understanding how the unique active site of nitrous oxide reductase is assembled. This is key information because when assembly goes wrong, inactive enzyme leads to release of N2O into the atmosphere.”

The UEA team was led by Prof Nick Le Brun and Dr Andy Gates from UEA’s School of Biological Sciences, and included the University’s Vice Chancellor Prof David Richardson – also from the School of Biological Sciences. They are part of international EU network focussed on understanding different aspects of N2O and the nitrogen cycle.

Dr Gates said: “Society is generally well aware of the need to address carbon dioxide emissions, but nitrous oxide is now emerging as a pressing global concern and requires researchers with different skill sets to work together to prevent further damaging effects of climate change.

“With increasing understanding of the enzymes that make and destroy N2O, we move closer to being able to develop strategies to mitigate the damaging effects of this climate changing gas on the earth’s environment.”

This work was funded through a BBSRC Norwich Research Park Doctoral Training Partnership PhD studentship.

NosL is a dedicated copper chaperone for assembly of the Cuz center of nitrous oxide reductase’ is published in Chemical Science, a peer-reviewed journal published by the Royal Society of Chemistry, on April 18, 2019.

Latest News

  News
Tall rainforest trees
18 Oct 2021

UEA researcher awarded prestigious prize 

A scientist at the University of East Anglia has been recognised with a prestigious prize.

Read more >
  News
Ziggurats and trees on UEA campus
15 Oct 2021

UEA’s great outdoors celebrated for a fifth straight year with international Green Flag award

The last 18 months have placed more value on green spaces than ever, and students arriving at the University of East Anglia (UEA) for the new academic year can...

Read more >
  News
Power station chimney emitting smoke
12 Oct 2021

How recovery from COVID-19’s impact on energy demand could help meet climate targets

New research examines different scenarios of energy-related demand and how they could impact climate mitigation targets.

Read more >
  News
House in Brazilian Amazonia.
07 Oct 2021

Study reveals impact of wild meat consumption on greenhouse gas emissions

Consuming sustainably sourced wild meat instead of domesticated livestock reduces greenhouse gas emissions.

Read more >
Are you searching for something?
  News
House in Brazilian Amazonia.
07 Oct 2021

Study reveals impact of wild meat consumption on greenhouse gas emissions

Consuming sustainably sourced wild meat instead of domesticated livestock reduces greenhouse gas emissions.

Read more >
  News
29 Sep 2021

Could Vitamin-A bring back your sense of smell after Covid?

Researchers at the University of East Anglia and James Paget University Hospital are launching a new project to see whether Vitamin A could help people regain...

Read more >
  News
27 Sep 2021

Children who eat more fruit and veg have better mental health

Children who eat a better diet, packed with fruit and vegetables, have better mental wellbeing – according to new research from the University of East Anglia...

Read more >
  News
27 Sep 2021

Amazonian protected areas benefit both people and biodiversity

Highly positive social outcomes are linked to biodiversity efforts in Amazonian Sustainable-Use Protected Areas, according to new research from the University of...

Read more >
  News
25 Sep 2021

How rabbits help restore unique habitats for rare species

European wild rabbits are a ‘keystone species’ that hold together entire ecosystems – according to researchers at the University of East Anglia.

Read more >
  News
24 Sep 2021

Ageing the unageable: UEA researchers develop new way to age lobsters

Scientists at the University of East Anglia (UEA) have identified a way of determining the age of a lobster based on its DNA.

Read more >
  News
22 Sep 2021

New research reveals credit rating agencies responded too slowly to Covid-19

Sluggish response of credit rating agencies in assessing sovereign creditworthiness during the pandemic may have led to mispriced sovereign debt.

Read more >