
Recognising direct products from their
conjugate type vectors

A. R. Camina and R. D. Camina ∗

School of Mathematics, University of East Anglia
Norwich, NR4 7TJ, UK

email: A.Camina@uea.ac.uk
DPMMS, Cambridge University

16, Mill Lane, Cambridge, CB2 1SB
email: R.D.Camina@dpmms.cam.ac.uk

Dedicated to Helmut Wielandt on his 90th birthday

1 Introduction

In two long and interesting articles Mark L. Lewis, [7, 8], considered prob-
lems of the relation between the structure of a finite group G and cd(G), the
set of the degrees of irreducible characters of G. In the second article the
following two theorems are proved.

Theorem A Let G be a finite group with cd(G) = {1, p, q, r, pq, pr} where
p, q and r are distinct primes. Then G = A × B where cd(A) = {1, p} and
cd(B) = {1, q, r}.

Theorem B Let G be a finite group with cd(G) = {1, p, q, r, s, pr, ps, qr, qs}
where p, q, r and s are distinct primes. Then G = A × B where cd(A) =
{1, p, q} and cd(B) = {1, r, s}.
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He also gives an example to show that if cd(G) = {1, p, q, pq}, where p
and q are distinct primes, then G is not necessarily a direct product.

In this paper we consider analogous problems for the set of sizes of con-
jugacy classes of G. See [5] for results of a similar nature. There is a strong
relation between information about character degrees and sizes of conjugacy
classes. If the multiplication constants for the conjugacy classes is known
then the character table can be reconstructed and similarly in reverse. How-
ever, if one knows only the sizes then there is less complete information and it
is not possible to obtain a complete translation. To illustrate this point, if the
conjugacy classes have sizes {1, p, q, pq} then the group is a direct product,
[3, Theorem 2], in contrast to Lewis’ example.

The study of the structure of a group given information about its conju-
gacy class sizes has a long history, for example in 1953 Baer considered such
a problem [1]. In that paper he gave an unpublished result of H. Wielandt
which is reproduced in the next section. The authors, in [4], generalised both
Baer and Wielandt’s results. In this paper we use those ideas to state and
prove results which are analogues of Lewis’ results, our Theorems 1 and 2.
We note that these results are both easier and stronger than those of Lewis.
In no case do we need to restrict to conjugacy classes of square-free size.
Also, in the first theorem we extend the number of primes involved and in
the second the number of factors. Finally, we do not use the classification of
finite simple groups in the proofs.

2 Definitions & Notation

Throughout this paper G denotes a finite group. If x ∈ G we denote the
conjugacy class of x in G by xG. Note that |xG| = [G : CG(x)] where CG(x)
denotes the centraliser of x in G and thus |xG| is called the index of x in G.
N. Itô introduced the following definition in [6].

Definition Let nr > · · · > n2 > n1 = 1 denote the distinct indices of
elements of a finite group G. Then (nr, . . . , n2, n1) is called the conjugate
type vector of G.

To deduce results about G given its conjugate type vector is an ongoing quest.
Note that in considering such questions abelian direct factors are ignored. In
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[4] the authors introduced the product of conjugate type vectors:

(nr, . . . , n2, n1)× (ms, . . . ,m2,m1)

is the ordered set {nimj | 1 ≤ i ≤ r, 1 ≤ j ≤ s}. The point being that if
H and G are finite groups then the conjugate type vector of H × G is the
product of the conjugate type vectors of H and G.

R. Baer characterised the following groups in [1].

Definition A finite group G is called a Baer group if all elements of prime-
power order have prime-power index.

In [4] the authors considered the following groups.

Definition Let G be a finite group and q a prime. G is a q-Baer group if all
q-elements have prime-power index.

Amongst other things the authors proved that if G is a q-Baer group then
there exists a prime p such that all q-elements have p-power index. In proving
this they generalised the following well-known Lemma of Wielandt [1, Lemma
6].

Wielandt’s Lemma. Let G be a finite group. If x ∈ G is a p-element of
p-power index for a prime p, then x ∈ Op(G).

Generalisation of Wielandt’s Lemma.[4, Proposition 1]
Let G be a finite group and p a prime. Suppose x ∈ G has p-power index,
then [xG, xG] ⊆ Op(G).

In [2] the following definition is introduced.

Definition Let C ⊆ G a finite group. Then

ker(C) = {x ∈ G | Cx = C} ≤ G.

3 Proofs

Lemma 1 Let G be a finite group such that pa is the highest power of the
prime p which divides the index of an element of G. Assume that there exists
a p-element of index pa in G. Suppose m is the index of an element of G
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such that (m, p) = 1. Then there exists a p′-element, say y, of G of index m
such that xy has index pam.

Proof. Suppose x is a p-element of index pa. Then, by [3, Theorem 1],
there exists a normal p-complement K. Furthermore, K ≤ CG(x). Let
u be a p′-element of CG(x) then u has index prime to p in CG(x) since
CG(xu) = CG(x) ∩ CG(u). So, by [3, Lemma 1], the Sylow p-subgroup Px of
CG(x) is a direct factor of CG(x) and CG(x) = Px ×K. Let y be an element
of index m, then y ∈ CG(x), since y centralises Op(G) and x ∈ Op(G) by
Wielandt’s Lemma. We may assume y ∈ K and thus xy has index pam in
G, as required.2

Lemma 2 Let x, y ∈ G a finite group. Suppose |xG| = pa and |yG| = qb

where p and q are distinct primes and pa < qb. Also suppose there does not
exist a conjugacy class of G of order divisible by pq. Then x is a q-element
(up to multiplication by central elements).

Proof. Let x = x1x2 where x1 is an r-element for some prime r and x2 has
order coprime to r. Note that both x1 and x2 have index a power of p which
is smaller than qb. Suppose |xG1 | 6= 1.

Let B denote xG1 and C denote yG. Since (|B|, |C|) = 1 it follows
that CB = D a conjugacy class of G. Clearly |D| ≥ |C| and also |D|
divides |C||B|. So, by the hypothesis of the lemma, |D| = |C|. We re-
peat the argument and see that DB−1 is a conjugacy class of G. Also
C ⊆ CBB−1 = DB−1, so that C = CBB−1. Thus H = 〈BB−1〉 ≤ ker(C)
and it follows that |H| divides |C|, i.e. |H| is a power of q. However, by the
generalisation of Wielandt’s Lemma, 〈BB−1〉 ⊆ Op,r(G), this contradicts the
previous statement unless r = q. It follows that x2 is in the centre of G. 2

Theorem 1 Suppose G has conjugate type vector

(pass , . . . , p
a1
1 , 1)× (qbrr , . . . , q

b1
1 , 1)

where p1, . . . , ps, q1, . . . , qr are distinct primes. Then r, s ≤ 2 and G = A×B
where A has conjugate type vector (pass , . . . , p

a1
1 , 1) and B has conjugate type

vector (qbrr , . . . , q
b1
1 , 1).

Proof. If r = s = 1 this is [3, Theorem 2]. So assume s > 1. Let x, yi ∈ G
with |xG| = pa1

1 and |yGi | = paii for 2 ≤ i ≤ s. Then, by Lemma 2, x is
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a pi-element for each i. Thus s = 2 and x is a p2-element. In CG(x) all
p
′
2-elements have index prime to p2 so CG(x) = P2 × L where P2 is a Sylow
p2-subgroup of G by [3, Lemma 1]. Using Lemma 1, it follows that all p2-
elements have index pa1

1 or are central. Also, any qi-element has a conjugate
in L and thus has index prime to p2. Further, an element of index pa2

2 must
be a p1-element, call such an element y. Then, similarly, CG(y) = P1 ×M
where P1 is a Sylow p1-subgroup. Thus all p1-elements have p2-index and all
qi-elements have index prime to p1.

Thus we have shown that if s ≥ 2 then s = 2 and all elements of prime-
power order have prime-power index. So G is a Baer group and the result
follows from [1, Theorem p.27].2

The following theorem is proved similarly.

Theorem 2 Suppose G has conjugate type vector

(p
a1,n1
1,n1

, . . . , p
a1,1

1,1 , 1)× · · · × (par,nrr,nr , . . . , p
ar,1
r,1 , 1)

where pi,j are distinct primes and nk ≥ 2 for 1 ≤ k ≤ r. Then nk = 2 for all
k and G = A1 × · · · × Ar where Ai has conjugate type vector (p

ai,2
i,2 , p

ai,1
i,1 , 1).

Proof. We prove this theorem by induction. The case r = 1 follows from
[1, Theorem p.27] and the case r = 2 is covered in the previous theorem.
Suppose r > 1 and the result holds for smaller r, we find the required A1

and the result will follow by induction.
Suppose |xG| = p

a1,1

1,1 , then as in the first step of the previous proof it
follows that x is a p1,2-element and n1 = 2. Again, CG(x) = P1,2 ×K, where
P1,2 is a Sylow p1,2-subgroup of G. As before, it follows that G is a p1,2-Baer
group and a p1,1-Baer group. Thus P1,1P1,2 is a normal subgroup of G, see
[4, Theorem A]. Also all elements of order prime to p1,1 and p1,2 have index
prime to p1,1 and p1,2. So P1,1P1,2 is centralised by all p

′
1,1, p

′
1,2- elements of

G and thus is our required A1.2

We note that in Theorem 2 if there are more than two factors we cannot
deduce that G is a Baer group if one of the factors has only one prime. In [4]
we conjectured that if a group had the conjugate type vector of a nilpotent
group then the group had to be nilpotent. It seems that this is harder than
the situation when many possible conjugacy class sizes do not exist.
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