Trivializing the Hrushovski constructions

David M Evans.

UEA, February 2004.

Ehud Hrushovski: (1988) Counterexamples to two of the most significant conjectures in model theory.

QUESTION: Are the counterexamples just very clever pathologies, or do they have connections with other parts of mathematics?

This talk:

- Model-theoretic background
- Zilber's conjecture
- Hrushovski constuctions
- Random graphs (Shelah, Spencer; Baldwin)
- New way of looking at the constructions (DE)

1. Model theory

The formulas of a first-order language L are certain finite strings of the symbols:
(1)

$$
\forall \exists \neg \rightarrow \wedge \vee)\left(, x_{1} x_{2} \ldots y_{1} y_{2} \ldots\right.
$$

and
(2) Various symbols (incuding =) used to denote relations and functions.

What you take for (2) depends on what sort of structure you want the formulas to talk about.

Examples: (i) Graphs: = and a 2-ary relation R for adjacency.
(ii) Rings: $=$ and,$+ \cdot(2$-ary functions), 0,1 (constants).
(iii) K-vector spaces: $=,+, 0$, and for each $\alpha \in K$ a 1-ary function symbol to denote scalar multiplication by α.
L-FORMULAS: Usual mathematical shorthand: variables can only range over the elements of a structure.

Notation:(i) $M \models \phi \quad$ the formula ϕ is true in the structure M.
(ii) If $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ is a formula with free variables amongst $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ and $\bar{a}=\left(a_{1}, \ldots, a_{m}\right) \in M^{m}$, let

$$
\phi[M, \bar{a}]=\left\{\left(b_{1}, \ldots, b_{n}\right) \in M^{n}: M \models \phi\left(b_{1}, \ldots, b_{n}, \bar{a}\right)\right\}
$$

This is a definable subset of M^{n} (using parameters $\left.a_{1}, \ldots, a_{m}\right)$.

General Philosophy: Fix a language L and:
(I) Compare L-structures by looking at their L-theories

$$
T h(M)=\{\phi: \phi \text { closed and } M \models \phi\} .
$$

(II) For a given L-structure M, think about its collection of definable subsets.

Examples for (I): What properties can be expressed by first-order formulas?

Graphs:

- Triangle free (YES)
- Diameter $\leq d \quad$ (YES)
- Connected (NO)

Rings:

- Integral domain (YES)
- Bézout (YES)
- Principal ideal domain (NO)

2. Zilber's Conjecture.

Definition: An infinite L-structure M is strongly minimal if for every L-formula $\phi(x, \bar{y})$ there exists $k \in \mathbb{N}$ such that for all \bar{a}, either $\{b \in M: M \models \phi(b, \bar{a})\}$ or its complement has size $\leq k$.

From the viewpoint of (II), these are the 'simplest' structures.
EXAMPLES OF StRONGLY MINIMAL STRUCTURES:
(1) M is a 'pure set' (the language L has =, but no other relation or function symbols).
(2) M is a K-vector space (where K is a division ring and the language is as described before).
(3) M is an algebraically closed field (the language is the language for rings).

Zilber's Conjecture: These are essentially the only examples of strongly minimal structures.

Early 1980's. Theorem (Zilber et al.): The conjecture is true for ω-categorical structures.
1988. Without any further hypotheses, the conjecture is false (Hrushovski).

Early 1990's. Under additional hypotheses (Zariski structure) the conjecture is true (Hrushovski, Zilber).

1990's - date. New idea of Zilber: Realise the counterexamples in 'classical' mathematics using complex analytic functions.
Work of Zilber, Wilkie, Koiran, Peatfield....
2003. Zilber: Connections between the construction and non-commutative geometry, string theory...

3. The construction

Describe the simplest form of the construction.
Work with graphs (so L has $=$ and a 2 -ary relation symbol R).
Fix a real parameter α with $0<\alpha<1$.
Definition:
(1) If A is a finite graph define the predimension of A to be

$$
\delta(A)=|A|-\alpha e(A)
$$

where e denotes the number of edges in A.
(2) If A is a subgraph of the finite graph B write

$$
A \leq B
$$

to mean

$$
\delta(A) \leq \delta\left(B^{\prime}\right) \text { for all } B^{\prime} \text { with } A \subseteq B^{\prime} \subseteq B
$$

(Pronounced: A is a self-sufficient subgraph of B.)

Properties:

(1) If $A \leq B$ and $X \subseteq B$, then $A \cap X \leq X$.
(2) If $A \leq B \leq C$, then $A \leq C$.
(3) If $A_{1}, A_{2} \leq B$, then $A_{1} \cap A_{2} \leq B$.
(4) If $X \subseteq B$, there is a unique smallest $A \leq B$ with $X \subseteq A$. Call this the closure of X in B, and denote it by $\operatorname{cl}_{B}(X)$.

Denote by \mathcal{C} the class of finite graphs A which satisfy

$$
\emptyset \leq A
$$

i.e. for all $X \subseteq A$, we have $|X|-\alpha e(A) \geq 0$. (Another way: average valency of X is $\leq 2 / \alpha$.)
Strong Amalgamation Lemma: Suppose $B, C \in \mathcal{C}$ and A is a subgraph of both B and C, and $A \leq C$. Let E be the disjoint union of B and C over A. Then $E \in \mathcal{C}$ and $B \leq E$.

Using this, we can 'glue' the graphs in \mathcal{C} together to obtain:
THEOREM: There exists a countably infinite graph $M=M_{\alpha}$ satisfying the following properties:
(G1): M is the union of a chain of finite subgraphs $A_{1} \leq A_{2} \leq A_{3} \leq \cdots$ all in \mathcal{C}.
(G2): If $A \leq M$ is finite and $A \leq B \in \mathcal{C}$, then there is an embedding $f: B \rightarrow M$ which is the identity on A and has $f(B) \leq M$.

Moreover, M is uniquely determined up to isomorphism by these two properties and if $h: B_{1} \rightarrow B_{2}$ is an isomorphism between finite closed subgraphs of M, then h can be extended to an automorphism of M. Theorem: (Hrushovski; Wagner; Baldwin, Shi) If $0<\alpha<1$ then M_{α} is stable (and not 1 -based). If α is rational, then M_{α} is ω-stable, of infinite Morley rank. \square

4. Irrational α, random graphs

S. Shelah, J. Spencer, (JAMS, 1988): Fix α irrational with $0<\alpha<1$. For $n \in \mathbb{N}$, consider choosing a graph on n vertices by randomly choosing each pair of vertices to be an edge, with probability $1 / n^{\alpha}$. If ϕ is a closed L-formula, let

$$
P(\phi, \alpha ; n)
$$

be the probability that the randomly chosen graph has the property expressed by ϕ. Consider what happens as $n \rightarrow \infty$:

Theorem: (Zero-one law) For each such ϕ, either
$P(\phi, \alpha ; n) \rightarrow 0$ as $n \rightarrow \infty$, or
$P(\phi, \alpha ; n) \rightarrow 1$ as $n \rightarrow \infty$.
Later on, Baldwin and Shelah made the connection:
Theorem: For all closed L-formulas ϕ :

$$
P(\phi, \alpha ; n) \rightarrow 1 \text { as } n \rightarrow \infty \Leftrightarrow M_{\alpha} \models \phi
$$

Remarks: (1) Compare with the classic result of Fagin, Glebskii et al.. If we choose the edges with probability $\frac{1}{2}$, then we again have a zero-one law, but this time the limit theory is that of the Random Graph.
(2) If β is rational and $0<\beta<1$ then as $\alpha \rightarrow \beta^{-}$(and α irrational), then $\operatorname{Th}\left(M_{\alpha}\right) \rightarrow T h\left(M_{\beta}\right)$.

5. α rational; directed graphs

Directed graphs: Let \mathcal{D} be the class of finite directed graphs D with all vertices having ≤ 2 out-vertices. If $C \subseteq D$, write $C \sqsubseteq D$ to mean that out-vertices of elements of C are contained in C (say that C is closed in D).

Easy Lemma: (1) If $C \sqsubseteq D$ and $X \subseteq D$ then $C \cap X \sqsubseteq X$.
(2) If $C \sqsubseteq D \sqsubseteq E$ then $C \sqsubseteq E$.
(3) (Strong Amalgamation) Suppose $D, E \in \mathcal{D}$ and C is a sub-digraph of both D and E and $C \sqsubseteq E$. Let F be the disjoint union of D and E over C. Then $F \in \mathcal{D}$ and $D \sqsubseteq F$.

Using this we have:
Proposition: There exists a countably infinite digraph N satisfying the following properties:
(D1): N is the union of a chain of finite subgraphs $C_{1} \sqsubseteq C_{2} \sqsubseteq C_{3} \sqsubseteq \cdots$ all in \mathcal{D}.
(D2): If $C \sqsubseteq N$ is finite and $C \sqsubseteq D \in \mathcal{D}$, then there is an embedding $f: D \rightarrow N$ which is the identity on C and has $f(D) \sqsubseteq N$.

Moreover, N is uniquely determined up to isomorphism by these two properties and is \sqsubseteq-homogeneous.

Proposition: N is stable, trivial and 1-based.
... So N is rather a dull structure.
.... or is it?
Fix $\alpha=\frac{1}{2}$. Work with $\delta(A)=2|A|-e(A)$.
So $\mathcal{C}=\{A: \delta(X) \geq 0$ for all $X \subseteq A\}$ and $M=M_{1 / 2}$.
Theorem: Forget the directions on the edges in N. The resulting graph is $M_{1 / 2}$.

The following answers a question of Bruno Poizat from 1991.
Corollary: There is a stable, trivial, 1-based structure with a reduct which is neither trivial, nor 1-based.

Definition: Suppose A is a finite graph. A \mathcal{D}-orientation of A is a directed graph $A^{+} \in \mathcal{D}$ with the same vertex set as A and such that if we forget the direction on the edges, we obtain A.

The theorem is a fairly straightforward corollary of the following two lemmas:

Lemma 1: (1) Suppose B is a finite graph. Then

$$
B \in \mathcal{C} \Leftrightarrow B \text { has a } \mathcal{D} \text {-orientation. }
$$

(2) If $B \in \mathcal{C}$ and $A \subseteq B$, then $A \leq B$ iff there is a \mathcal{D}-orientation of B in which A is closed.

Lemma 2: If $A \leq B \in \mathcal{C}$ then any \mathcal{D}-orientation of A extends to a \mathcal{D}-orientation of B.

