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EHUD HRUSHOVSKI: (1988) Counterexamples to two of the most

significant conjectures in model theory.

QUESTION: Are the counterexamples just very clever pathologies, or do

they have connections with other parts of mathematics?

THIS TALK:

• Model-theoretic background

• Zilber’s conjecture

• Hrushovski constuctions

• Random graphs (Shelah, Spencer; Baldwin)

• New way of looking at the constructions (DE)
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1. Model theory

The formulas of a first-order language L are certain finite strings of the

symbols:

(1)

∀ ∃ ¬ → ∧ ∨ ) ( , x1 x2 . . . y1 y2 . . .

and

(2) Various symbols (incuding =) used to denote relations and functions.

What you take for (2) depends on what sort of structure you want the

formulas to talk about.

EXAMPLES : (i) Graphs: = and a 2-ary relation R for adjacency.

(ii) Rings: = and +, · (2-ary functions), 0, 1 (constants).

(iii) K-vector spaces: =, +, 0, and for each α ∈ K a 1-ary function

symbol to denote scalar multiplication by α.

L-FORMULAS: Usual mathematical shorthand: variables can only range

over the elements of a structure.

NOTATION:(i) M |= φ the formula φ is true in the structure M .

(ii) If φ(x1, . . . , xn, y1, . . . , ym) is a formula with free variables

amongst x1, . . . , xn, y1, . . . , ym and ā = (a1, . . . , am) ∈ Mm, let

φ[M, ā] = {(b1, . . . , bn) ∈ Mn : M |= φ(b1, . . . , bn, ā)}

This is a definable subset of Mn (using parameters a1, . . . , am).
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GENERAL PHILOSOPHY: Fix a language L and:

(I) Compare L-structures by looking at their L-theories

Th(M) = {φ : φ closed and M |= φ}.

(II) For a given L-structure M , think about its collection of definable

subsets.

EXAMPLES FOR (I): What properties can be expressed by first-order

formulas?

Graphs:

- Triangle free (YES)

- Diameter ≤ d (YES)

- Connected (NO)

Rings:

- Integral domain (YES)

- Bézout (YES)

- Principal ideal domain (NO)
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2. Zilber’s Conjecture.

DEFINITION: An infinite L-structure M is strongly minimal if for every

L-formula φ(x, ȳ) there exists k ∈ N such that for all ā, either

{b ∈ M : M |= φ(b, ā)} or its complement has size ≤ k.

From the viewpoint of (II), these are the ‘simplest’ structures.

EXAMPLES OF STRONGLY MINIMAL STRUCTURES:

(1) M is a ‘pure set’ (the language L has =, but no other relation or

function symbols).

(2) M is a K-vector space (where K is a division ring and the language

is as described before).

(3) M is an algebraically closed field (the language is the language for

rings).

ZILBER’S CONJECTURE: These are essentially the only examples of

strongly minimal structures.

Early 1980’s. THEOREM (Zilber et al.): The conjecture is true for

ω-categorical structures.

1988. Without any further hypotheses, the conjecture is false (Hrushovski).

Early 1990’s. Under additional hypotheses (Zariski structure) the

conjecture is true (Hrushovski, Zilber).

1990’s - date. New idea of Zilber: Realise the counterexamples in

‘classical’ mathematics using complex analytic functions.

Work of Zilber, Wilkie, Koiran, Peatfield....
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2003. Zilber: Connections between the construction and non-commutative

geometry, string theory...
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3. The construction

Describe the simplest form of the construction.

Work with graphs (so L has = and a 2-ary relation symbol R).

Fix a real parameter α with 0 < α < 1.

DEFINITION:

(1) If A is a finite graph define the predimension of A to be

δ(A) = |A| − αe(A)

where e denotes the number of edges in A.

(2) If A is a subgraph of the finite graph B write

A ≤ B

to mean

δ(A) ≤ δ(B′) for all B′ with A ⊆ B′ ⊆ B.

(Pronounced: A is a self-sufficient subgraph of B.)

PROPERTIES:

(1) If A ≤ B and X ⊆ B, then A ∩ X ≤ X .

(2) If A ≤ B ≤ C , then A ≤ C .

(3) If A1, A2 ≤ B, then A1 ∩ A2 ≤ B.

(4) If X ⊆ B, there is a unique smallest A ≤ B with X ⊆ A. Call this

the closure of X in B, and denote it by clB(X).
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Denote by C the class of finite graphs A which satisfy

∅ ≤ A

i.e. for all X ⊆ A, we have |X| − αe(A) ≥ 0. (Another way: average

valency of X is ≤ 2/α.)

STRONG AMALGAMATION LEMMA: Suppose B, C ∈ C and A is a

subgraph of both B and C , and A ≤ C . Let E be the disjoint union of

B and C over A. Then E ∈ C and B ≤ E.

Using this, we can ‘glue’ the graphs in C together to obtain:

THEOREM: There exists a countably infinite graph M = Mα satisfying

the following properties:

(G1): M is the union of a chain of finite subgraphs

A1 ≤ A2 ≤ A3 ≤ · · · all in C.

(G2): If A ≤ M is finite and A ≤ B ∈ C, then there is an embedding

f : B → M which is the identity on A and has f(B) ≤ M .

Moreover, M is uniquely determined up to isomorphism by these two

properties and if h : B1 → B2 is an isomorphism between finite closed

subgraphs of M , then h can be extended to an automorphism of M . 2

THEOREM: (Hrushovski; Wagner; Baldwin, Shi) If 0 < α < 1 then Mα

is stable (and not 1-based). If α is rational, then Mα is ω-stable, of

infinite Morley rank. 2
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4. Irrational α, random graphs

S. Shelah, J. Spencer, (JAMS, 1988): Fix α irrational with 0 < α < 1.

For n ∈ N, consider choosing a graph on n vertices by randomly

choosing each pair of vertices to be an edge, with probability 1/nα. If φ

is a closed L-formula, let

P (φ, α; n)

be the probability that the randomly chosen graph has the property

expressed by φ. Consider what happens as n → ∞:

THEOREM: (Zero-one law) For each such φ, either

P (φ, α; n) → 0 as n → ∞, or

P (φ, α; n) → 1 as n → ∞. 2

Later on, Baldwin and Shelah made the connection:

THEOREM: For all closed L-formulas φ:

P (φ, α; n) → 1 as n → ∞ ⇔ Mα |= φ.

REMARKS: (1) Compare with the classic result of Fagin, Glebskii et al.. If

we choose the edges with probability 1

2
, then we again have a zero-one

law, but this time the limit theory is that of the Random Graph.

(2) If β is rational and 0 < β < 1 then as α → β− (and α irrational),

then Th(Mα) → Th(Mβ).
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5. α rational; directed graphs

DIRECTED GRAPHS: Let D be the class of finite directed graphs D with

all vertices having ≤ 2 out-vertices. If C ⊆ D, write C v D to mean

that out-vertices of elements of C are contained in C (say that C is

closed in D).

EASY LEMMA: (1) If C v D and X ⊆ D then C ∩ X v X .

(2) If C v D v E then C v E.

(3) (Strong Amalgamation) Suppose D, E ∈ D and C is a sub-digraph

of both D and E and C v E. Let F be the disjoint union of D and E

over C . Then F ∈ D and D v F . 2

Using this we have:

PROPOSITION: There exists a countably infinite digraph N satisfying the

following properties:

(D1): N is the union of a chain of finite subgraphs

C1 v C2 v C3 v · · · all in D.

(D2): If C v N is finite and C v D ∈ D, then there is an embedding

f : D → N which is the identity on C and has f(D) v N .

Moreover, N is uniquely determined up to isomorphism by these two

properties and is v-homogeneous. 2

PROPOSITION: N is stable, trivial and 1-based. 2

... So N is rather a dull structure.
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.... or is it?

Fix α = 1

2
. Work with δ(A) = 2|A| − e(A).

So C = {A : δ(X) ≥ 0 for all X ⊆ A} and M = M1/2.

THEOREM: Forget the directions on the edges in N . The resulting graph

is M1/2.

The following answers a question of Bruno Poizat from 1991.

COROLLARY: There is a stable, trivial, 1-based structure with a reduct

which is neither trivial, nor 1-based.

DEFINITION: Suppose A is a finite graph. A D-orientation of A is a

directed graph A+ ∈ D with the same vertex set as A and such that if

we forget the direction on the edges, we obtain A.

The theorem is a fairly straightforward corollary of the following two

lemmas:

LEMMA 1: (1) Suppose B is a finite graph. Then

B ∈ C ⇔ B has a D-orientation.

(2) If B ∈ C and A ⊆ B, then A ≤ B iff there is a D-orientation of B

in which A is closed.

LEMMA 2: If A ≤ B ∈ C then any D-orientation of A extends to a

D-orientation of B. 2
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