Model-theoretic constructions for ω -categorical structures

David M Evans

School of Mathematics,

UEA, Norwich, UK.

Hattingen, July 2003.

ω -categoricity

NOTATION: L a first-order language; M a countably infinite L-structure. DEFINITION: M is ω -categorical if every countable model of Th(M) is isomorphic to M.

FACTS: (Engeler, Ryll-Nardzewski, Svenonius) Let $G = \operatorname{Aut}(M)$. Then M is ω -categorical iff G has finitely many orbits on M^n (for all $n \in \mathbb{N}$).

Orbits: $\{(ga_1, ..., ga_n) : g \in G\}$ for $(a_1, ..., a_n) \in M^n$.

If M is ω -categorical then:

G-orbits on M^n correspond to complete *n*-types over \emptyset .

NOTE: If M is ω -categorical, then it is *locally finite*: any finitely generated substructure is finite.

Constructions of ω -categorical structures

- 1. EXAMPLES IN NATURE:
 - Pure set Ω (automorphism group $Sym(\Omega)$)
 - (\mathbb{Q}, \leq) (Cantor's theorem)
 - $\bullet\,\, {\rm Vector\,\, spaces}\, V(\omega,q)$ over finite fields
 - ...
- 2. New structures from old ones:
 - Finite products; covers.
 - Any structure interpretable in a ω -categorical structure is ω -categorical. For example:
 - n-sets from a pure set $([\Omega]^n$ with $\mathrm{Sym}(\Omega)$ as automorphism group)
 - Reducts (mysterious, but interesting)
- 3. BOOLEAN POWERS:
- Important in, for example, ω -categorical groups.
- 4. AMALGAMATION METHODS:
- The main focus of this talk.

Amalgamation: the basic Fraïssé construction

A class ${\mathcal C}$ of finite L-structures is an amalgamation class if:

- $\mathcal C$ has countably many isomorphism types
- \mathcal{C} is closed under substructures
- $\bullet\,$ (Joint embedding) Any two structures in ${\cal C}$ can be embedded in a third
- (Amalgamation) If $A, B_1, B_2 \in C$ and $f_i : A \to B_i$ are embeddings there exists $C \in C$ and embeddings $g_i : B_i \to C$ with $g_1 \circ f_1 = g_2 \circ f_2$.

Given this, there exists a chain of structures in $\ensuremath{\mathcal{C}}$:

$$M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots \subseteq M_i \subseteq \cdots$$

such that:

- Every structure in ${\mathcal C}$ is isomorphic to a substructure of some M_i
- If A is a substructure of M_i , and $B \in C$ and $f : A \to B$ is an embedding, then there exixts $j \ge i$ and an embedding $g : B \to M_j$ such that $g \circ f$ is the identity on A.

Let $M = \bigcup_{i \in \mathbb{N}} M_i$. Then:

- 1. ${\cal M}$ is countable and locally finite
- 2. $\mathrm{Age}(M)=\mathcal{C}$
- 3. If $A \subseteq M$ is a finite substructure, $B \in C$ and $f : A \to B$ is an embedding, then there exists and embedding $g : B \to M$ with $g \circ f$ the identity on A.

Moreover, using a back-and-forth argument:

- $\bullet\,$ Properties 1, 2, 3 determine M up to isomorphism
- $\bullet\,\,(({\rm Ultra-}){\rm Homogeneity})$ Any isomorphism between between finite substructures of M extends to an automorphism of M

Refer to M as the *Fraïssé limit* or *generic structure* of the amalgamation class C.

THEOREM: (R. Fraïssé) A (locally finite) countable structure M is homogeneous iff $\mathrm{Age}(M)$ is an amalgamation class.

NOTES: 1. Homogeneous structure M is ω -categorical iff it is locally finite and for each $n \in \mathbb{N}$ there are finitely many isomorphism types of n-generator substructures of M.

2. An ω -categorical structure is homogeneous (in this sense) iff it has QE.

EXAMPLES OF AMALGAMATION CLASSES:

- 1. Finite graphs (- Fraïssé limit is the random graph)
- 2. Finite graphs omitting the complete graph on n vertices (n fixed)
- 3. Finite digraphs
- 4. Finite digraphs omitting a given set of tournaments
- 5. Finite posets
- 6. Finite distributive lattices
- 7. Finite groups (- Fraïssé limit is Philip Hall's countable universal locally finite group)

In Examples 1-4 we can take amalgamation to be *free amalgamation*. In all cases apart from 7, the limit is ω -categorical.

Variations on the basic construction

IDEA: Work with a class \mathcal{K} of finite *L*-structures and a notion:

$$A \sqsubseteq B$$

pronounced 'A is a nicely embedded substructure of B.' Demand the amalgamation property only over *nicely embedded* substructures. More formally, work with \Box -embeddings $f : A \to B$ - meaning $f(A) \sqsubseteq B$. We'll *assume* that these embeddings include isomorphisms; are closed under composition (- so \sqsubseteq is transitive); and under restriction of the codomain.

Say that $(\mathcal{K}, \sqsubseteq)$ is an *amalgamation class* if:

- \mathcal{K} is closed under \sqsubseteq -substructures
- \mathcal{K} has countably many isomorphism types
- (Joint embedding) Any two elements of K can be ⊑-embedded in a third.
- (\sqsubseteq -Amalgamation) If $A, B_1, B_2 \in \mathcal{K}$ and $f_i : A \to B_i$ are \sqsubseteq embeddings, there exist $C \in \mathcal{K}$ and \sqsubseteq -embeddings $g_i : B_i \to C$ with $g_1 \circ f_1 = g_2 \circ f_2$.

THEOREM: There is a structure ${\cal M}$ satisfying:

- 1. M is the union of a chain $M_1 \sqsubseteq M_2 \sqsubseteq M_3 \sqsubseteq \cdots$ of members of \mathcal{K}
- 2. Any member of ${\mathcal K}$ is isomorphic to a \sqsubseteq -substructure of M
- 3. If $A \sqsubseteq M$ is finite and $f : A \to B \in \mathcal{K}$ is a \sqsubseteq -embedding there is a \sqsubseteq -embedding $g : B \to M$ with $g \circ f$ the identity on A.

Moreover M is uniquely determined by these properties and any isomorphism between finite \sqsubseteq -substructures of M extends to an automorphism of M.

NOTES: 1. We will call M here the *generic structure* for the class $(\mathcal{K},\sqsubseteq).$

2. Suppose there are only finitely many isomorphism types of structures in M of any finite size. Suppose also that there is a function $F : \mathbb{N} \to \mathbb{N}$ with the property that if $B \in \mathcal{K}$ and $X \subseteq B$ has size $\leq n$ then there exists $A \sqsubseteq B$ containing X and $|A| \leq F(n)$. Then M is ω categorical.

EXAMPLE: (Not ω -categorical) Let \mathcal{K} be the class of finite digraphs in which the number of edges coming out of any vertex is at most 2. Write $A \sqsubseteq B$ to mean that there an no edges coming out of A (in B).

(PUZZLE: Take the generic here and forget the direction on the edges. Describe the resulting graph.)

Hrushovski's construction

Work with graphs.

Let α be a fixed positive real number. If B is a finite graph define the *predimension* of B as:

$$\delta(B) = |B| - \alpha e(B)$$

where e(B) is the number of edges in B. If $A \subseteq B$ write

$$A \leq B \iff \delta(A) < \delta(B_1)$$
 whenever $A \subset B_1 \subseteq B$.

NOTES: 1. Compare with dimension in a vector space. 2. There is a related notion $A \leq^* B$: have \leq rather than <.

LEMMA: 1. If
$$A \leq B \leq C$$
, then $A \leq C$.
2. If $X \subseteq B$ and $A \leq B$, then $A \cap X \leq X$.
3. If $X \subseteq B$, then $\bigcap \{A : X \subseteq A \leq B\} \leq B$.

Call the set in 3. the *closure* of X in B.

EXAMPLE: Take $\alpha = 1/2$. In each case B is the closure of the two points in X:

В

DEFINITION: Let \mathcal{K}_0 consist of finite graphs A with $\emptyset \leq A$: i.e. for every non-empty subgraph A_1 of A we have $|A_1| - \alpha e(A_1) > 0$.

LEMMA: (\mathcal{K}_0, \leq) is an amalgamation class.

Proof. Show that if $A \leq B_1, B_2 \in \mathcal{K}_0$ then the free amalgam E of B_1 and B_2 over A is in \mathcal{K}_0 and $B_1, B_2 \leq E$. If $F \subseteq E$ then F is the free amalgam over $F \cap A$ of $F \cap B_1$ and $F \cap B_2$ and $F \cap A \leq F \cap B_i$. So the only calculation we really need is:

$$\delta(E) = \delta(B_1) + \delta(B_2) - \delta(A) > \delta(B_1) > 0$$

assuming we're not in a trivial case where $A = B_1$ or $A = B_2$. \Box

The generic for (\mathcal{K}_0, \leq) is **not** ω -categorical. The size of the closure of k points is not bounded by a function of k.

IDEA... for obtaining ω -categoricity:

Take a continuous, increasing bijection $F : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ with $F(x) \to \infty$ as $x \to \infty$. Let \mathcal{K}_F consist of all finite graphs B with

$$\delta(A) \ge F(|A|)$$

for all $A \subseteq B$.

OBSERVATION: If $X \subseteq B \in \mathcal{K}_F$ then the closure of X in B has size $\leq F^{-1}(\delta(X))$.

So if (\mathcal{K}_F, \leq) has the amalgamation property, then it is an amalgamation class and the generic structure M_F is ω -categorical. How you choose F to obtain the amalgamation property depends on the α used to define the predimension.

EXAMPLES: 1. (Rational α ; Hrushovski, 1988) Suppose $\delta(A) = 2|A| - e(A)$. Choose F right-differentiable (e.g. piecewise linear), with right derivative F'(x) non-increasing and $F'(x) \leq 1/x$.

2. (Irrational α of 'infinite index'; Hrushovski, 1988) Choice of F is more subtle.

Model-theoretic properties: ω -categorical case

- 1. (E. Hrushovski, 1988) Take α an appropriate irrational and a suitable F. The generic M_F is ω -categorical, stable, but not superstable. (-Counterexample to Lachlan's Conjecture).
- 2. (E. Hrushovski, 1997) Take α rational and F growing sufficiently slowly. The generic M_F is ω -categorical, supersimple of finite SU-rank and not one-based.
- 3. (M. E. Pantano, 1995) Take α rational. By letting F grow slowly, we can can obtain algebraic closure growing as fast as we like in M_F .
- 4. Can work with relations of higher arity to obtain multiply transitive structures in all of the above.
- 5. By suitable choice of F(x) for small x we can ensure that, for example, the smallest cycle in M_F is a 5-cycle. This is the only known way of constructing an ω -categorical connected graph whose smallest cycle is a 5-cycle and whose automorphism group is transitive on pairs of adjacent vertices.
- 6. If (\mathcal{K}_F, \leq) is a free amalgamtion class, then M_F does not have the strict order property (- it is $NSOP_4$).

OPEN PROBLEM: Can algebraic closure grow arbitrarily quickly in stable ω -categorical structures? (In a finite language?)

STRANGE PROBLEM: Is there a suitable choice of F for all α (- so irrational α not of infinite index)?

Model-theoretic properties: the unconstrained case

- $\delta(B) = |B| \alpha e(B)$
- $A \leq B$ iff $\delta(A) < \delta(B_1)$ for all $A \subset B_1 \subseteq B$
- $\mathcal{K}_0: \emptyset \leq A$
- (\mathcal{K}_0, \leq) -generic: M_0
- $A \leq^* B$ iff $\delta(A) \leq \delta(B_1)$ for all $A \subseteq B_1 \subseteq B$
- $\mathcal{K}_0^*: \emptyset \leq^* A$
- $\bullet \ (\mathcal{K}_0^*,\leq^*)\text{-generic }M_0^*$

NOTE: If α is irrational then \leq and \leq^* coincide.

- 1. (J. Baldwin and S. Shelah, 1997; S. Shelah and J. Spencer, 1988) If $0 < \alpha < 1$ is irrational, then $Th(M_0)$ is stable and has the finite model property. It is the almost-sure theory of finite graphs on nvertices with edge probablilty $1/n^{\alpha}$ (as $n \to \infty$).
- 2. (E. Hrushovski, 1988) If α is rational then $Th(M_0^*)$ is ω -stable (of infinite Morley rank).
- 3. (DE, 2003; related earlier work of M. Pourmahdian) Take $\alpha = 1/2$. Then $Th(M_0)$ is undecidable and has the strict order property.

Sketch of 3.

Work with $\delta(A) = 2|A| - e(A)$.

IDEA: Already observed that closure of a pair of points can be arbitrarily large (by taking vertices adjacent to both vertices in the pair). Use this to encode finite graphs (Γ, E) into these closures in a uniform way.

V(a,b) S(a,b)

This encodes the graph Γ (-marked in red) as a graph A_{Γ} (-edges in black). We have $A_{\Gamma} \in \mathcal{K}_0$ and all vertices of A_{Γ} are in the closure of a, b.

Let $\chi(a, b)$ denote the *L*-formula which says that this picture is accurate (- so V(a, b) the set of vertices adjacent to a, b has no edges in it etc.). If $A \in \mathcal{K}_0$ and $A \models \chi(a, b)$, then we interpret a graph in A with vertex set V(a, b) and edges determined by S(a, b).

Given any first-order sentence ϕ in the language of graphs we can write down an *L*-formula $\theta(a, b)$ such that for any graph Γ :

$$\Gamma \models \phi \Leftrightarrow A_{\Gamma} \models \theta(a, b).$$

THEOREM: With this notation, there is a finite graph Γ which is a model of ϕ iff $M_0 \models \exists a, b(\chi(a, b) \land \theta(a, b))$.

Proof: (
$$\Rightarrow$$
:) Use $A_{\Gamma} \leq M_0$.

(\Leftarrow :) Take such a, b. The closure in M_0 of a, b is finite, so the graph interpreted in M_0 by V(a, b) and S(a, b) is finite. By construction of θ it is a model of ϕ . \Box

This gives undecidability of $Th(M_0)$ by Trakhtenbrot's Theorem.

For the strict order property note that we can construct a family of finite graphs in which arbitrarily large finite linear orders are uniformly interpretable. Translating this into the A_{Γ} , and using compactness, there is a model of $Th(M_0)$ in which an infinite linear order is interpretable (using two parameters).

PROBLEM: Does $Th(M_0)$ have the finite model property?

Some references:

Peter J. Cameron, Oligomorphic Permutation Groups, Cambridge University Press, 1990.

Gregory L. Cherlin, The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous *n*-tournaments, Memoirs of the AMS, number 621, 1998.

David M. Evans, 'Examples of \aleph_0 -categorical structures', *in* Automorphisms of First-Order Structures, edited by Richard Kaye and Dugald Macpherson, Oxford Science Publications, 1994.

Frank O. Wagner, 'Relational structures and dimensions', *in* Automorphisms of First-Order Structures, edited by Richard Kaye and Dugald Macpherson, Oxford Science Publications, 1994.