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Abstract

We examine the conditions under which we can keep simplicity or cat-
egoricity after adding a Skolem function to the theory.
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Introduction

The motivation for this paper lies in finding a way of turning algebraic closure into
definable closure in a first order theory T by means of adding Skolem functions
to T , but without losing properties such as simplicity or categoricity. In partic-
ular any strongly minimal structure (respectively any ω -categorical SU -rank 1
structure) can be expanded to a structure which is SU -rank 1 (respectively, and
ω -categorical) and in which algebraic closure equals definable closure. One could
further note one of Zilber’s theorems stating that a strongly minimal structure
in which acl = dcl is locally modular (see Theorem 5.6. in [5]).
Recall that a theory T is algebraically bounded if for every formula φ(x, ȳ)
there is an integer nφ such that for every M |= T and b̄ from M , the set
{a ∈ M | M |= φ(a, b̄)} is either infinite or of size ≤ nφ . Recall further that T
is algebraically bounded if and only if T eliminates the quantifier ∃∞ , i.e. for
every formula φ(x, ȳ) and every M |= T the set of tuples b̄ from M such that
{a ∈ M | M |= φ(a, b̄)} is infinite is definable. Winkler showed in [4] that if T
is a model-complete, algebraically bounded theory then any Skolem expansion of
T has a model-completion. This is the theorem that provided the starting point
for this paper.
In the first chapter we show that if we add a Skolem function for an algebraic for-
mula to an algebraically bounded, model-complete, simple theory, then its model
companion is still simple. The proof follows the proofs in [2], which showed that
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if we add a new, unary predicate to a simple theory then its model companion is
simple. When adding Skolem functions for all algebraic formulas we get a simple
theory in which algebraic closure and definable closure coincide.
The second chapter shows a way of adding Skolem functions to an ω -categorical
theory such that its model companion is also ω -categorical. We show through
the example of algebraically closed fields that we can normally not keep uncount-
able categoricity.
In the third chapter it is demonstrated that if we add the Skolem function for
an arbitrary formula in a simple theory, its model companion will not be simple
in general.
The fourth chapter concerns adding a unary, generic function f to a theory T
which has quantifier elimination and in which the algebraic closure of a set is
equal to the set itself, to obtain the theory Tf . If T is stable or simple then also
Tf is stable or simple. In particular that shows that if we add to such a simple
theory T the Skolem function for a nonalgebraic formula like ‘ x 6= y ’, its model
companion is simple.
The author would like to thank his supervisor David Evans for providing him
with the idea for this paper, as well as for his constant encouragement. The
author would also like to thank the referee for the helpful comments.

1 Adding an algebraic Skolem function

Let T be a complete, model-complete, algebraically bounded theory in a lan-
guage L . We are working in a big model C .

Recall that if ψ(ȳ, x) is an L -formula then we can add a new function symbol
f , the Skolem function for the formula ψ(ȳ, x) , to L and we obtain in this new
language L+ a Skolem expansion T+ of T such that

T+ = T ∪ {∀ ȳ (∃ xψ(ȳ, x)→ ψ(ȳ, f(ȳ)))}

Definition 1.1 Let ψ(ȳ, x) be an L -formula, ȳ = y0, y1, . . . yk and nψ an
algebraic bound for ψ(ȳ, x) in x . By adding the algebraic Skolem function f(ȳ)
for the formula ψ(ȳ, x) we mean adding the Skolem function for the formula

(ψ(ȳ, x) ∧ ¬∃>nψv ψ(ȳ, v)) ∨ ((¬∃v ψ(ȳ, v) ∨ ∃>nψv ψ(ȳ, v)) ∧ x = y0) .

If ψ(x) is a formula in one variable we can add the algebraic Skolem function,
which is constant, only if there is 0 < n < ω such that

C |= ∃=nxψ(x).
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Let now T+ be the Skolem expansion of T after adding the algebraic Skolem
function f(ȳ) for a formula ψ(ȳ, x) . Let T ∗ be the model-completion of T+

which we know exists by Theorem 2 of [4].

Let C∗ be an expansion of C to a big model of T ∗ . If X is a small subset
of C∗ we denote by acl∗T (X) the algebraic closure of X in the sense of T ∗ and
by aclT (X) the algebraic closure of X in the sense of T . Similarly we denote
for a ∈ C∗ and X a small subset of C∗ by tpT (a/X) the type of a over X
in the sense of T .

Note that for all ā ∈ C∗ we have f(ā) ∈ aclT (ā) .
In the following lemmas, which are similar to the ones in [2], we are going to
show that for all sets A in a model of T ∗ we have aclT (A) = aclT ∗(A) .

Lemma 1.2 Let (M0, f0) and (M1, f1) be models of T ∗ and A a common
subset of M0 and M1 . Then

(M0, f0) ≡A (M1, f1) ⇔
(
aclT (A), f0|aclT (A)

)
'A

(
aclT (A), f1|aclT (A)

)

Proof: Left to right is standard.
Assume now that the right hand side of the equivalence holds. We may assume
that A = aclT (A) and that M0 ∩M1 = A , since otherwise we can find a model
(M2, f2) of T ∗ such that M2 ∩M0 = M2 ∩M1 = A and

(
aclT (A), f0|aclT (A)

)
'A(

aclT (A), f2|aclT (A)

)
. We may also assume that f0|aclT (A) = f1|aclT (A) since for

all ā ∈ A also fi(ā) ∈ A . Let N be a model of T containing M0 and M1 .
Define f on N such that f |M0 = f0 and f |M1 = f1 and (N, f) |= T+ . Hence
(N, f) embeds in a model (N ′, f ′) of T ∗ . But then (M0, f0) � (N ′, f ′) and
(M1, f1) � (N ′, f ′) and so (M0, f0) ≡A (M1, f1) .

�
Lemma

Lemma 1.3 The completions of T ∗ are arrived at by describing f |aclT (∅) .

Proof: If (M0, f0) and (M1, f1) are models of T ∗ such that f0|aclT (∅) '
f1|aclT (∅) then (M0, f0) ≡ (M1, f1) by Lemma 1.2.

�
Lemma

Lemma 1.4 If M |= T ∗ , A ⊆ M , and ā, b̄ ∈ M then tp(ā/A) = tp(b̄/A) iff
there is an A -isomorphism between aclT (A, ā) and aclT (A, b̄) which takes ā to
b̄ and preserves f .

Proof: If tp(ā/A) = tp(b̄/A) then we can find such an isomorpism.
Let now g be the f -preserving A -isomorphism between aclT (A, ā) and aclT (A, b̄)
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such that g(ā) = b̄ . Let N be a model of T ∗ which contains A and ā . Ex-
tend g to N and let g(N) be the image of N under g . Then f g(N)|aclT (A,b̄) =

fM |aclT (A,̄b) . So by Lemma 1.2 g(N) ≡A,b̄ M . So tp(ā/A) = tp(b̄/A) .
�
Lemma

Lemma 1.5 Let M ∗ |= T ∗ , a ∈ M∗ and A ⊆ M∗ . Then a is algebraic over
A iff a ∈ aclT (A) . Hence aclT (A) = aclT ∗(A) .

Proof: Assume that c /∈ aclT (A) . Let ĉ be a realisation of tpT (c/aclT (A))
such that aclT (A, ĉ) ∩M = aclT (A) . Let N be a model of T containing M
and ĉ . We can define f on N in such a way that there be an f -preserving
A -isomorphism between aclT (A, c) and aclT (A, ĉ) which takes c to ĉ . We can
embed N in a model N̂ of T ∗ . Hence tp(c/A) = tp(ĉ/A) by Lemma 1.4 and
so c is not algebraic over A .
On the other hand we have aclT (A) ⊆ aclT ∗(A) .

�
Lemma

Definition 1.6 If T is simple we define for B ⊆ C ⊆ C∗ and ā ∈ C∗ the
notion of T ∗ -independence such that

ā
∗
|̂
B

C ⇔ ā |̂
B

C

where ā |̂
B
C is the notion of independence in the sense of T .

Lemma 1.7 Let M ∗ |= T ∗ and ā, b̄, c1, c2 ∈ C∗ such that

ā
∗
|̂
M∗

b̄ , c1

∗
|̂
M∗

ā , c2

∗
|̂
M∗

b̄ ,

and tp(c1/M
∗) = tp(c2/M

∗) .

Then there is c ∈ C∗ such that c realizes tp(c1/acl(M∗, ā)) ∪ tp(c2/acl(M∗, b̄))
and

c
∗
|̂
M∗

ā, b̄ .

Proof: First we restrict M ∗ to a model M of T . Then we have

ā |̂
M

b̄ , c1 |̂
M

ā , c2 |̂
M

b̄

and tpT (c1/M) = tpT (c2/M) . Since T is simple we can find ĉ ∈ C which
realizes tp(c1/acl(M, ā)) ∪ tp(c2/acl(M, b̄)) and

ĉ |̂
M

ā, b̄ .
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So in particular we have ĉ |̂
M,ā

b̄ and ĉ |̂
M,b̄

ā . By symmetry we get

ā |̂
M,b̄

ĉ . Together with ā |̂
M
b̄ we get by transitivity ā |̂

M
b̄, ĉ and

in particular ā |̂
M,ĉ

b̄ . From these independence properties we get ( † )

acl(M, ā, b̄) ∩ acl(M, ā, ĉ) = acl(M, ā)

acl(M, ā, b̄) ∩ acl(M, b̄, ĉ) = acl(M, b̄)

acl(M, ā, ĉ) ∩ acl(M, b̄, ĉ) = acl(M, ĉ)

Let N be a model of T which contains M, ā, b̄, ĉ .
Since tp(ĉ/acl(M, ā)) = tp(c1/acl(M, ā)) we can find an automorphism g1 ∈
Aut(C/acl(M, ā)) such that g1(ĉ) = c1 . In the same way we can find g2 ∈
Aut(C/acl(M, b̄)) such that g2(ĉ) = c2 .
Now we can expand N to an L+ structure N+ by defining f on N in the
following way:

fN
+

(ȳ) = f acl(M,ā,b̄)(ȳ) for ȳ ⊆ acl(M, ā, b̄)

fN
+

(ȳ) = g−1
1 (fC+

(g1(ȳ))) for ȳ ⊆ acl(M, ā, ĉ) such that there is

y1 ∈ ȳ \ acl(M, ā)

fN
+

(ȳ) = g−1
2 (fC+

(g2(ȳ))) for ȳ ⊆ acl(M, b̄, ĉ) such that there are

y1 ∈ ȳ \ acl(M, b̄) and y2 ∈ ȳ \ acl(M, ĉ)

f arbitrary everywhere else

By ( † ) this is well defined. Since T ∗ is the model completion of T+ we can find
N̂∗ ⊇ N+ such that N̂∗ |= T ∗ . Since N ∗ ≺ C∗ we can find by homogenity of
C∗ the required c .

�
Lemma

Proposition 1.8 If the theory T is (super-)simple then every completion of
T ∗ is (super-) simple.

Proof: This is because our notion of independence in T ∗ comes from the one
of T and we also have the independence property over models by Lemma 1.7.
Hence every completion of T ∗ is (super-)simple if T is (super-)simple using
Theorem 4.2. from [3].

�
Proposition

Proposition 1.9 If T is stable and (weakly) eliminates imaginaries, so does
every completion of T ∗

Proof: The proof is identical to the proof of 2.9. in [2], if we replace TP,S by
T ∗ and (M,P ) by (M, f) .

�
Proposition

What about adding more than one algebraic Skolem function?

5



Lemma 1.10 If T is algebraically bounded, then T ∗ is also algebraically bounded.

Proof: This is Corollary 3 from [4].
�

Remark 1.11 So we can add an algebraic Skolem function to a completion T̂ ∗

of T ∗ and we will get a new expansion T+
2 with a model-companion T ∗2 . If T

is simple then every completion of T ∗2 is simple. We can repeat this n -many
times. Note that we have to take a completion at the beginning of each step.

We can even add recursively, infinitely many Skolem functions:

Theorem 1.12 Let T be simple. Let δ be an ordinal and T ∗δ be the model-
completion of T after adding recursively δ many algebraic Skolem functions.
Then every completion of T ∗δ is simple.

Proof: By induction.
After the previous Remark we may assume that δ is an limit ordinal. Then
T+
δ =

⋃
i<δ T̂

∗
i where T̂ ∗i is a completion of T ∗i . So T+

δ is complete and model-
complete. If T+

δ is not simple then there is φ(x̄, ȳ) which has the tree property.

But then there is an i < δ and T̂ ∗i such that φ(x̄, ȳ) is in this theory. But then
T̂ ∗i cannot be simple, which is a contradiction.

�
Theorem

So we can add for every algebraic formula its Skolem function and iterate and
will get a simple theory in which algebraic closure is equal to definable closure.
In particular:

Corollary 1.13 The theory of algebraically closed fields (in any characteristic)
has an expansion which has a model-completion such that every completion of
this model-completion is supersimple of SU-rank 1 with algebraic closure equal to
definable closure.

2 Adding an algebraic Skolem function and cat-

egoricity

In this section we are going to examine whether categoricity is preserved under
taking algebraic Skolem expansions.

Theorem 2.1 If T is ω -categorical then every completion of T ∗ is ω -
categorical.
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Proof: Let T̃ be a completion of T ∗ . Let A be a finite subset of C̃ . We may
assume that A is algebraically closed. By Ryll-Nardzewski’s theorem there are
only finitely many 1-types over A in T since T is ω -categorical.
We have to show that there are also only finitely many 1-types over A in T̃ . So
let b ∈ C̃ . Then aclT (A, b) is finite by ω -categoricity of T . Hence there are
only finitely many different possibilities of defining the Skolem function f on
aclT (A, b) . By Lemma 1.4 tpT (b/A) = tpT (b̂/A) if there is an f -preserving A -
automorphism between aclT (A, b) and aclT (A, b̂) which takes b to b̂ . So there
are only finitely many different expansions of tpT (b/A) to a T̃ -type. So there
are only finitely many 1-types over A in T̃ and T̃ is ω -categorical.

�
Theorem

We cannot keep ω -categoricity in general if we add infinitely many algebraic
Skolem functions (for example if we add an algebraic Skolem function for the
same formula infinitely often). So in this case we have to be more carful about
adding algebraic Skolem functions:

Theorem 2.2 Let T be ω -categorical. Then there is a Skolem expansion which
has a model-completion such that every completion is ω -categorical with algebraic
closure equal to definable closure.

Proof: We will inductively add for every n < ω finitely many n -ary algebraic
Skolem function.
For every n there are by the Ryll-Nardzewski Theorem only finitely many in-
equivalent formulas ψ0(ȳ, x), ψ1(ȳ, x), . . . , ψm(ȳ, x) in T where ȳ consists of n
distinct elements such that for every ψi(ȳ, x) there is ā ∈ C with {b ∈ C | C |=
ψi(ā, b)} is finite. We assume further that every ψi(ȳ, x) contains the informa-
tion that all elements of ȳ are distinct.
Let ψ(ȳ, x) be such a formula and nψ its algebraic bound in x . Then we add
inductively finitely many Skolem functions f1, f2, . . . , fnψ where fj(ȳ) is the
algebraic Skolem function for the formula

ψ(ȳ, x) ∧
∧

i<j

¬x = fi(ȳ).

We do that for every formula ψ0(ȳ, x), ψ1(ȳ, x), . . . , ψm(ȳ, x) . So we add only
finitely many n -ary Skolem functions. Let now T + be the Skolem expansion
of all these new formulas and T ∗ its model-completion. Let T̃ a completion of
T ∗ .
Then in T̃ algebraic closure is equal to definable closure. First note that for all
A ⊆ C̃ we have aclT̃ (A) = aclT (A) by Lemma 1.5. If now b ∈ aclT (A) then
there is ψ(ȳ, x) and ā ∈ A such that

C |= ψ(ā, b) ∧ ∃<nψxψ(ā, x)
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But then by construction there is a Skolem function f(ȳ) such that f(ā) = b
and b ∈ dcl(A) .
Also, T̃ is ω -categorical. Let A be a finite subset of C̃ and b̄ ∈ C̃ . Then
aclT̃ (A, b) has n many elements. But there are only finitely many new functions
of arity ≤ n and for all of then there are only finitely many ways to define them
on aclT (A, b) . But this determines tpT̃ (A, b) . So there are only finitely many
expansions of tpT (b/A) to a T̃ -type. Since there are only finitely many 1-types
over A in T there are also only finitely many 1-types over A in T̃ . So T̃ is
ω -categorical by the Ryll-Nardzewski theorem.

�
Theorem

Not suprisingly, we cannot keep ℵ1 -categoricity in general, since we cannot
always avoid getting a two cardinal formula by adding an algebraic Skolem func-
tion.

Let now T be the theory of algebraically closed fields of a fixed characterisic
not equal to 2 . Then T is ℵ1 -categorical. Then even if we add the algebraic
Skolem function f(x) for the formula x = y2 the model completion T ∗ will not
be ℵ1 -categorical:

Lemma 2.3 The theory of the random graph is interpretable in T ∗ .

Proof: Let M ∗ |= T ∗ .
We may add a 2 -ary relation symbol R to the language of T ∗ such that for all
x, y we have

Rxy ⇔ f(x) · f(y) = f(x · y) ∧ x 6= y

since this relation is 0 -definable.
We will show that R defines a model of the random graph on M ∗ \ {0, 1} .
Since R is symmetric it defines an undirected graph on the elements of M ∗ \
{0, 1} .
Let v̄ = v0, v1, ..., vn−1 , w̄ = w0, w1, ..., wm−1 ∈M∗ \ {0, 1} such that v̄ ∩ w̄ = ∅ .
Let φ(x, v̄, w̄) the formula

∧

i<n

Rxvi ∧
∧

j<m

¬Rxwj ∧ ¬x = 0 ∧ ¬x = 1

It is enough to show that M ∗ |= ∃xφ(x, v̄, w̄) .
Let N ⊇ M a model of T and a ∈ N \M . Now we define f on N in the
following way

• fN
+

(y) = fM
∗
(ȳ) for y ∈M ∗ ,

• fN
+

(a) arbitrary,

• fN
+

(vi · a) = fN
+
(vi) · fN+

(a) for all i < m ,
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• fN
+

(wj · a) = (−1) · fN+
(wj) · fN+

(a) for all j < n ,

• fN
+

(y) arbitrary everywhere else

This is well defined since v0 · a, v1 · a, ..., vm−1 · a, w0 · a, w1 · a, ..., wn−1 · a are all
distinct and in N \M ∪ {a} .
So N+ |= T+ and N+ |= φ(a, v̄, w̄) . Now let N̂∗ ⊇ N∗ such that N̂∗ |= T ∗ .
Then N̂∗ |= ∃xφ(x, v̄, w̄) .
Hence M∗ |= ∃xφ(x, v̄, w̄) since M ∗ � N̂∗ .

�
Lemma

But then T ∗ is unstable and can not be ℵ1 -categorical.

3 Adding a nonalgebraic Skolem function

Let T be simple, model-complete and algebraically bounded. If we just add the
Skolem function for a formula ψ(ȳ, x) then its model-completion need not be
simple:

Lemma 3.1 Let ψ(x, y, z) such that

1. There are a , b , c such that C |= ψ(a, b, c) .

2. For all n < ω , bi , ci for i ≤ n , and a if for all i ≤ n we have
C |= ψ(a, bi, ci) , then the set {a′ | C |= ∧n

i=0 ψ(a′, bi, ci)} is infinite.

3. For all a , b , c if C |= ψ(a, b, c) then the set {b′ | C |= ψ(a, b′, c)} is
infinite.

4. For all a , b , c if C |= ψ(a, b, c) then the set {c′ | C |= ψ(a, b, c′)} is
infinite.

Add the Skolem function f(x, y) for ψ(x, y, z) to get T + . Then the model-
completion T ∗ of T+ is not simple.

Remark 3.2 The formula x = x ∧ y = y ∧ z = z satisfies for example the
conditions of Lemma 3.1.

Proof of Lemma 3.1: We will show that the formula f(x, y) = z has the tree
property in T ∗ , i.e. we can find a set of elements {bν , cν | ν ∈ ωω} such that
for each ν ∈ ωω the set {f(x, bν|l) = cν|l | l < ω} is consistent but the set
{f(x, bν∧i) = cν∧i | i < ω} is 2-inconsistent.
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If the tree is constructed up to level n < ω then we take for every ν such
that |ν| = n a model M+ |= T+ such that bν|l , cν|l ∈ M+ for all l ≤ |ν| . We
denote with M the restriction of M+ to the language of T . We can find a
model N ⊇M of T such that there is an a ∈ N \M with

|=
∧

l≤|ν|
ψ(a, bν|l, cν|l).

This is possible as there are infinitely many solutions for the formula
∧
l≤|ν| ψ(x, bν|l , cν|l)

in M since {f(x, bν|l) = cν|l | l ≤ |ν|} is consistent and by 2).
In particular we have |= ψ(a, bν|1, cν|1) . By 3) there are infinitly many b such
that |= ψ(a, b, cν|1) . So we can find a b ∈ N \M such that

|= ψ(a, b, cν|1).

Using 4) we can find a c ∈ N \M such that

|= ψ(a, b, c)

(For the first step where n = 0 we can find by 1) a, b, c in a model N of T
such that |= ψ(a, b, c) . We do not need M for this step.)

By 2) we can find distinct ai ∈ N \M for i < ω such that

|= ψ(ai, b, c) ∧
∧

l≤|ν|
ψ(ai, bν|l, cν|l).

Using 4) we can find distinct ci ∈ N \M for i < ω such that for every i < ω
we have

|= ψ(ai, b, ci).

Now we can define f on N in the following way to get N+ |= T+ :

fN
+

(y1, y2) = fM
+

(y1, y2) for y1, y2 ∈M+

fN
+

(ai, bν|l) = cν|l for i < ω , l ≤ |ν|
fN

+

(ai, b) = ci for i < ω

and f arbitrary everywhere else.
If we set now bν∧i = b and cν∧i = ci for all i < ω then for all i < ω the set
{f(x, bν|i) = cν|l | l ≤ |ν|} ∪ {f(x, bν∧i) = cν∧i} is consistent as it is satisfied by
ai but the set {f(x, bν∧i) = cν∧i | i < ω} is 2-inconsistent.

So f(x, y) = z has the tree property in T+ and also in T ∗ since this is the
model completion of T+ and the formulas are quantifier free.

�
Lemma
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4 Adding a unary generic function

Let T be a complete theory in any language such that T has quantifier elimi-
nation and the algebraic closure in T is trivial, that is for all A ⊆ C we have
acl(A) = A .

Definition 4.1 We write ∃≥ωxφ(x) for the set {∃≥nxφ(x) | n < ω} .

Now we add a new unary function symbol f . Let $ ⊆ {1, 2, 3, 4, 5...} . The
formulas in T$f consist of:

1. T

2. For any formula ψ(x, w̄) we have infinitely many formulas expressing:

∀w̄(∃x(x /∈ w̄ ∧ ψ(x, w̄)) → ∀y∃≥ωx(f(x) = y ∧ ψ(x, w̄)))

3. Let n ∈ $ and ψ(x0, x1, ..., xn−1, w̄) be any formula:

∀w̄ ∃x0 x1 ... xn−1(
∧

0≤i<j<n
xi 6= xj ∧

n−1∧

i=0

xi /∈ w̄ ∧ ψ(x0, x1, ..., xn−1, w̄))→

∃≥ωx(
∧

0≤i<j<n
f i(x) 6= f j(x) ∧ fn(x) = x ∧ ψ(x, f(x), ..., fn−1(x), w̄)))

4. For all n /∈ $ we add
∀x fn(x) 6= x

Remark 4.2 Note that T$f is the model completion of axioms 1 and 4, which
will follow from Lemma 4.4.

Lemma 4.3 T$f is consistent.

Proof: A model of T$f can be constructed as the union of an infinite chain of
structures.

�
Lemma

Lemma 4.4 T$f has elimination of quantifiers.
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Proof: Let M1 and M2 be models of T$f and A a common substructure. Let
φ(x, ȳ) be a conjunction of basic formulas and ā ∈ A . Assume that there is a
b ∈ M1 such that M1 |= φ(b, ā) . We have to show that there is a c ∈ M2 such
that M2 |= φ(c, ā) .
We may assume that for every n < ω and for every a ∈ ā such that f n(a)
appears in φ(x, ā) we have fn(a) ∈ ā since φ(x, ā) has finite length and f n(a) ∈
A .

Case 1: There is n < ω and a ∈ ā such that f n(a) = b .
Then b ∈ A ⊆M2 and M2 |= φ(b, ā) .

Case 2: There is n < ω and a ∈ ā such that f n(b) = a .
Let this n be minimal. Let ψ(z0, z1, . . . , zn−1, ā) be the formula φ(x, ā) where
each f i(x) is replaced by zi for i < n . We may assume that ψ(z̄, ā) contains
the information that all elements of (z̄, ā) are distinct.
Then ψ(z̄, ā) is equivalent to a formula in the language of T and M1 |=
∃z̄ψ(z̄, ā) .
Hence M2 |= ∃z̄ψ(z̄, ā) .
Now we can inductively find elements cn−1, cn−2, . . . , c1, c0 in M2 such that

• f(cn−1) = a ,

• f(ci) = ci+1 for all i < n− 1 ,

• M2 |= ∃z̄i−1, . . . , z0ψ(z0, . . . , zi−1, ci, ci+1, . . . , cn−1, ā) .

If we have already found cn−1, . . . , ci then

M2 |= ∃z̄i−1, . . . , z0(zi−1 /∈ (ĉi, . . . ĉn−1, ā) ∧ ψ(z0, . . . , zi−1, ci, ci+1, . . . , cn−1, ā) ,

and we can find the required ĉi−1 by 2) of the axioms of T$f .

Then M2 |= φ(c0, ā) .

Case 3: There is no n < ω and a ∈ ā such that f n(a) = b or fn(b) = a .
Since φ(x, ȳ) has finite length there is an n < ω such that f n(x) appears in
φ(x, ȳ) but fm(x) does not appear in φ(x, ȳ) for all m > n .

Case 3.1: There are 0 ≤ i < j ≤ n such that f i(b) = f j(b) .
Let i and j be minimal. We may assume that j = n .
Similarly to Case 2 let ψ(z0, . . . , zi, . . . , zn−1, ā) be the formula φ(x, ā) where
each f k(x) is replaced by zk for k < n and ψ(z̄, ā) contains the information
that all elements of (z̄, ā) are distinct.
Then M2 |= ∃zn−1, . . . , zi ∃zi−1, . . . , z0ψ(zn−1, . . . , zi, zi−1, . . . , z0, ā) . So by the
axioms of 3) we can find cn−1, . . . , ci ∈M2 such that
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• f(ck) = ck+1 for all i ≤ k < n− 1 ,

• f(cn−1) = ci ,

• M2 |= ∃z̄i−1, . . . , z0ψ(z0, . . . , zi−1, ci, . . . , cn−1, ā) .

Then we can find in the same way like in Case 2 elements ci−1, . . . , c0 in M2

such that

• f(ci−1) = ci ,

• f(ck) = ck+1 for all k < i− 1 ,

• M2 |= ψ(c0, . . . , zi−1, ci, . . . , cn−1, ā) .

Hence M2 |= φ(c0, ā) .

Case 3.2: There are no 0 ≤ i < j ≤ n such that f i(b) = f j(b) .
Here we can find again c0 ∈ M2 such that M2 |= φ(c0, ā) like in Case 2.

As these are all cases T$f has elimination of quantifiers.
�
Lemma

Lemma 4.5 If T is stable then also T$
f is stable.

Proof: Let λ ≥ ℵ0 such that λ = λω and T is λ -stable. Let A be a subset
of C of size λ .
It is enough to show that there are no more than λ many 1-types over A in
T$f . We only have to look at quantifier free types since T$

f has elimination of
quantifiers by Lemma 4.4.
Let b ∈ C . We will count the possibilities for tpT$f (b/A) . We may assume that

A is algebraically closed since |acl(A)| = |{f n(a) | a ∈ A , n < ω}| = |A| = λ .

Case 1: b ∈ A .
There are only λ = |A| many such types.

Case 2: There is 1 ≤ n < ω and a ∈ A such that f n(b) = a .
Let this n be minimal. If for c ∈ C also f n(c) = a then tpT$f (c/A) = tpT$f (b/A)

if tpT (c, f(c), ..., fn−1(c)/A) = tpT (b, f(b), ..., fn−1(b)/A) . By λ -stability of T
there are not more than λ many T -n -types over A .
So there are no more than λ · λ = λ many such T$

f -1-types over A .

Case 3: There are 0 ≤ i < j < ω such that f i(b) = f j(b) .
Let i and j be minimal. Then again tpT$f (b/A) is determined by tpT (b, f(b), ...,
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f j−1(c)/A) and there are at most λ many different non algebraic T - j -types
over A .
Since we have ω many choices for i and j there are no more than λ · ω = λ
many such T$f -1-types over A .

Case 4: There are no 0 ≤ i < j < ω or a ∈ A such that f i(b) = f j(b) or
f i(b) = a .
Then tpT$f (b/A) is determined if we know for every n < ω the type tpT (fn(b)/

fn−1(b), ..., f(b), b, A) . But since |fn−1(b), ..., f(b), b, A| = λ there are at most λ
many different possibilities for every f n(b) .
Hence there are at most λω = λ many such types.

So in all four cases we do not get more than λ many different T$
f -1-types

over A and hence there are no moren than λ many different T$
f -1-types over

A in total. Hence T$f is λ -stable and in particular stable.
�
Lemma

Remark 4.6 If T is ω -stable or small then T$
f is not necessarily ω -stable or

small.

For example let T be the theory of pure sets with a unary predicate P which is
infinite and coinfinite. Then T is ω -stable and small. But T ω

f is not, because
for every N ⊆ ω we can define the 1-type

{f i(x) 6= f j(x) | i < j < ω} ∪ {P (fn(x)) | n ∈ N} ∪ {¬P (fn(x)) | n /∈ N}.

Hence we have 2ℵ0 many different 1-types over the empty set.

Lemma 4.7 If T is simple then also T$f is simple.

The proof goes by counting types using some results from [1].

Definition 4.8 For every pair κ, λ of (infinite) cardinals let NT (κ, λ) be the
supremum of the cardinalities |P | of families P which consist of pairwise in-
compatible partial types of size ≤ κ over a set of cardinality ≤ λ .

Fact 4.9 T is simple if and only if for all κ, λ we have NT (κ, λ) ≤ λ|T |+ 2κ

.

This is Theorem 2.8. from [1].

Proof of Lemma 4.7: It is enough to consider 1-types. Let A be a set of size
≤ λ in C |= T$f . By Fact 4.9 there a µ ≤ λ|T |+ 2κ many pairwise incompatible
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partial T -types of size ≤ κ over A . Using the same arguments and cases as in
Lemma 4.5 there are ≤ µ + µ · µ + µ · ω + µω ≤ µω ≤ (λ|T | + 2κ)ω = λ|T | + 2κ

many pairwise incompatible partial T$
f -types of size ≤ κ over A . Hence we

have NT (κ, λ) ≤ λ|T | + 2κ for T$f and T$f is simple by Fact 4.9.
�
Lemma
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