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Amalgamation class method

Input: Amalgamation class
Class C of (finite) structures and a ‘distinguished’ notion of
substructure A ≤ B ( ‘A is a self-sufficient substructure of B’)

Output: Fraïssé limit
Countable structure M whose automorphism group is
≤-homogeneous: any isomorphism between finite A1,A2 ≤ M extends
to an automorphism of M.

Structure: graphs, digraphs, orderings, groups, . . ..
Substructure: full induced substructure
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Overview

Describe general method
Focus on two basic examples: 2-out digraphs and an example of a
Hrushovski construction
Mention how variations on these basic examples give some
interesting infinite permutation groups and combinatorial
structures
Connection between the 2-out digraphs and the Hrushovski
construction
Connection via matroids
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Amalgamation classes

(C,≤) is an amalgamation class if
C has countably many isomorphism types
if A ≤ B ≤ C then A ≤ C
∅ ≤ A and A ≤ A for all A ∈ C
Amalgamation Property: if f1 : A ≤−→ B1 and f2 : A ≤−→ B2 are in
(C,≤) there exist C ∈ C and ≤-embeddings g1 : B1

≤−→ C and
g2 : B2

≤−→ C with g1 ◦ f1 = g2 ◦ f2.

A f1−−−−→ B1

f2

y yg1

B2
g2−−−−→ C
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The Fraïssé limit

Theorem (Fraïssé, Jónsson, Shelah, Hrushovski ...)
Suppose (C,≤) is an amalgamation class. Then there is a countable
structure M such that:

1 M is a union of a chain of finite substructures each in C:

M1 ≤ M2 ≤ M3 ≤ . . .

2 whenever A ≤ Mi and A ≤ B ∈ C there is j > i and a ≤-embedding
f : B → Mj which is the identity on A

3 any element of C is a ≤-substructure of some Mi .
Moreover
M is determined up to isomorphism by these conditions and any
isomorphism between finite ≤-substructures of M extends to an
automorphism of M.

M is called the Fraïssé limit of (C,≤).
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The simplest example

In the original Fraïssé construction C is a class of relational structures
and is closed under substructures; ≤ is just ⊆.

Example: let C be the class of all finite graphs.

AP: take C to be the disjoint union of B1 and B2 over A with edges just
those in B1 or B2 . (The free amalgam.)

The Fraïssé limit of this amalgamation class is the random graph:
it is the graph on vertex set N which you get with probability 1 by
choosing independently with fixed probability p ( 6= 0,1) whether each
pair {i , j} is an edge.

() PJC60, August 2007 6 / 25



2-out digraphs

We work with the class D of finite, simple, loopless directed graphs
(digraphs) in which all vertices have at most two successors.
If B is one of these and X ⊆ B then we write cl′B(X ) for the closure of
X in B under taking successors and write X v B if X = cl′B(X ). Note
that this closure is disintegrated :

cl′B(X ) =
⋃

x∈X

cl′B({x})

.
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Properties of (D,v)

Let D be the class of 2-out digraphs. The following is just a matter of
checking the definitions:
LEMMA: For D,E ∈ D we have:

(i) If C v D and X ⊆ D then C ∩ X v X .
(ii) If C v D v E then C v E .
(iii) (Full Amalgamation) Suppose D,E ∈ D and C is a sub-digraph of

both D and E and C v E . Let F be the disjoint union of D and E
over C (with no other directed edges except those in D and E).
Then F ∈ D and D v F .

We refer to F in the above as the free amalgam of D and E over C.
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The Fraïssé Limit

PROPOSITION: There exists a countably infinite digraph N satisfying
the following properties:
(D1): N is the union of a chain of finite sub-digraphs
C1 v C2 v C3 v · · · all in D.
(D2): If C v N is finite and C v D ∈ D is finite, then there is an
embedding f : D → N which is the identity on C and has f (D) v N.
Moreover, N is uniquely determined up to isomorphism by these two
properties and is v-homogeneous (i.e. any isomorphism between
finite closed subdigraphs extends to an automorphism of N).
We refer to N given by the above as the Fraïssé limit of the
amalgamation class (D,v).
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A Hrushovski predimension

Work with undirected, loopless graphs. If A is a finite graph we let e(A)
be the number of edges in A and define the predimension

δ(A) = 2|A| − e(A).

Let G be the class of finite graphs B in which δ(A) ≥ 0 for all B ⊆ A. If
A ⊆ B ∈ C we write A ≤ B and say that A is self-sufficient in B if
δ(A) ≤ δ(B′) whenever A ⊆ B′ ⊆ B.
Note that we can express the condition that A ∈ G by saying ∅ ≤ A.
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Properties of ≤

Submodularity: If B,C are finite subgraphs of a graph D then

δ(B ∪ C) ≤ δ(B) + δ(C)− δ(B ∩ C).

Moreover there is equality here iff B, C are freely amalgamated over
B ∩ C (i.e. there no adjacencies between B \ C and C \ B).
LEMMA: We have:

(i) If A ≤ B and X ⊆ B then A ∩ X ≤ X .
(ii) If A ≤ B ≤ C then A ≤ C.
(iii) (Full amalgamation) Suppose A,B ∈ G and C is a subgraph of A

and B and C ≤ B. Let D be the disjoint union (i.e. free amalgam)
of A and B over C. Then D ∈ G and A ≤ D.
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Self-sufficient closure

(i) and (ii) here imply that if A,B ≤ C then A ∩ B ≤ C. Thus for every
X ⊆ B there is a smallest self-sufficient subset of B which contains X .
Denote this by clB(X ): the self-sufficient closure of X in B.
Note that cl is not disintegrated.
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The Fraïssé limit

THEOREM: There is a countably infinite graph M satisfying the
following properties:
(G1): M is the union of a chain of finite subgraphs
B1 ≤ B2 ≤ B3 ≤ · · · all in G.
(G2): If B ≤ M is finite and B ≤ C ∈ G is finite, then there is an
embedding f : C → M which is the identity on B and has f (C) ≤ M.
Moreover, M is uniquely determined up to isomorphism by these two
properties and is ≤-homogeneous (i.e. any isomorphism between
finite self-sufficient subgraphs extends to an automorphism of M).
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Applications to permutation groups

Many nice applications of the original Fraïssé method (particularly by
Peter Cameron) in the 1980’s. The following require the more general
method (with an extra twist).
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Unbalanced primitive groups

Theorem (DE, 2001)
There is a countable digraph having infinite in-valency and finite
out-valency whose automorphism group is primitive on vertices and
transitive on directed edges. (It can be taken to be highly
arc-transitive.)

C is a collection of finitely generated 2-out digraphs with
descendant set a 2-ary tree; ≤ is descendent closure + . . .
Daniela Amato (D Phil Thesis, Oxford 2006): Construct other
examples where the descendant set is not a tree.
Josephine de la Rue (UEA, 2006): Construct 2ℵ0 examples where
the descendant set is the 2-ary tree.
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Exotic combinatorial structures

... constructed using variations on the Hrushovski construction include:

(John Baldwin, 1994) New projective planes
(Katrin Tent, 2000) For all n ≥ 3, thick generalised n-gons with
automorphism group transitive on (n + 1)-gons.
(DE, 2004) An 2− (ℵ0,4,1) design with a group of automorphisms
which is transitive on blocks and has 2 orbits on points.
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Forgetting the direction

We have a countable directed graph N and a countable graph M
obtained as Fraïssé limits of the amalgamation classes (D,v) and
(G,≤).

THEOREM:
If we forget the direction on the edges in N, the resulting graph is
isomorphic to M.

Thus M is a reduct of N.
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Orientation

Suppose A is a graph.
A D-orientation of A is a directed graph A+ ∈ D with the same vertex
set as A and such that if we forget the direction on the edges, we
obtain A.
We say that A1,A2 ∈ D are equivalent if they have the same vertex set
and the same graph-reduct (i.e. they are D-orientations of the same
graph).
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Two lemmas

The theorem follows from two lemmas.

LEMMA A:
(1) Suppose B is a finite graph. Then B ∈ G iff B has a D-orientation.
(2) If B ∈ G and A ⊆ B, then A ≤ B iff there is a D-orientation of B in
which A is closed.

LEMMA B:
(1) If C v D ∈ D and we replace the digraph structure on C by an
equivalent structure C′ ∈ D, then the resulting digraph D′ is still in D.
(2) If A ≤ B ∈ C then any D-orientation of A extends to a D-orientation
of B.
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Ternary structures

Work with finite 3-uniform hypergraphs A. Define:

e(A): the number of hyperedges in A

Predimension: δ(A) = |A| − e(A).

A ≤ B: δ(A′) ≥ δ(A) for all A ⊆ A′ ⊆ B

T : the class of A which satisfy ∅ ≤ A.

Then (T ,≤) is an amalgamation class; call the Fraïssé limit H.

If X ⊆ A ∈ T define its dimension to be:

dA(X ) = δ(clA(X )).

This gives the rank function of a matroid on A.

Note: If X ⊆ A ≤ B then dB(X ) = dA(X ).
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Matroids

... aka ‘Pregeometries.’

Definition
A matroid M = (E , I) consists of a finite set E and a non-empty
collection I of subsets of E which is closed under subsets and
satisfies:
If I1, I2 ∈ I and |I1| < |I2| there is e ∈ I2 \ I1 such that I1 ∪ {e} ∈ I.

The sets in I are called the independent subsets of M.

Example
Take E a finite set of vectors in some vector space and I the linearly
independent subsets of E .
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More definitions

If A ⊆ E , a basis of A is a maximal independent subset of A.

The rank of A is the size of a basis of A
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Transversal matroids

E finite set
A = (Ai : i ∈ S) family of non-empty subsets of E
Transversal of A: image of an injection ψ : S → E with ψ(i) ∈ Ai

Partial transversal: transversal of a subfamily of A.

Theorem (Edmonds and Fulkerson, 1965)
Let I be the set of partial transversals of A. Then (E , I) is a matroid.
(The transversal matroid associated to the family A.)
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Matroid dual

If M = (E , I) is a matroid, let:

J = {C ⊆ E \ B : B a basis of M}.

Theorem (Whitney, 1935)
M∗ = (E ,J ) is a matroid.
(The dual matroid of M.)

– The bases of M∗ are complements of bases of M.
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OBSERVATION: Let A ∈ T and M the transversal matroid coming from
the family of hyperedges in A. Then the dimension function in M∗ is the
Hrushovski dimension function dA.

– So the matroids coming from the Hrushovski predimension are
cotransversal matroids.
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