Amalgamation Constructions in Permutation Group Theory and Model Theory

David Evans, School of Mathematics, UEA, Norwich.

Ambleside, August 2007.

Amalgamation class method

Input: Amalgamation class

Class C of (finite) structures and a 'distinguished' notion of substructure $A \le B$ ('A is a self-sufficient substructure of B')

Output: Fraïssé limit

Countable structure *M* whose automorphism group is \leq -homogeneous: any isomorphism between finite $A_1, A_2 \leq M$ extends to an automorphism of *M*.

Structure: graphs, digraphs, orderings, groups, Substructure: full induced substructure

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview

- Describe general method
- Focus on two basic examples: 2-out digraphs and an example of a Hrushovski construction
- Mention how variations on these basic examples give some interesting infinite permutation groups and combinatorial structures
- Connection between the 2-out digraphs and the Hrushovski construction
- Connection via matroids

Amalgamation classes

 (\mathcal{C},\leq) is an amalgamation class if

- C has countably many isomorphism types
- if A ≤ B ≤ C then A ≤ C
- $\emptyset \leq A$ and $A \leq A$ for all $A \in C$
- Amalgamation Property: if $f_1 : A \xrightarrow{\leq} B_1$ and $f_2 : A \xrightarrow{\leq} B_2$ are in (\mathcal{C}, \leq) there exist $\mathcal{C} \in \mathcal{C}$ and \leq -embeddings $g_1 : B_1 \xrightarrow{\leq} \mathcal{C}$ and $g_2 : B_2 \xrightarrow{\leq} \mathcal{C}$ with $g_1 \circ f_1 = g_2 \circ f_2$.

The Fraïssé limit

Theorem (Fraïssé, Jónsson, Shelah, Hrushovski ...)

Suppose (\mathcal{C}, \leq) is an amalgamation class. Then there is a countable structure M such that:

M is a union of a chain of finite substructures each in C:

 $M_1 < M_2 \leq M_3 \leq \ldots$

2 whenever $A \leq M_i$ and $A \leq B \in C$ there is j > i and $a \leq$ -embedding $f: B \rightarrow M_i$ which is the identity on A

3 any element of C is a <-substructure of some M_i .

Moreover

M is determined up to isomorphism by these conditions and any isomorphism between finite <-substructures of M extends to an automorphism of M.

M is called the Fraïssé limit of (C, \leq) .

イロト イポト イヨト イヨト

The simplest example

In the original Fraïssé construction C is a class of relational structures and is closed under substructures; \leq is just \subseteq .

Example: let C be the class of all finite graphs.

AP: take *C* to be the disjoint union of B_1 and B_2 over *A* with edges just those in B_1 or B_2 . (The free amalgam.)

The Fraïssé limit of this amalgamation class is the random graph: it is the graph on vertex set \mathbb{N} which you get with probability 1 by choosing independently with fixed probability $p \ (\neq 0, 1)$ whether each pair $\{i, j\}$ is an edge.

2-out digraphs

We work with the class \mathcal{D} of finite, simple, loopless directed graphs (digraphs) in which all vertices have at most two successors. If *B* is one of these and $X \subseteq B$ then we write $cl'_B(X)$ for the closure of *X* in *B* under taking successors and write $X \sqsubseteq B$ if $X = cl'_B(X)$. Note that this closure is *disintegrated*:

$$\operatorname{cl}'_B(X) = \bigcup_{x \in X} \operatorname{cl}'_B(\{x\})$$

Properties of $(\mathcal{D}, \sqsubseteq)$

Let $\ensuremath{\mathcal{D}}$ be the class of 2-out digraphs. The following is just a matter of checking the definitions:

LEMMA: For $D, E \in \mathcal{D}$ we have:

- (i) If $C \sqsubseteq D$ and $X \subseteq D$ then $C \cap X \sqsubseteq X$.
- (ii) If $C \sqsubseteq D \sqsubseteq E$ then $C \sqsubseteq E$.
- (iii) (Full Amalgamation) Suppose $D, E \in D$ and C is a sub-digraph of both D and E and $C \sqsubseteq E$. Let F be the disjoint union of D and E over C (with no other directed edges except those in D and E). Then $F \in D$ and $D \sqsubseteq F$.

We refer to *F* in the above as the *free amalgam* of *D* and *E* over *C*.

The Fraïssé Limit

PROPOSITION: There exists a countably infinite digraph *N* satisfying the following properties:

(D1): N is the union of a chain of finite sub-digraphs

 $C_1 \sqsubseteq C_2 \sqsubseteq C_3 \sqsubseteq \cdots$ all in \mathcal{D} .

(D2): If $C \sqsubseteq N$ is finite and $C \sqsubseteq D \in D$ is finite, then there is an

embedding $f : D \rightarrow N$ which is the identity on *C* and has $f(D) \sqsubseteq N$.

Moreover, *N* is uniquely determined up to isomorphism by these two properties and is \sqsubseteq -homogeneous (i.e. any isomorphism between finite closed subdigraphs extends to an automorphism of *N*).

We refer to *N* given by the above as the Fraïssé limit of the amalgamation class $(\mathcal{D}, \sqsubseteq)$.

A Hrushovski predimension

Work with undirected, loopless graphs. If A is a finite graph we let e(A) be the number of edges in A and define the predimension

$$\delta(A) = 2|A| - e(A).$$

Let \mathcal{G} be the class of finite graphs B in which $\delta(A) \ge 0$ for all $B \subseteq A$. If $A \subseteq B \in \mathcal{C}$ we write $A \le B$ and say that A is self-sufficient in B if $\delta(A) \le \delta(B')$ whenever $A \subseteq B' \subseteq B$. Note that we can express the condition that $A \in \mathcal{G}$ by saying $\emptyset \le A$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of \leq

Submodularity: If B, C are finite subgraphs of a graph D then

$$\delta(B \cup C) \leq \delta(B) + \delta(C) - \delta(B \cap C).$$

Moreover there is equality here iff *B*, *C* are freely amalgamated over $B \cap C$ (i.e. there no adjacencies between $B \setminus C$ and $C \setminus B$).

LEMMA: We have:

- (i) If $A \leq B$ and $X \subseteq B$ then $A \cap X \leq X$.
- (ii) If $A \leq B \leq C$ then $A \leq C$.
- (iii) (Full amalgamation) Suppose $A, B \in \mathcal{G}$ and C is a subgraph of A and B and $C \leq B$. Let D be the disjoint union (i.e. free amalgam) of A and B over C. Then $D \in \mathcal{G}$ and $A \leq D$.

Self-sufficient closure

(i) and (ii) here imply that if $A, B \le C$ then $A \cap B \le C$. Thus for every $X \subseteq B$ there is a smallest self-sufficient subset of *B* which contains *X*. Denote this by $cl_B(X)$: the self-sufficient closure of *X* in *B*. Note that cl is *not* disintegrated.

4 3 5 4 3

The Fraïssé limit

THEOREM: There is a countably infinite graph M satisfying the following properties:

(G1): *M* is the union of a chain of finite subgraphs

 $B_1 \leq B_2 \leq B_3 \leq \cdots$ all in \mathcal{G} .

(G2): If $B \le M$ is finite and $B \le C \in \mathcal{G}$ is finite, then there is an embedding $f : C \to M$ which is the identity on *B* and has $f(C) \le M$.

Moreover, *M* is uniquely determined up to isomorphism by these two properties and is \leq -homogeneous (i.e. any isomorphism between finite self-sufficient subgraphs extends to an automorphism of *M*).

Applications to permutation groups

Many nice applications of the original Fraïssé method (particularly by Peter Cameron) in the 1980's. The following require the more general method (with an extra twist).

A B b 4 B b

Unbalanced primitive groups

Theorem (DE, 2001)

There is a countable digraph having infinite in-valency and finite out-valency whose automorphism group is primitive on vertices and transitive on directed edges. (It can be taken to be highly arc-transitive.)

- C is a collection of finitely generated 2-out digraphs with descendant set a 2-ary tree; ≤ is descendent closure + ...
- Daniela Amato (D Phil Thesis, Oxford 2006): Construct other examples where the descendant set is not a tree.
- Josephine de la Rue (UEA, 2006): Construct 2^{ℵ0} examples where the descendant set is the 2-ary tree.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exotic combinatorial structures

... constructed using variations on the Hrushovski construction include:

- (John Baldwin, 1994) New projective planes
- (Katrin Tent, 2000) For all n ≥ 3, thick generalised n-gons with automorphism group transitive on (n + 1)-gons.
- (DE, 2004) An 2 − (ℵ₀, 4, 1) design with a group of automorphisms which is transitive on blocks and has 2 orbits on points.

4 3 5 4 3 5

Forgetting the direction

We have a countable directed graph N and a countable graph M obtained as Fraïssé limits of the amalgamation classes $(\mathcal{D}, \sqsubseteq)$ and (\mathcal{G}, \leq) .

THEOREM:

If we forget the direction on the edges in *N*, the resulting graph is isomorphic to *M*.

Thus *M* is a reduct of *N*.

Orientation

Suppose A is a graph.

A \mathcal{D} -orientation of A is a directed graph $A^+ \in \mathcal{D}$ with the same vertex set as A and such that if we forget the direction on the edges, we obtain A.

We say that $A_1, A_2 \in D$ are equivalent if they have the same vertex set and the same graph-reduct (i.e. they are D-orientations of the same graph).

Two lemmas

The theorem follows from two lemmas.

LEMMA A:

(1) Suppose *B* is a finite graph. Then $B \in \mathcal{G}$ iff *B* has a \mathcal{D} -orientation. (2) If $B \in \mathcal{G}$ and $A \subseteq B$, then $A \leq B$ iff there is a \mathcal{D} -orientation of *B* in which *A* is closed.

LEMMA B:

(1) If C ⊑ D ∈ D and we replace the digraph structure on C by an equivalent structure C' ∈ D, then the resulting digraph D' is still in D.
(2) If A ≤ B ∈ C then any D-orientation of A extends to a D-orientation of B.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ternary structures

Work with finite 3-uniform hypergraphs A. Define:

- *e*(*A*): the number of hyperedges in *A*
- Predimension: $\delta(A) = |A| e(A)$.
- $A \leq B$: $\delta(A') \geq \delta(A)$ for all $A \subseteq A' \subseteq B$
- T: the class of A which satisfy $\emptyset \leq A$.

Then (\mathcal{T}, \leq) is an amalgamation class; call the Fraïssé limit *H*. If $X \subseteq A \in \mathcal{T}$ define its dimension to be:

 $d_{\mathcal{A}}(X) = \delta(\operatorname{cl}_{\mathcal{A}}(X)).$

This gives the rank function of a matroid on A.

Note: If $X \subseteq A \leq B$ then $d_B(X) = d_A(X)$.

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つ へ ()・

Matroids

... aka 'Pregeometries.'

Definition

A matroid $\mathbb{M} = (E, \mathcal{I})$ consists of a finite set *E* and a non-empty collection \mathcal{I} of subsets of *E* which is closed under subsets and satisfies:

If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$ there is $e \in I_2 \setminus I_1$ such that $I_1 \cup \{e\} \in \mathcal{I}$.

The sets in \mathcal{I} are called the independent subsets of \mathbb{M} .

Example

Take *E* a finite set of vectors in some vector space and \mathcal{I} the linearly independent subsets of *E*.

More definitions

If $A \subseteq E$, a basis of A is a maximal independent subset of A. The rank of A is the size of a basis of A

< A

Transversal matroids

- E finite set
- $A = (A_i : i \in S)$ family of non-empty subsets of *E*
- Transversal of A: image of an injection $\psi : S \to E$ with $\psi(i) \in A_i$
- Partial transversal: transversal of a subfamily of A.

Theorem (Edmonds and Fulkerson, 1965)

Let \mathcal{I} be the set of partial transversals of \mathcal{A} . Then $(\mathcal{E}, \mathcal{I})$ is a matroid. (The transversal matroid associated to the family \mathcal{A} .)

A B F A B F

Matroid dual

If $\mathbb{M} = (E, \mathcal{I})$ is a matroid, let:

$$\mathcal{J} = \{ C \subseteq E \setminus B : B \text{ a basis of } \mathbb{M} \}.$$

Theorem (Whitney, 1935) $\mathbb{M}^* = (E, \mathcal{J})$ is a matroid. (The dual matroid of \mathbb{M} .)

– The bases of \mathbb{M}^* are complements of bases of \mathbb{M} .

OBSERVATION: Let $A \in \mathcal{T}$ and \mathbb{M} the transversal matroid coming from the family of hyperedges in A. Then the dimension function in \mathbb{M}^* is the Hrushovski dimension function d_A .

 So the matroids coming from the Hrushovski predimension are cotransversal matroids.