Geometric properties of forking in stable theories

David Evans

School of Mathematics, UEA, Norwich.

Stability and independence

Notation:

L countable language;
T complete first-order L-theory;
\mathbb{M} monster model of T;
$a, b, c \ldots$ elements or tuples from $\mathbb{M}\left(\right.$ or $\left.\mathbb{M}^{e q}\right)$;
A, B, C, \ldots small subsets of $\mathbb{M}\left(\right.$ or $\left.\mathbb{M}^{e q}\right)$.
Assume T is stable: there exists $\lambda \geq \aleph_{0}$ such that
$\left|S_{1}(A)\right| \leq \lambda$ when $|A| \leq \lambda$.
Write c I B to mean:
Suppose $\phi(x, y) \in L(A)$ and $\phi(x, b) \in \operatorname{tp}(c / A \cup B)$. Suppose
$\left(b_{i}: i<\omega\right)$ is an infinite A-indiscernible sequence of $\operatorname{tp}(b / A)$. Then
$\bigwedge_{i} \phi\left(x, b_{i}\right)$ is consistent.
Say that $\operatorname{tp}(c / A \cup B)$ does not fork over A, or c is independent from B
over A.
REMARK: This is really non-dividing...

Stability and independence

Notation:

L countable language;
T complete first-order L-theory;
\mathbb{M} monster model of T;
$a, b, c \ldots$ elements or tuples from \mathbb{M} (or $\left.\mathbb{M}^{e q}\right)$;
A, B, C, \ldots small subsets of \mathbb{M} (or $\left.\mathbb{M}^{e q}\right)$.
Assume T is stable: there exists $\lambda \geq \aleph_{0}$ such that $\left|S_{1}(A)\right| \leq \lambda$ when $|A| \leq \lambda$.

Stability and independence

Notation:

L countable language;
T complete first-order L-theory;
\mathbb{M} monster model of T;
$a, b, c \ldots$ elements or tuples from $\mathbb{M}\left(\right.$ or $\left.\mathbb{M}^{e q}\right)$;
A, B, C, \ldots small subsets of \mathbb{M} (or $\left.\mathbb{M}^{e q}\right)$.
Assume T is stable: there exists $\lambda \geq \aleph_{0}$ such that
$\left|S_{1}(A)\right| \leq \lambda$ when $|A| \leq \lambda$.
Write $c \perp_{A} B$ to mean:
Suppose $\phi(x, y) \in L(A)$ and $\phi(x, b) \in \operatorname{tp}(c / A \cup B)$. Suppose $\left(b_{i}: i<\omega\right)$ is an infinite A-indiscernible sequence of $\operatorname{tp}(b / A)$. Then $\bigwedge_{i} \phi\left(x, b_{i}\right)$ is consistent.

Say that $\operatorname{tp}(c / A \cup B)$ does not fork over A, or c is independent from B over A.

Stability and independence

Notation:

L countable language;
T complete first-order L-theory;
\mathbb{M} monster model of T;
$a, b, c \ldots$ elements or tuples from $\mathbb{M}\left(\right.$ or $\left.\mathbb{M}^{e q}\right)$;
A, B, C, \ldots small subsets of \mathbb{M} (or $\left.\mathbb{M}^{e q}\right)$.
Assume T is stable: there exists $\lambda \geq \aleph_{0}$ such that
$\left|S_{1}(A)\right| \leq \lambda$ when $|A| \leq \lambda$.
Write $c \perp_{A} B$ to mean:
Suppose $\phi(x, y) \in L(A)$ and $\phi(x, b) \in \operatorname{tp}(c / A \cup B)$. Suppose $\left(b_{i}: i<\omega\right)$ is an infinite A-indiscernible sequence of $\operatorname{tp}(b / A)$. Then $\bigwedge_{i} \phi\left(x, b_{i}\right)$ is consistent.

Say that $\operatorname{tp}(c / A \cup B)$ does not fork over A, or c is independent from B over A.
REMARK: This is really non-dividing... .

Examples:

(1) Let $T=A C F_{p}$. Then $c \perp_{A} B \Leftrightarrow \operatorname{tr} \cdot \operatorname{deg}(c / A \cup B)=\operatorname{tr} \cdot \operatorname{deg}(c / A)$.
(2) Let $T_{V(K)}$ be the theory of (infinite) vector spaces over a field K. This is stable and for subspaces C, B of \mathbb{M} we have $C \downarrow_{C \cap B} B$.

Examples:

(1) Let $T=A C F_{p}$. Then $c \perp_{A} B \Leftrightarrow \operatorname{tr} \cdot \operatorname{deg}(c / A \cup B)=\operatorname{tr} \cdot \operatorname{deg}(c / A)$.
(2) Let $T_{V(K)}$ be the theory of (infinite) vector spaces over a field K. This is stable and for subspaces C, B of \mathbb{M} we have $C \downarrow_{C \cap B} B$.

Examples:

(1) Let $T=A C F_{p}$. Then $c \perp_{A} B \Leftrightarrow \operatorname{tr} \cdot \operatorname{deg}(c / A \cup B)=\operatorname{tr} \cdot \operatorname{deg}(c / A)$.
(2) Let $T_{V(K)}$ be the theory of (infinite) vector spaces over a field K. This is stable and for subspaces C, B of \mathbb{M} we have $C \downarrow_{C \cap B} B$.
(3) L: 2-ary relation symbol R
T_{D} : directed graphs; each vertex has one directed edge going out, infinitely many coming in; no (undirected) cycles.
T_{D} is complete and stable.
Write $A \sqsubseteq \mathbb{M}$ to mean: if $a \in A$ and
$a \rightarrow b$ then $b \in A$.
For $C, B \sqsubseteq \mathbb{M}$ we have: $C \downarrow_{C \cap B} B$.

Forking independence

Theorem. (Shelah) The following properties hold for stable T :
(0) if $g \in \operatorname{Aut}(\mathbb{M}): \quad c \downarrow_{A} B \Leftrightarrow g c \downarrow_{g A} g B$;
(1) for $A \subseteq B \subseteq C: C \downarrow_{A} C \Leftrightarrow C \downarrow_{A} B$ and $c \downarrow_{B} C$;
(2) $c \downarrow_{A} b \Leftrightarrow b \downarrow_{A} c$;
(3) if $C \mathbb{X}_{A} B$ there is a finite $B_{0} \subseteq B$ with $\subset \mathbb{X}_{A} B_{0}$;
(4) there is a countable $A_{0} \subseteq A$ with $c \downarrow_{A_{0}} A$;
(5) given c and $A \subseteq B$ there is $c^{\prime} \models \operatorname{tp}(c / A)$ with $c^{\prime} \perp_{A} B$;
(6) $c \downarrow_{A} c \Leftrightarrow c \in \operatorname{acl}(A)$;
(7) given c and $A \subseteq B$ there are $\leq 2^{x_{0}}$ possibilities for $\operatorname{tp}\left(c^{\prime} / B\right)$ with $c^{\prime} \equiv \operatorname{tp}(c / A)$ and $c^{\prime} \perp_{A} B$.
These properties characterise stability and \downarrow.
This extends to $\mathbb{M}^{e q}$ and we have:
$\left(7^{\prime}\right)$ If A is algebraically closed in $\mathbb{M}^{e q}$ and $B \supseteq A$ then $\operatorname{tp}(c / A)$ has a unique non-forking extension to a type over B.

Triviality and one-basedness

Properties that mean that \downarrow is 'uncomplicated':
Definition:
(1) T is one-based if whenever $C, B \subseteq \mathbb{M}^{e q}$ are algebraically closed (in $\mathbb{M}^{e q}$) then $C \downarrow_{C \cap B} B$.
(2) T is trivial if whenever $a \Perp_{A} b$ and $c \mathbb{X}_{A} a, b$, then $c \mathbb{X}_{A}$ a or ExAmples:

- $A C F_{p}$ is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent a, b, then $a+b \npreceq a, b$ but $a+b \downarrow a$ and $a+b \downarrow b$.
- T_{D} is one-based and trivial.

Triviality and one-basedness

Properties that mean that \downarrow is 'uncomplicated':
Definition:
(1) T is one-based if whenever $C, B \subseteq \mathbb{M}^{e q}$ are algebraically closed (in $\mathbb{M}^{e q}$) then $C \downarrow_{C \cap B} B$.
(2) T is trivial if whenever $a \perp_{A} b$ and $c X_{A} a, b$, then $c X_{A} a$ or $c \mathbb{X}_{A} b$.

- $A C F_{p}$ is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent a, b, then $a+b \notin a, b$ but $a+b \downarrow a$ and $a+b \downarrow b$.
- T_{D} is one-based and trivial.

Triviality and one-basedness

Properties that mean that \downarrow is 'uncomplicated':
Definition:
(1) T is one-based if whenever $C, B \subseteq \mathbb{M}^{e q}$ are algebraically closed (in $\mathbb{M}^{e q}$) then $C \downarrow_{C \cap B} B$.
(2) T is trivial if whenever $a \perp_{A} b$ and $c X_{A} a, b$, then $c X_{A} a$ or $c \mathbb{X}_{A} b$.
EXAMPLES:

- $A C F_{p}$ is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent a, b, then $a+b \npreceq a, b$ but $a+b \downarrow a$ and $a+b \downarrow b$.
- T_{D} is one-based and trivial.

Triviality and one-basedness

Properties that mean that \downarrow is 'uncomplicated':
Definition:
(1) T is one-based if whenever $C, B \subseteq \mathbb{M}^{e q}$ are algebraically closed (in $\mathbb{M}^{e q}$) then $C \downarrow_{C \cap B} B$.
(2) T is trivial if whenever $a \perp_{A} b$ and $c X_{A} a, b$, then $c X_{A} a$ or $c \mathbb{X}_{A} b$.
EXAMPLES:

- $A C F_{p}$ is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent a, b, then $a+b \mathbb{X} a, b$ but $a+b \downarrow a$ and $a+b \downarrow b$.

Triviality and one-basedness

Properties that mean that \downarrow is 'uncomplicated':
Definition:
(1) T is one-based if whenever $C, B \subseteq \mathbb{M}^{e q}$ are algebraically closed (in $\mathbb{M}^{e q}$) then $C \downarrow_{C \cap B} B$.
(2) T is trivial if whenever $a \perp_{A} b$ and $c X_{A} a, b$, then $c X_{A} a$ or $c \mathbb{X}_{A} b$.
EXAMPLES:

- $A C F_{p}$ is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent a, b, then $a+b \mathbb{X} a, b$ but $a+b \downarrow a$ and $a+b \downarrow b$.
- T_{D} is one-based and trivial.

Pseudoplanes

Theorem: (Pillay, Zilber, Lachlan) T is not one-based iff there is a complete type definable pseudoplane I in $\mathbb{M}^{e q}$.

This means: $I=I(x, y)$ is a complete type (over some parameter set) such that:
(1) if $\models I(a, b)$ then $a \notin \operatorname{acl}(b)$ and $b \notin \operatorname{acl}(a)$ (over the parameters);
(2) if $\vDash I\left(a, b_{1}\right) \wedge I\left(a, b_{2}\right) \wedge\left(b_{1} \neq b_{2}\right)$ then $a \in \operatorname{acl}\left(b_{1}, b_{2}\right)$;
(3) if $=I\left(a_{1}, b\right) \wedge I\left(a_{2}, b\right) \wedge\left(a_{1} \neq a_{2}\right)$ then $b \in \operatorname{acl}\left(a_{1}, a_{2}\right)$;
as incidence. The axioms have a geometric translation.
Example: (Free pseudoplane) Let T_{U} be the undirected version of T_{D}
and $I=\operatorname{tp}(a, b / 0)$ where (a, b) is an edge. This is a type definable pseudoplane, so T_{U} is not one-based. (It is trivial.)
\square
to the definable relation $R(x, y) \vee R(y, x)$. So a reduct of a one-based

Pseudoplanes

Theorem: (Pillay, Zilber, Lachlan) T is not one-based iff there is a complete type definable pseudoplane I in $\mathbb{M}^{e q}$.

This means: $I=I(x, y)$ is a complete type (over some parameter set) such that:
(1) if $\models I(a, b)$ then $a \notin \operatorname{acl}(b)$ and $b \notin \operatorname{acl}(a)$ (over the parameters);
(2) if $\models I\left(a, b_{1}\right) \wedge I\left(a, b_{2}\right) \wedge\left(b_{1} \neq b_{2}\right)$ then $a \in \operatorname{acl}\left(b_{1}, b_{2}\right)$;
(3) if $\models I\left(a_{1}, b\right) \wedge I\left(a_{2}, b\right) \wedge\left(a_{1} \neq a_{2}\right)$ then $b \in \operatorname{acl}\left(a_{1}, a_{2}\right)$;

IDEA: If $\models I(a, b)$ think of a as a point and b as a line (or curve) and I as incidence. The axioms have a geometric translation.
\square

Pseudoplanes

THEOREM: (Pillay, Zilber, Lachlan) T is not one-based iff there is a complete type definable pseudoplane I in $\mathbb{M}^{e q}$.

This means: $I=I(x, y)$ is a complete type (over some parameter set) such that:
(1) if $\models I(a, b)$ then $a \notin \operatorname{acl}(b)$ and $b \notin \operatorname{acl}(a)$ (over the parameters);
(2) if $\models I\left(a, b_{1}\right) \wedge I\left(a, b_{2}\right) \wedge\left(b_{1} \neq b_{2}\right)$ then $a \in \operatorname{acl}\left(b_{1}, b_{2}\right)$;
(3) if $\models I\left(a_{1}, b\right) \wedge I\left(a_{2}, b\right) \wedge\left(a_{1} \neq a_{2}\right)$ then $b \in \operatorname{acl}\left(a_{1}, a_{2}\right)$;

IDEA: If $\models I(a, b)$ think of a as a point and b as a line (or curve) and I as incidence. The axioms have a geometric translation.
Example: (Free pseudoplane) Let T_{U} be the undirected version of T_{D} and $I=\operatorname{tp}(a, b / \emptyset)$ where (a, b) is an edge. This is a type definable pseudoplane, so T_{U} is not one-based. (It is trivial.)

Remark: (Hodges) Note that we car
to the definable relation $R(x, y) \vee R($
theory is not necessarily one-based.

Pseudoplanes

Theorem: (Pillay, Zilber, Lachlan) T is not one-based iff there is a complete type definable pseudoplane I in $\mathbb{M}^{e q}$.

This means: $I=I(x, y)$ is a complete type (over some parameter set) such that:
(0) if $\models I(a, b)$ then $a \notin \operatorname{acl}(b)$ and $b \notin \operatorname{acl}(a)$ (over the parameters);
(2) if $\models I\left(a, b_{1}\right) \wedge I\left(a, b_{2}\right) \wedge\left(b_{1} \neq b_{2}\right)$ then $a \in \operatorname{acl}\left(b_{1}, b_{2}\right)$;
(3) if $\models I\left(a_{1}, b\right) \wedge I\left(a_{2}, b\right) \wedge\left(a_{1} \neq a_{2}\right)$ then $b \in \operatorname{acl}\left(a_{1}, a_{2}\right)$;

IDEA: If $\models I(a, b)$ think of a as a point and b as a line (or curve) and I as incidence. The axioms have a geometric translation.
Example: (Free pseudoplane) Let T_{U} be the undirected version of T_{D} and $I=\operatorname{tp}(a, b / \emptyset)$ where (a, b) is an edge. This is a type definable pseudoplane, so T_{U} is not one-based. (It is trivial.)

Remark: (Hodges) Note that we can view T_{U} as a reduct of T_{D} : pass to the definable relation $R(x, y) \vee R(y, x)$. So a reduct of a one-based theory is not necessarily one-based.

Ampleness

The following is due to A. Pillay (+ modification by H. Nübling): Definition: Suppose $n \geq 1$ is a natural number. Say that T is n-ample if there exist A and c_{0}, \ldots, c_{n} in \mathbb{M} such that:
(i) $c_{0} \mathbb{X}_{A} c_{n}$;
(ii) $c_{0}, \ldots, c_{i-1} \perp_{A, c_{i}} c_{i+1}, \ldots, c_{n}$ for $1 \leq i<n$;
(iii) $\operatorname{acl}\left(A, c_{0}\right) \cap \operatorname{acl}\left(A, c_{1}\right)=\operatorname{acl}(A)$;
(iv) $\operatorname{acl}\left(A, c_{0}, \ldots c_{i-1}, c_{i}\right) \cap \operatorname{acl}\left(A, c_{0}, \ldots c_{i-1}, c_{i+1}\right)=\operatorname{acl}\left(A, c_{0} \ldots c_{i-1}\right)$ for $1 \leq i<n$,
where acl is in $\mathbb{M}^{e q}$.
Remarks:
(1) not 1-ample \equiv one-based.
(2) not 2-ample $\equiv \mathrm{CM}$-trivial.
(3) $(n+1)$-ample $\Rightarrow n$-ample.

Ampleness

The following is due to A. Pillay (+ modification by H. Nübling): Definition: Suppose $n \geq 1$ is a natural number. Say that T is n-ample if there exist A and c_{0}, \ldots, c_{n} in \mathbb{M} such that:
(i) $c_{0} \mathbb{X}_{A} c_{n}$;
(ii) $c_{0}, \ldots, c_{i-1} \perp_{A, c_{i}} c_{i+1}, \ldots, c_{n}$ for $1 \leq i<n$;
(iii) $\operatorname{acl}\left(A, c_{0}\right) \cap \operatorname{acl}\left(A, c_{1}\right)=\operatorname{acl}(A)$;
(iv) $\operatorname{acl}\left(A, c_{0}, \ldots c_{i-1}, c_{i}\right) \cap \operatorname{acl}\left(A, c_{0}, \ldots c_{i-1}, c_{i+1}\right)=\operatorname{acl}\left(A, c_{0} \ldots c_{i-1}\right)$ for $1 \leq i<n$,
where acl is in $\mathbb{M}^{e q}$.
Remarks:
(1) not 1-ample \equiv one-based.
(2) not 2-ample $\equiv \mathrm{CM}$-trivial.
(3) $(n+1)$-ample $\Rightarrow n$-ample.

Questions

Big Question

Is there a strongly minimal T which does not interpret an infinite field and which is 2-ample?

REMARKS:
 (1) Hrushovski's strongly minimal sets (not involving fields) are 1-ample but not 2-ample.
 (2) Pillay (2000): an infinite stable field is n-ample for all n.

Questions

Big Question

Is there a strongly minimal T which does not interpret an infinite field and which is 2 -ample?

Remarks:

(1) Hrushovski's strongly minimal sets (not involving fields) are 1-ample but not 2-ample.
(2) Pillay (2000): an infinite stable field is n-ample for all n.

Questions

Big Question

Is there a strongly minimal T which does not interpret an infinite field and which is 2 -ample?

Remarks:

(1) Hrushovski's strongly minimal sets (not involving fields) are 1-ample but not 2-ample.
(2) Pillay (2000): an infinite stable field is n-ample for all n.

Questions

Big Question

Is there a strongly minimal T which does not interpret an infinite field and which is 2 -ample?

Remarks:

(1) Hrushovski's strongly minimal sets (not involving fields) are 1-ample but not 2-ample.
(2) Pillay (2000): an infinite stable field is n-ample for all n.

Examples

- Free groups: Z. Sela proved that any two finitely generated, non-abelian free groups are elementarily equivalent, and their theory $T_{\text {free }}$ is stable.
Theorem: (A. Ould Houcine, K. Tent; 2012) $T_{\text {free }}$ is n-ample $\forall n$. Proof uses Sela's work plus work of C. Perin and R. Sklinos.

Examples

- Free groups: Z. Sela proved that any two finitely generated, non-abelian free groups are elementarily equivalent, and their theory $T_{\text {free }}$ is stable.
Theorem: (A. Ould Houcine, K. Tent; 2012) $T_{\text {free }}$ is n-ample $\forall n$. Proof uses Sela's work plus work of C. Perin and R. Sklinos.
- Free pseudospace: A. Baudisch and A. Pillay (2000) define a free psudospace: a 3-sorted structure consisting of points, lines, planes. They show that its theory $T_{B P}$ is ω-stable, trivial and 2-ample.
 construction of a free pseudspace to construct a free n-space: an ($n+1$)-sorted structure consisting of points, lines, planes, They show that its theory is ω-stable, trivial, n-ample and not ($n+1$)-ample (so the ampleness hierarchy is strict)

Examples

- Free groups: Z. Sela proved that any two finitely generated, non-abelian free groups are elementarily equivalent, and their theory $T_{\text {free }}$ is stable.
Theorem: (A. Ould Houcine, K. Tent; 2012) $T_{\text {free }}$ is n-ample $\forall n$. Proof uses Sela's work plus work of C. Perin and R. Sklinos.
- Free pseudospace: A. Baudisch and A. Pillay (2000) define a free psudospace: a 3-sorted structure consisting of points, lines, planes. They show that its theory $T_{B P}$ is ω-stable, trivial and 2-ample.
- Free n-space: Two recent papers (K. Tent; 2012) and (A. Baudisch, A. Martin-Pizarro, M. Ziegler; 2012) generalize the construction of a free pseudspace to construct a free n-space: an $(n+1)$-sorted structure consisting of points, lines, planes, They show that its theory is ω-stable, trivial, n-ample and not ($n+1$)-ample (so the ampleness hierarchy is strict).

Avoiding triviality: 1-ampleness

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane. Define: \mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E=C \coprod_{A} B$ is in \mathcal{D} and $C \sqsubseteq E$ Can form a rich structure N for $(\mathcal{D}, \sqsubseteq)$: if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g: B \rightarrow N$ with $g \mid A=i d$ and $g(B) \sqsubseteq N$. Write down a theory T such that
(1) $N=T$
(2) every sufficiently saturated model of T is rich.

It follows that T is complete and stable. Moreover if $C, B \square N$ then $C \downarrow_{C \cap B} B$, so T is one-based and trivial.

Avoiding triviality: 1-ampleness

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

```
Define:
D}\mathrm{ : directed graphs with at most 2 directed edges out of each vertex;
A\sqsubsetB: if }a->b\mathrm{ and }a\inA\mathrm{ then }b\inA\mathrm{ .
Then (\mathcal{D},\sqsubseteq) has the full amalgamation property: if }A\sqsubseteqB\in\mathcal{D}\mathrm{ and
A\subseteqC\in\mathcal{D}\mathrm{ then the free amalgam }E=C\mp@subsup{\coprod}{A}{}B\mathrm{ is in }\mathcal{D}\mathrm{ and }C\sqsubseteqE
Can form a rich structure N' for (\mathcal{D},\square): if A }\squareB\in\mathcal{D}\mathrm{ are fg and A }\square
there is an embedding g:B->N with }g|A=id\mathrm{ and }g(B)\sqsubseteqN
Write down a theory T such that
```



```
(2) every sufficiently saturated model of \(T\) is rich.
\(\square\) \(C \mid \ldots B\), so \(T\) is one-based and trivial.
```


Avoiding triviality: 1-ampleness

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:
\mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E=C \coprod_{A} B$ is in \mathcal{D} and $C \sqsubseteq E$.

\square

Avoiding triviality: 1-ampleness

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:
\mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then (\mathcal{D}, \sqsubseteq) has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E=C \coprod_{A} B$ is in \mathcal{D} and $C \sqsubseteq E$.

Can form a rich structure N for (\mathcal{D}, \sqsubseteq): if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g: B \rightarrow N$ with $g \mid A=i d$ and $g(B) \sqsubseteq N$.

Write down a theory T such that

follows that T is complete and stable. Moreover if $C, B \sqsubseteq N$ then

Avoiding triviality: 1-ampleness

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:
\mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then (\mathcal{D}, \sqsubseteq) has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E=C \coprod_{A} B$ is in \mathcal{D} and $C \sqsubseteq E$.
Can form a rich structure N for (\mathcal{D}, \sqsubseteq): if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g: B \rightarrow N$ with $g \mid A=i d$ and $g(B) \sqsubseteq N$.

Write down a theory T such that
(1) $N \neq T$
(2) every sufficiently saturated model of T is rich.

Avoiding triviality: 1-ampleness

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:
\mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E=C \coprod_{A} B$ is in \mathcal{D} and $C \sqsubseteq E$.
Can form a rich structure N for (\mathcal{D}, \sqsubseteq): if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g: B \rightarrow N$ with $g \mid A=i d$ and $g(B) \sqsubseteq N$.

Write down a theory T such that
(1) $N \models T$
(2) every sufficiently saturated model of T is rich.

It follows that T is complete and stable. Moreover if $C, B \sqsubseteq N$ then $C \downarrow_{C \cap B} B$, so T is one-based and trivial.

The reduct

The following connects this with Hrushovski's original 1988 construction.

Let M be the undirected reduct of N and $T^{-}=\operatorname{Th}(M)$.
Theorem (DE; 2005): T^{-}is the theory of the (uncollapsed) Hrushovski structure with predimension $\delta(X)=2|X|-e(X)$. In particular, it is ω-stable, non-trivial, 1-ample and not 2-ample.

Question:
Can a reduct of a trivial stable structure be non-trivial and strongly minimal?

Question (Poizat)
Is a reduct of a sunerstable trivial structure necessarily trivial?

The reduct

The following connects this with Hrushovski's original 1988 construction.

Let M be the undirected reduct of N and $T^{-}=\operatorname{Th}(M)$.
Theorem (DE; 2005): T^{-}is the theory of the (uncollapsed) Hrushovski structure with predimension $\delta(X)=2|X|-e(X)$. In particular, it is ω-stable, non-trivial, 1-ample and not 2-ample.

Question:

Can a reduct of a trivial stable structure be non-trivial and strongly minimal?

Question (Poizat)
Is a reduct of a superstable trivial structure necessarily trivial?

The reduct

The following connects this with Hrushovski's original 1988 construction.

Let M be the undirected reduct of N and $T^{-}=T h(M)$.
THEOREM (DE; 2005): T^{-}is the theory of the (uncollapsed) Hrushovski structure with predimension $\delta(X)=2|X|-e(X)$. In particular, it is ω-stable, non-trivial, 1-ample and not 2-ample.

Question:

Can a reduct of a trivial stable structure be non-trivial and strongly minimal?

Question (Poizat):

Is a reduct of a superstable trivial structure necessarily trivial?

Avoiding triviality: n-ampleness

Theorem (DE, 2003)
There is a trivial stable theory with a non-trivial reduct which is n-ample for all n

Avoiding triviality: n-ampleness

Theorem (DE, 2003 ; DE, 2013)

There is a trivial stable theory with a non-trivial reduct which is n-ample for all $n \leq 3$.

Remarks:

(1) There is a gap in the original proof; the problem is in the axiomatization of the rich struture before taking the reduct.
(2) $n=2$ case is similar to the Baudisch-Pillay free pseudospace.
(3) $n=3$ is different from free 3-space.

Avoiding triviality: n-ampleness

Theorem (DE, 2003 ; DE, 2013)

There is a trivial stable theory with a non-trivial reduct which is n-ample for all $n \leq 3$.

Remarks:

(1) There is a gap in the original proof; the problem is in the axiomatization of the rich struture before taking the reduct.
(2) $n=2$ case is similar to the Baudisch-Pillay free pseudospace.
(3) $n=3$ is different from free 3 -space.

Avoiding triviality: n-ampleness

Theorem (DE, 2003 ; DE, 2013)

There is a trivial stable theory with a non-trivial reduct which is n-ample for all $n \leq 3$.

Remarks:

(1) There is a gap in the original proof; the problem is in the axiomatization of the rich struture before taking the reduct.
(2) $n=2$ case is similar to the Baudisch-Pillay free pseudospace.
(3) $n=3$ is different from free 3 -space.

$n=2$: the trivial structure

$\mathcal{E}_{0}: 3$-sorted directed graphs; at most
2 edges out of each vertex.

\mathcal{E} : those satisfying the following θ : With a_{i} of sort i,
$a_{0} \leftarrow a_{1} \rightarrow a_{2} \Rightarrow$

$$
(\exists b)\left[a_{0} \rightarrow b \rightarrow a_{2} \text { or } a_{0} \rightarrow b \leftarrow a_{2} \text { or } a_{0} \leftarrow b \leftarrow a_{2}\right] .
$$

$(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure V for $(\mathcal{E}, \sqsubseteq)$. Let U be the undirected reduct of V.

$n=2$: the trivial structure

\mathcal{E}_{0} : 3-sorted directed graphs; at most
2 edges out of each vertex.

\mathcal{E} : those satisfying the following θ : With a_{i} of sort i,
$a_{0} \leftarrow a_{1} \rightarrow a_{2} \Rightarrow$

$$
(\exists b)\left[a_{0} \rightarrow b \rightarrow a_{2} \text { or } a_{0} \rightarrow b \leftarrow a_{2} \text { or } a_{0} \leftarrow b \leftarrow a_{2}\right] .
$$

$(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so

$n=2$: the trivial structure

\mathcal{E}_{0} : 3-sorted directed graphs; at most
2 edges out of each vertex.

\mathcal{E} : those satisfying the following θ : With a_{i} of sort i,
$a_{0} \leftarrow a_{1} \rightarrow a_{2} \Rightarrow$

$$
(\exists b)\left[a_{0} \rightarrow b \rightarrow a_{2} \text { or } a_{0} \rightarrow b \leftarrow a_{2} \text { or } a_{0} \leftarrow b \leftarrow a_{2}\right] .
$$

$(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure V for $(\mathcal{E}, \sqsubseteq)$.
Let U be the undirected reduct of V.
Theorem
(1) $\operatorname{Th}(1 /)$ is stable, one-based and trivial;
(2) $\operatorname{Th}(U)$ is stable, non-trivial and 2-ample.

$n=2$: the trivial structure

\mathcal{E}_{0} : 3-sorted directed graphs; at most
2 edges out of each vertex.
\mathcal{E} : those satisfying the following θ : With a_{i} of sort i,

$$
a_{0} \leftarrow a_{1} \rightarrow a_{2} \Rightarrow
$$

$$
(\exists b)\left[a_{0} \rightarrow b \rightarrow a_{2} \text { or } a_{0} \rightarrow b \leftarrow a_{2} \text { or } a_{0} \leftarrow b \leftarrow a_{2}\right] .
$$

$(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure V for $(\mathcal{E}, \sqsubseteq)$.
Let U be the undirected reduct of V.
\square
(1) $\operatorname{Th}(V)$ is stable, one-based and trivial;
(2) $\operatorname{Th}(U)$ is stable, non-trivial and 2-ample.

$n=2:$ the trivial structure

\mathcal{E}_{0} : 3-sorted directed graphs; at most
2 edges out of each vertex.
\mathcal{E} : those satisfying the following θ : With a_{i} of sort i,
$a_{0} \leftarrow a_{1} \rightarrow a_{2} \Rightarrow$

$$
(\exists b)\left[a_{0} \rightarrow b \rightarrow a_{2} \text { or } a_{0} \rightarrow b \leftarrow a_{2} \text { or } a_{0} \leftarrow b \leftarrow a_{2}\right] .
$$

$(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure V for $(\mathcal{E}, \sqsubseteq)$.
Let U be the undirected reduct of V.
Theorem
(1) $\operatorname{Th}(V)$ is stable, one-based and trivial;
(2) $\operatorname{Th}(U)$ is stable, non-trivial and 2-ample.

Axiomatizing V

\mathcal{E} is not closed under substructures. However:
Lemma: Suppose $B \in \mathcal{E}$ and $A \subseteq B$ is closed under successors of vertices of sorts 0,2 . Then $A \in \mathcal{E}$. In particular, if $C \subseteq B$ is finite there is a finite $A \subseteq B$ with $C \subseteq A \in \mathcal{E}$ and $|A| \leq 2|C|$.

For $X \sqsubseteq A \in \mathcal{E}$ with A finite there is a formula $\sigma_{X, A}$ such that if $E \in \mathcal{E}$:
\square
for every embedding $g: X \rightarrow E$ there is an extension $f: A \rightarrow E$ such that successors of elements of $f(A \backslash X)$ are in A.

Then $\operatorname{Th}(V)$ is axiomatised by the axioms for \mathcal{E} and these $\sigma_{X, A}$.
Question: Is the undirected reduct U sunerstable?
REMARK: This is a variation on the 2003 construction; it's not clear whether that construction can be made to work.

Axiomatizing V

\mathcal{E} is not closed under substructures. However:
Lemma: Suppose $B \in \mathcal{E}$ and $A \subseteq B$ is closed under successors of vertices of sorts 0,2 . Then $A \in \mathcal{E}$. In particular, if $C \subseteq B$ is finite there is a finite $A \subseteq B$ with $C \subseteq A \in \mathcal{E}$ and $|A| \leq 2|C|$.
For $X \sqsubseteq A \in \mathcal{E}$ with A finite there is a formula $\sigma_{X, A}$ such that if $E \in \mathcal{E}$:

$$
E \models \sigma_{X, A} \Leftrightarrow
$$

for every embedding $g: X \rightarrow E$ there is an extension $f: A \rightarrow E$ such that successors of elements of $f(A \backslash X)$ are in A.

Then $\operatorname{Th}(V)$ is axiomatised by the axioms for \mathcal{E} and these $\sigma_{X, A}$.
Question: Is the undirected reduct U superstable?
Remark: This is a variation on the 2003 construction; it's not clear
whether that construction can be made to work.

Axiomatizing V

\mathcal{E} is not closed under substructures. However:
Lemma: Suppose $B \in \mathcal{E}$ and $A \subseteq B$ is closed under successors of vertices of sorts 0,2 . Then $A \in \mathcal{E}$. In particular, if $C \subseteq B$ is finite there is a finite $A \subseteq B$ with $C \subseteq A \in \mathcal{E}$ and $|A| \leq 2|C|$.

For $X \sqsubseteq A \in \mathcal{E}$ with A finite there is a formula $\sigma_{X, A}$ such that if $E \in \mathcal{E}$:
$E \models \sigma_{X, A} \Leftrightarrow$
for every embedding $g: X \rightarrow E$ there is an extension $f: A \rightarrow E$ such that successors of elements of $f(A \backslash X)$ are in A.

Then $\operatorname{Th}(V)$ is axiomatised by the axioms for \mathcal{E} and these $\sigma_{X, A}$.
QUESTION: Is the undirected reduct U superstable?
Remark: This is a variation on the 2003 construction; it's not clear whether that construction can be made to work.

Axiomatizing V

\mathcal{E} is not closed under substructures. However:
Lemma: Suppose $B \in \mathcal{E}$ and $A \subseteq B$ is closed under successors of vertices of sorts 0,2 . Then $A \in \mathcal{E}$. In particular, if $C \subseteq B$ is finite there is a finite $A \subseteq B$ with $C \subseteq A \in \mathcal{E}$ and $|A| \leq 2|C|$.

For $X \sqsubseteq A \in \mathcal{E}$ with A finite there is a formula $\sigma_{X, A}$ such that if $E \in \mathcal{E}$:
$E \models \sigma_{X, A} \Leftrightarrow$
for every embedding $g: X \rightarrow E$ there is an extension $f: A \rightarrow E$ such that successors of elements of $f(A \backslash X)$ are in A.

Then $\operatorname{Th}(V)$ is axiomatised by the axioms for \mathcal{E} and these $\sigma_{X, A}$.
Question: Is the undirected reduct U superstable?
Remark: This is a variation on the 2003 construction; it's not clear whether that construction can be made to work.

Final Remarks:

(1) Similar construction for $n>2$: the Lemma fails. There is a substitute result in case $n=3$.
(2) Open: Is there a stable T which is not trivial, n-ample for $n>3$ and which does not interpret an infinite group? (See next slide.)

Final Remarks:

(1) Similar construction for $n>2$: the Lemma fails. There is a substitute result in case $n=3$.
(2) Open: Is there a stable T which is not trivial, n-ample for $n>3$ and which does not interpret an infinite group? (See next slide.)

Postscript

After the talk, E. Bouscaren and C. Laskowski pointed out that (2) on the previous slide is not the right question. One can take the 'disjoint union' of the n-space of Tent / Baudisch et al. and Hrushovski's s.m. set: the result is not trivial (because of the s.m. set) and n-ample (because of the n-space). Perhaps the correct question is to ask for a stable n-ample T which does not interpret an infinite group and where n-ampleness is witnessed by elements whose types which are orthogonal to all trivial types. This excludes these 'disjoint union' examples, but I do not know whether the examples given for $n=2,3$ actually satisfy this condition.

