Geometric properties of forking in stable theories

David Evans

School of Mathematics, UEA, Norwich.

David Evans (UEA)

1/16

NOTATION:

L countable language;

- T complete first-order L-theory;
- \mathbb{M} monster model of T;
- a, b, c... elements or tuples from \mathbb{M} (or \mathbb{M}^{eq});
- A, B, C, \ldots small subsets of \mathbb{M} (or \mathbb{M}^{eq}).

Assume *T* is stable: there exists $\lambda \ge \aleph_0$ such that $|S_1(A)| \le \lambda$ when $|A| \le \lambda$.

Write $c extstyle _A B$ to mean: Suppose $\phi(x, y) \in L(A)$ and $\phi(x, b) \in \text{tp}(c/A \cup B)$. Suppose $(b_i : i < \omega)$ is an infinite *A*-indiscernible sequence of tp(b/A). Then $\bigwedge_i \phi(x, b_i)$ is consistent.

Say that $tp(c/A \cup B)$ does not fork over *A*, or *c* is independent from *B* over *A*.

REMARK: This is really non-dividing....

<ロ> <問> <問> < 回> < 回> 、

NOTATION:

L countable language;

T complete first-order L-theory;

 \mathbb{M} monster model of T;

 $a, b, c \dots$ elements or tuples from \mathbb{M} (or \mathbb{M}^{eq});

 A, B, C, \ldots small subsets of \mathbb{M} (or \mathbb{M}^{eq}).

Assume *T* is stable: there exists $\lambda \ge \aleph_0$ such that $|S_1(A)| \le \lambda$ when $|A| \le \lambda$.

Write $c extstyle _A B$ to mean: Suppose $\phi(x, y) \in L(A)$ and $\phi(x, b) \in \operatorname{tp}(c/A \cup B)$. Suppose $(b_i : i < \omega)$ is an infinite A-indiscernible sequence of $\operatorname{tp}(b/A)$. Then $\bigwedge_i \phi(x, b_i)$ is consistent.

Say that $tp(c/A \cup B)$ does not fork over *A*, or *c* is independent from *B* over *A*.

REMARK: This is really non-dividing....

ヘロト ヘアト ヘビト ヘビト

NOTATION:

L countable language;

T complete first-order L-theory;

 \mathbb{M} monster model of T;

a, b, c... elements or tuples from \mathbb{M} (or \mathbb{M}^{eq});

 A, B, C, \ldots small subsets of \mathbb{M} (or \mathbb{M}^{eq}).

Assume *T* is stable: there exists $\lambda \ge \aleph_0$ such that $|S_1(A)| \le \lambda$ when $|A| \le \lambda$.

Write c extstyle A b to mean: Suppose $\phi(x, y) \in L(A)$ and $\phi(x, b) \in \text{tp}(c/A \cup B)$. Suppose $(b_i : i < \omega)$ is an infinite *A*-indiscernible sequence of tp(b/A). Then $\bigwedge_i \phi(x, b_i)$ is consistent.

Say that $tp(c/A \cup B)$ does not fork over *A*, or *c* is independent from *B* over *A*.

REMARK: This is really non-dividing....

ヘロア 人間 アメヨア 人間 ア

NOTATION:

L countable language;

T complete first-order L-theory;

 \mathbb{M} monster model of T;

a, b, c... elements or tuples from \mathbb{M} (or \mathbb{M}^{eq});

 A, B, C, \ldots small subsets of \mathbb{M} (or \mathbb{M}^{eq}).

Assume *T* is stable: there exists $\lambda \ge \aleph_0$ such that $|S_1(A)| \le \lambda$ when $|A| \le \lambda$.

Write c extstyle A b to mean: Suppose $\phi(x, y) \in L(A)$ and $\phi(x, b) \in \text{tp}(c/A \cup B)$. Suppose $(b_i : i < \omega)$ is an infinite *A*-indiscernible sequence of tp(b/A). Then $\bigwedge_i \phi(x, b_i)$ is consistent.

Say that $tp(c/A \cup B)$ does not fork over *A*, or *c* is independent from *B* over *A*.

REMARK: This is really non-dividing... .

э

ヘロン 人間 とくほ とくほう

Examples:

(1) Let $T = ACF_{\rho}$. Then $c \bigsqcup_{A} B \Leftrightarrow \text{tr.deg}(c/A \cup B) = \text{tr.deg}(c/A)$.

(2) Let $T_{V(K)}$ be the theory of (infinite) vector spaces over a field *K*. This is stable and for subspaces *C*, *B* of \mathbb{M} we have $C \bigcup_{C \cap B} B$.

(3) L: 2-ary relation symbol R T_D : directed graphs; each vertex has one directed edge going out, infinitely many coming in; no (undirected) cycles. T_D is complete and stable. Write $A \subseteq \mathbb{M}$ to mean: if $a \in A$ and $a \rightarrow b$ then $b \in A$. For $C, B \subseteq \mathbb{M}$ we have: $C \coprod_{COB} B$.

く 同 ト く ヨ ト く ヨ ト -

Examples:

(1) Let $T = ACF_{p}$. Then $c \bigcup_{A} B \Leftrightarrow \text{tr.deg}(c/A \cup B) = \text{tr.deg}(c/A)$.

(2) Let $T_{V(K)}$ be the theory of (infinite) vector spaces over a field *K*. This is stable and for subspaces *C*, *B* of \mathbb{M} we have $C \bigcup_{C \cap B} B$.

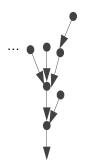
(3) L: 2-ary relation symbol R T_D : directed graphs; each vertex has one directed edge going out, infinitely many coming in; no (undirected) cycles. T_D is complete and stable. Write $A \subseteq \mathbb{M}$ to mean: if $a \in A$ and $a \rightarrow b$ then $b \in A$. For $C, B \subseteq \mathbb{M}$ we have: $C \coprod_{COB} B$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Examples:

(1) Let $T = ACF_p$. Then $c \bigsqcup_A B \Leftrightarrow \text{tr.deg}(c/A \cup B) = \text{tr.deg}(c/A)$.

- (2) Let $T_{V(K)}$ be the theory of (infinite) vector spaces over a field *K*. This is stable and for subspaces *C*, *B* of \mathbb{M} we have $C \bigcup_{C \cap B} B$.
- (3) *L*: 2-ary relation symbol *R* T_D : directed graphs; each vertex has one directed edge going out, infinitely many coming in; no (undirected) cycles. T_D is complete and stable. Write $A \sqsubseteq \mathbb{M}$ to mean: if $a \in A$ and $a \rightarrow b$ then $b \in A$. For $C, B \sqsubseteq \mathbb{M}$ we have: $C \bigcup_{C \cap B} B$.



Forking independence

THEOREM. (Shelah) The following properties hold for stable T:

(0) if $g \in \operatorname{Aut}(\mathbb{M})$: $c \bigsqcup_A B \Leftrightarrow gc \bigsqcup_{gA} gB$; (1) for $A \subseteq B \subseteq C$: $c \bigsqcup_A C \Leftrightarrow c \bigsqcup_A B$ and $c \bigsqcup_B C$;

(2)
$$c \bigsqcup_A b \Leftrightarrow b \bigsqcup_A c;$$

- (3) if $c \not\perp_A B$ there is a finite $B_0 \subseteq B$ with $c \not\perp_A B_0$;
- (4) there is a countable $A_0 \subseteq A$ with $c \bigcup_{A_0} A$;
- (5) given *c* and $A \subseteq B$ there is $c' \models \operatorname{tp}(c/A)$ with $c' \bigsqcup_A B$;
- (6) $c \bigsqcup_A c \Leftrightarrow c \in \operatorname{acl}(A);$
- (7) given *c* and $A \subseteq B$ there are $\leq 2^{\aleph_0}$ possibilities for $\operatorname{tp}(c'/B)$ with $c' \models \operatorname{tp}(c/A)$ and $c' \bigcup_A B$.

These properties characterise stability and \bigcup .

This extends to \mathbb{M}^{eq} and we have:

(7') If A is algebraically closed in \mathbb{M}^{eq} and $B \supseteq A$ then $\operatorname{tp}(c/A)$ has a unique non-forking extension to a type over B.

Properties that mean that \bigcup is 'uncomplicated':

DEFINITION:

- (1) *T* is one-based if whenever $C, B \subseteq \mathbb{M}^{eq}$ are algebraically closed (in \mathbb{M}^{eq}) then $C \bigcup_{C \cap B} B$.
- (2) *T* is trivial if whenever $a \perp_A b$ and $c \not\perp_A a, b$, then $c \not\perp_A a$ or $c \not\perp_A b$.

EXAMPLES:

- *ACF_p* is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent *a*, *b*, then $a + b \not\perp a$, *b* but $a + b \perp a$ and $a + b \perp b$.
- T_D is one-based and trivial.

・ロト ・四ト ・ヨト ・ヨト

Properties that mean that \bigcup is 'uncomplicated':

DEFINITION:

- (1) *T* is one-based if whenever $C, B \subseteq \mathbb{M}^{eq}$ are algebraically closed (in \mathbb{M}^{eq}) then $C \bigcup_{C \cap B} B$.
- (2) *T* is trivial if whenever $a \bigsqcup_A b$ and $c \measuredangle_A a, b$, then $c \measuredangle_A a$ or $c \measuredangle_A b$.

EXAMPLES:

- *ACF_p* is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent *a*, *b*, then $a + b \not\perp a$, *b* but $a + b \perp a$ and $a + b \perp b$.
- T_D is one-based and trivial.

Properties that mean that \bigcup is 'uncomplicated':

DEFINITION:

- (1) *T* is one-based if whenever $C, B \subseteq \mathbb{M}^{eq}$ are algebraically closed (in \mathbb{M}^{eq}) then $C \bigcup_{C \cap B} B$.
- (2) *T* is trivial if whenever $a \bigsqcup_A b$ and $c \measuredangle_A a, b$, then $c \measuredangle_A a$ or $c \measuredangle_A b$.

EXAMPLES:

- *ACF_p* is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent a, b, then $a + b \not\perp a, b$ but $a + b \perp a$ and $a + b \perp b$.
- T_D is one-based and trivial.

Properties that mean that \bigcup is 'uncomplicated':

DEFINITION:

- (1) *T* is one-based if whenever $C, B \subseteq \mathbb{M}^{eq}$ are algebraically closed (in \mathbb{M}^{eq}) then $C \bigcup_{C \cap B} B$.
- (2) *T* is trivial if whenever $a \bigsqcup_A b$ and $c \measuredangle_A a, b$, then $c \measuredangle_A a$ or $c \measuredangle_A b$.

EXAMPLES:

- *ACF_p* is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent a, b, then $a + b \not\perp a, b$ but $a + b \perp a$ and $a + b \perp b$.

• T_D is one-based and trivial.

Properties that mean that \bigcup is 'uncomplicated':

DEFINITION:

- (1) *T* is one-based if whenever $C, B \subseteq \mathbb{M}^{eq}$ are algebraically closed (in \mathbb{M}^{eq}) then $C \bigcup_{C \cap B} B$.
- (2) *T* is trivial if whenever $a \bigsqcup_A b$ and $c \measuredangle_A a, b$, then $c \measuredangle_A a$ or $c \measuredangle_A b$.

EXAMPLES:

- *ACF_p* is neither trivial nor one-based.
- $T_{V(K)}$ is one-based but not trivial: take linearly independent a, b, then $a + b \not\perp a, b$ but $a + b \perp a$ and $a + b \perp b$.
- T_D is one-based and trivial.

THEOREM: (Pillay, Zilber, Lachlan) T is not one-based iff there is a *complete type definable pseudoplane I* in \mathbb{M}^{eq} .

This means: I = I(x, y) is a complete type (over some parameter set) such that:

- if $\models I(a, b)$ then $a \notin acl(b)$ and $b \notin acl(a)$ (over the parameters);
- (2) if $\models I(a, b_1) \land I(a, b_2) \land (b_1 \neq b_2)$ then $a \in acl(b_1, b_2)$;
- if \models *I*(*a*₁, *b*) \land *I*(*a*₂, *b*) \land (*a*₁ \neq *a*₂) then *b* \in acl(*a*₁, *a*₂);

IDEA: If $\models I(a, b)$ think of *a* as a point and *b* as a line (or curve) and *I* as incidence. The axioms have a geometric translation.

EXAMPLE: (Free pseudoplane) Let T_U be the undirected version of T_D and $I = tp(a, b/\emptyset)$ where (a, b) is an edge. This is a type definable pseudoplane, so T_U is not one-based. (It is trivial.)

REMARK: (Hodges) Note that we can view T_U as a reduct of T_D : pass to the definable relation $R(x, y) \lor R(y, x)$. So a reduct of a one-based theory is not necessarily one-based.

THEOREM: (Pillay, Zilber, Lachlan) T is not one-based iff there is a *complete type definable pseudoplane I* in \mathbb{M}^{eq} .

This means: I = I(x, y) is a complete type (over some parameter set) such that:

- if $\models I(a, b)$ then $a \notin acl(b)$ and $b \notin acl(a)$ (over the parameters);
- (2) if $\models I(a, b_1) \land I(a, b_2) \land (b_1 \neq b_2)$ then $a \in acl(b_1, b_2)$;
- (a) if $\models I(a_1, b) \land I(a_2, b) \land (a_1 \neq a_2)$ then $b \in acl(a_1, a_2)$;

IDEA: If $\models I(a, b)$ think of *a* as a point and *b* as a line (or curve) and *I* as incidence. The axioms have a geometric translation.

EXAMPLE: (Free pseudoplane) Let T_U be the undirected version of T_D and $I = tp(a, b/\emptyset)$ where (a, b) is an edge. This is a type definable pseudoplane, so T_U is not one-based. (It is trivial.)

REMARK: (Hodges) Note that we can view T_U as a reduct of T_D : pass to the definable relation $R(x, y) \lor R(y, x)$. So a reduct of a one-based theory is not necessarily one-based.

THEOREM: (Pillay, Zilber, Lachlan) T is not one-based iff there is a *complete type definable pseudoplane I* in \mathbb{M}^{eq} .

This means: I = I(x, y) is a complete type (over some parameter set) such that:

- if $\models I(a, b)$ then $a \notin acl(b)$ and $b \notin acl(a)$ (over the parameters);
- (2) if $\models I(a, b_1) \land I(a, b_2) \land (b_1 \neq b_2)$ then $a \in acl(b_1, b_2)$;
- (a) if $\models I(a_1, b) \land I(a_2, b) \land (a_1 \neq a_2)$ then $b \in acl(a_1, a_2)$;

IDEA: If $\models I(a, b)$ think of *a* as a point and *b* as a line (or curve) and *I* as incidence. The axioms have a geometric translation.

EXAMPLE: (Free pseudoplane) Let T_U be the undirected version of T_D and $I = tp(a, b/\emptyset)$ where (a, b) is an edge. This is a type definable pseudoplane, so T_U is not one-based. (It is trivial.)

REMARK: (Hodges) Note that we can view T_U as a reduct of T_D : pass to the definable relation $R(x, y) \lor R(y, x)$. So a reduct of a one-based theory is not necessarily one-based.

THEOREM: (Pillay, Zilber, Lachlan) T is not one-based iff there is a *complete type definable pseudoplane I* in \mathbb{M}^{eq} .

This means: I = I(x, y) is a complete type (over some parameter set) such that:

- if $\models I(a, b)$ then $a \notin acl(b)$ and $b \notin acl(a)$ (over the parameters);
- (2) if $\models I(a, b_1) \land I(a, b_2) \land (b_1 \neq b_2)$ then $a \in acl(b_1, b_2)$;
- (a) if $\models I(a_1, b) \land I(a_2, b) \land (a_1 \neq a_2)$ then $b \in acl(a_1, a_2)$;

IDEA: If $\models I(a, b)$ think of *a* as a point and *b* as a line (or curve) and *I* as incidence. The axioms have a geometric translation.

EXAMPLE: (Free pseudoplane) Let T_U be the undirected version of T_D and $I = tp(a, b/\emptyset)$ where (a, b) is an edge. This is a type definable pseudoplane, so T_U is not one-based. (It is trivial.)

REMARK: (Hodges) Note that we can view T_U as a reduct of T_D : pass to the definable relation $R(x, y) \lor R(y, x)$. So a reduct of a one-based theory is not necessarily one-based.

Ampleness

The following is due to A. Pillay (+ modification by H. Nübling):

DEFINITION: Suppose $n \ge 1$ is a natural number. Say that *T* is *n*-ample if there exist *A* and c_0, \ldots, c_n in \mathbb{M} such that:

(i)
$$c_0 \not\perp_A c_n$$
;
(ii) $c_0, \dots, c_{i-1} \perp_{A,c_i} c_{i+1}, \dots, c_n$ for $1 \le i < n$;
(iii) $\operatorname{acl}(A, c_0) \cap \operatorname{acl}(A, c_1) = \operatorname{acl}(A)$;
(iv) $\operatorname{acl}(A, c_0, \dots, c_{i-1}, c_i) \cap \operatorname{acl}(A, c_0, \dots, c_{i-1}, c_{i+1}) = \operatorname{acl}(A, c_0 \dots, c_{i-1})$
for $1 \le i < n$,
where act is in \mathbb{M}^{eq} .

REMARKS:

- 1 not 1-ample \equiv one-based.
- 2 not 2-ample \equiv CM-trivial.
- (n+1)-ample $\Rightarrow n$ -ample.

Ampleness

The following is due to A. Pillay (+ modification by H. Nübling):

DEFINITION: Suppose $n \ge 1$ is a natural number. Say that *T* is *n*-ample if there exist *A* and c_0, \ldots, c_n in \mathbb{M} such that:

(i)
$$c_0 \not\perp_A c_n$$
;
(ii) $c_0, \dots, c_{i-1} \perp_{A,c_i} c_{i+1}, \dots, c_n$ for $1 \le i < n$;
(iii) $\operatorname{acl}(A, c_0) \cap \operatorname{acl}(A, c_1) = \operatorname{acl}(A)$;
(iv) $\operatorname{acl}(A, c_0, \dots, c_{i-1}, c_i) \cap \operatorname{acl}(A, c_0, \dots, c_{i-1}, c_{i+1}) = \operatorname{acl}(A, c_0, \dots, c_{i-1})$
for $1 \le i < n$,

where acl is in \mathbb{M}^{eq} .

REMARKS:

- **1** not 1-ample \equiv one-based.
- 2 not 2-ample \equiv CM-trivial.
- $(n+1) \text{-ample} \Rightarrow n \text{-ample}.$

Big Question

Is there a strongly minimal T which does not interpret an infinite field and which is 2-ample?

REMARKS:

- Hrushovski's strongly minimal sets (not involving fields) are 1-ample but not 2-ample.
- Pillay (2000): an infinite stable field is *n*-ample for all *n*.

Big Question

Is there a strongly minimal T which does not interpret an infinite field and which is 2-ample?

Remarks:

- Hrushovski's strongly minimal sets (not involving fields) are 1-ample but not 2-ample.
- Pillay (2000): an infinite stable field is *n*-ample for all *n*.

Big Question

Is there a strongly minimal T which does not interpret an infinite field and which is 2-ample?

Remarks:

- Hrushovski's strongly minimal sets (not involving fields) are 1-ample but not 2-ample.
- Pillay (2000): an infinite stable field is *n*-ample for all *n*.

Big Question

Is there a strongly minimal T which does not interpret an infinite field and which is 2-ample?

Remarks:

- Hrushovski's strongly minimal sets (not involving fields) are 1-ample but not 2-ample.
- Pillay (2000): an infinite stable field is *n*-ample for all *n*.

Examples

- Free groups: Z. Sela proved that any two finitely generated, non-abelian free groups are elementarily equivalent, and their theory *T*_{free} is stable.
 THEOREM: (A. Ould Houcine, K. Tent; 2012) *T*_{free} is *n*-ample ∀*n*.
 Proof uses Sela's work plus work of C. Perin and R. Sklinos.
- Free pseudospace: A. Baudisch and A. Pillay (2000) define a free psudospace: a 3-sorted structure consisting of points, lines, planes. They show that its theory *T_{BP}* is ω-stable, trivial and 2-ample.
- Free *n*-space: Two recent papers (K. Tent; 2012) and (A. Baudisch, A. Martin-Pizarro, M. Ziegler; 2012) generalize the construction of a free pseudspace to construct a free *n*-space: an (*n* + 1)-sorted structure consisting of points, lines, planes, They show that its theory is ω-stable, trivial, *n*-ample and not (*n* + 1)-ample (so the ampleness hierarchy is strict).

э

・ロト ・四ト ・ヨト ・ヨト

Examples

- Free groups: Z. Sela proved that any two finitely generated, non-abelian free groups are elementarily equivalent, and their theory *T*_{free} is stable.
 THEOREM: (A. Ould Houcine, K. Tent; 2012) *T*_{free} is *n*-ample ∀*n*.
 Proof uses Sela's work plus work of C. Perin and R. Sklinos.
- Free pseudospace: A. Baudisch and A. Pillay (2000) define a free psudospace: a 3-sorted structure consisting of points, lines, planes. They show that its theory *T_{BP}* is ω-stable, trivial and 2-ample.
- Free *n*-space: Two recent papers (K. Tent; 2012) and (A. Baudisch, A. Martin-Pizarro, M. Ziegler; 2012) generalize the construction of a free pseudspace to construct a free *n*-space: an (*n* + 1)-sorted structure consisting of points, lines, planes, They show that its theory is ω-stable, trivial, *n*-ample and not (*n* + 1)-ample (so the ampleness hierarchy is strict).

э

イロト 不得 トイヨト イヨト

Examples

- Free groups: Z. Sela proved that any two finitely generated, non-abelian free groups are elementarily equivalent, and their theory *T*_{free} is stable.
 THEOREM: (A. Ould Houcine, K. Tent; 2012) *T*_{free} is *n*-ample ∀*n*.
 Proof uses Sela's work plus work of C. Perin and R. Sklinos.
- Free pseudospace: A. Baudisch and A. Pillay (2000) define a free psudospace: a 3-sorted structure consisting of points, lines, planes. They show that its theory *T_{BP}* is ω-stable, trivial and 2-ample.

э

イロト 不得 トイヨト イヨト

The Hrushovski construction gives non-trivial, 1-ample structures.

Obtain this in a way which relates it to the free pseudoplane.

Define:

 \mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E = C \coprod_A B$ is in \mathcal{D} and $C \sqsubseteq E$.

Can form a rich structure *N* for $(\mathcal{D}, \sqsubseteq)$: if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g : B \to N$ with g|A = id and $g(B) \sqsubseteq N$.

Write down a theory *T* such that

 $\mathbb{D} \ N \models T$

every sufficiently saturated model of T is rich.

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:

 \mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E = C \coprod_A B$ is in \mathcal{D} and $C \sqsubseteq E$.

Can form a rich structure *N* for $(\mathcal{D}, \sqsubseteq)$: if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g : B \to N$ with g|A = id and $g(B) \sqsubseteq N$.

Write down a theory *T* such that

 $\mathbb{D} \ N \models T$

 \bigcirc every sufficiently saturated model of T is rich.

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:

 \mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E = C \coprod_A B$ is in \mathcal{D} and $C \sqsubseteq E$.

Can form a rich structure *N* for $(\mathcal{D}, \sqsubseteq)$: if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g : B \to N$ with g | A = id and $g(B) \sqsubseteq N$.

Write down a theory *T* such that

 $\mathbb{D} \ N \models T$

2 every sufficiently saturated model of *T* is rich.

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:

 \mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E = C \coprod_A B$ is in \mathcal{D} and $C \sqsubseteq E$.

Can form a rich structure *N* for $(\mathcal{D}, \sqsubseteq)$: if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g : B \to N$ with g|A = id and $g(B) \sqsubseteq N$.

Write down a theory *T* such that

 $D N \models T$

every sufficiently saturated model of T is rich.

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:

 \mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E = C \coprod_A B$ is in \mathcal{D} and $C \sqsubseteq E$.

Can form a rich structure *N* for $(\mathcal{D}, \sqsubseteq)$: if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g : B \to N$ with g | A = id and $g(B) \sqsubseteq N$.

Write down a theory T such that

2 every sufficiently saturated model of *T* is rich.

The Hrushovski construction gives non-trivial, 1-ample structures. Obtain this in a way which relates it to the free pseudoplane.

Define:

 \mathcal{D} : directed graphs with at most 2 directed edges out of each vertex; $A \sqsubseteq B$: if $a \rightarrow b$ and $a \in A$ then $b \in A$.

Then $(\mathcal{D}, \sqsubseteq)$ has the full amalgamation property: if $A \sqsubseteq B \in \mathcal{D}$ and $A \subseteq C \in \mathcal{D}$ then the free amalgam $E = C \coprod_A B$ is in \mathcal{D} and $C \sqsubseteq E$.

Can form a rich structure *N* for $(\mathcal{D}, \sqsubseteq)$: if $A \sqsubseteq B \in \mathcal{D}$ are fg and $A \sqsubseteq N$ there is an embedding $g : B \to N$ with g | A = id and $g(B) \sqsubseteq N$.

Write down a theory T such that

 $\bigcirc N \models T$

2 every sufficiently saturated model of *T* is rich.

The reduct

The following connects this with Hrushovski's original 1988 construction.

Let *M* be the undirected reduct of *N* and $T^- = Th(M)$.

THEOREM (DE; 2005): T^- is the theory of the (uncollapsed) Hrushovski structure with predimension $\delta(X) = 2|X| - e(X)$. In particular, it is ω -stable, non-trivial, 1-ample and not 2-ample.

Question:

Can a reduct of a trivial stable structure be non-trivial and strongly minimal?

Question (Poizat):

Is a reduct of a superstable trivial structure necessarily trivial?

・ロト ・ 四ト ・ ヨト ・ ヨト

The reduct

The following connects this with Hrushovski's original 1988 construction.

Let *M* be the undirected reduct of *N* and $T^- = Th(M)$.

THEOREM (DE; 2005): T^- is the theory of the (uncollapsed) Hrushovski structure with predimension $\delta(X) = 2|X| - e(X)$. In particular, it is ω -stable, non-trivial, 1-ample and not 2-ample.

Question:

Can a reduct of a trivial stable structure be non-trivial and strongly minimal?

Question (Poizat):

Is a reduct of a superstable trivial structure necessarily trivial?

The reduct

The following connects this with Hrushovski's original 1988 construction.

Let *M* be the undirected reduct of *N* and $T^- = Th(M)$.

THEOREM (DE; 2005): T^- is the theory of the (uncollapsed) Hrushovski structure with predimension $\delta(X) = 2|X| - e(X)$. In particular, it is ω -stable, non-trivial, 1-ample and not 2-ample.

Question:

Can a reduct of a trivial stable structure be non-trivial and strongly minimal?

Question (Poizat):

Is a reduct of a superstable trivial structure necessarily trivial?

Theorem (DE, 2003)

There is a trivial stable theory with a non-trivial reduct which is n-ample for all n

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (DE, 2003 ; DE, 2013)

There is a trivial stable theory with a non-trivial reduct which is *n*-ample for all $n \leq 3$.

REMARKS:

- There is a gap in the original proof; the problem is in the axiomatization of the rich struture before taking the reduct.
- 2 n = 2 case is similar to the Baudisch-Pillay free pseudospace.
- 0 n = 3 is different from free 3-space.

< 回 > < 三 > < 三 >

Theorem (DE, 2003 ; DE, 2013)

There is a trivial stable theory with a non-trivial reduct which is *n*-ample for all $n \leq 3$.

REMARKS:

- There is a gap in the original proof; the problem is in the axiomatization of the rich struture before taking the reduct.
- 2 n = 2 case is similar to the Baudisch-Pillay free pseudospace.
- If n = 3 is different from free 3-space.

< 回 > < 回 > < 回 >

Theorem (DE, 2003 ; DE, 2013)

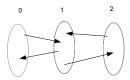
There is a trivial stable theory with a non-trivial reduct which is *n*-ample for all $n \leq 3$.

REMARKS:

- There is a gap in the original proof; the problem is in the axiomatization of the rich struture before taking the reduct.
- 2 n = 2 case is similar to the Baudisch-Pillay free pseudospace.
- 3 n = 3 is different from free 3-space.

A B A B A B A

 \mathcal{E}_0 : 3-sorted directed graphs; at most 2 edges out of each vertex.



 \mathcal{E} : those satisfying the following θ : With a_i of sort i,

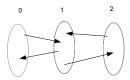
$$a_0 \leftarrow a_1 \rightarrow a_2 \Rightarrow$$

 $(\exists b)[a_0 \rightarrow b \rightarrow a_2 \text{ or } a_0 \rightarrow b \leftarrow a_2 \text{ or } a_0 \leftarrow b \leftarrow a_2].$

 $(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure *V* for $(\mathcal{E}, \sqsubseteq)$. Let *U* be the undirected reduct of *V*.

- **T**h(V) is stable, one-based and trivial;
- 2 Th(U) is stable, non-trivial and 2-ample.

 \mathcal{E}_0 : 3-sorted directed graphs; at most 2 edges out of each vertex.



 \mathcal{E} : those satisfying the following θ : With a_i of sort i,

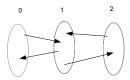
$$a_0 \leftarrow a_1 \rightarrow a_2 \Rightarrow$$

 $(\exists b)[a_0 \rightarrow b \rightarrow a_2 \text{ or } a_0 \rightarrow b \leftarrow a_2 \text{ or } a_0 \leftarrow b \leftarrow a_2].$

 $(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure *V* for $(\mathcal{E}, \sqsubseteq)$. Let *U* be the undirected reduct of *V*.

- **T**h(V) is stable, one-based and trivial;
- 2) Th(U) is stable, non-trivial and 2-ample.

 \mathcal{E}_0 : 3-sorted directed graphs; at most 2 edges out of each vertex.



 \mathcal{E} : those satisfying the following θ : With a_i of sort i,

$$a_0 \leftarrow a_1 \rightarrow a_2 \Rightarrow$$

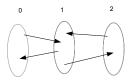
 $(\exists b)[a_0 \rightarrow b \rightarrow a_2 \text{ or } a_0 \rightarrow b \leftarrow a_2 \text{ or } a_0 \leftarrow b \leftarrow a_2].$

 $(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure *V* for $(\mathcal{E}, \sqsubseteq)$.

Let U be the undirected reduct of V.

- **1** Th(V) is stable, one-based and trivial;
- 2 Th(U) is stable, non-trivial and 2-ample.

 \mathcal{E}_0 : 3-sorted directed graphs; at most 2 edges out of each vertex.



 \mathcal{E} : those satisfying the following θ : With a_i of sort i,

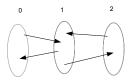
$$a_0 \leftarrow a_1 \rightarrow a_2 \Rightarrow$$

 $(\exists b)[a_0 \rightarrow b \rightarrow a_2 \text{ or } a_0 \rightarrow b \leftarrow a_2 \text{ or } a_0 \leftarrow b \leftarrow a_2].$

 $(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure *V* for $(\mathcal{E}, \sqsubseteq)$. Let *U* be the undirected reduct of *V*.

- **1** Th(V) is stable, one-based and trivial;
- 2 Th(U) is stable, non-trivial and 2-ample.

 \mathcal{E}_0 : 3-sorted directed graphs; at most 2 edges out of each vertex.



 \mathcal{E} : those satisfying the following θ : With a_i of sort i,

$$a_0 \leftarrow a_1 \rightarrow a_2 \Rightarrow$$

 $(\exists b)[a_0 \rightarrow b \rightarrow a_2 \text{ or } a_0 \rightarrow b \leftarrow a_2 \text{ or } a_0 \leftarrow b \leftarrow a_2].$

 $(\mathcal{E}, \sqsubseteq)$ has the full Amalgamation Property and so there is a rich structure *V* for $(\mathcal{E}, \sqsubseteq)$. Let *U* be the undirected reduct of *V*.

- Th(V) is stable, one-based and trivial;
- 2 Th(U) is stable, non-trivial and 2-ample.

 $\ensuremath{\mathcal{E}}$ is not closed under substructures. However:

LEMMA: Suppose $B \in \mathcal{E}$ and $A \subseteq B$ is closed under successors of vertices of sorts 0,2. Then $A \in \mathcal{E}$. In particular, if $C \subseteq B$ is finite there is a finite $A \subseteq B$ with $C \subseteq A \in \mathcal{E}$ and $|A| \leq 2|C|$.

For $X \sqsubseteq A \in \mathcal{E}$ with A finite there is a formula $\sigma_{X,A}$ such that if $E \in \mathcal{E}$:

 $E \models \sigma_{X,A} \Leftrightarrow$ for every embedding $g : X \to E$ there is an extension $f : A \to E$ such that successors of elements of $f(A \setminus X)$ are in A.

Then Th(V) is axiomatised by the axioms for \mathcal{E} and these $\sigma_{X,A}$.

QUESTION: Is the undirected reduct U superstable?

REMARK: This is a variation on the 2003 construction; it's not clear whether that construction can be made to work.

(日)

 $\ensuremath{\mathcal{E}}$ is not closed under substructures. However:

LEMMA: Suppose $B \in \mathcal{E}$ and $A \subseteq B$ is closed under successors of vertices of sorts 0,2. Then $A \in \mathcal{E}$. In particular, if $C \subseteq B$ is finite there is a finite $A \subseteq B$ with $C \subseteq A \in \mathcal{E}$ and $|A| \leq 2|C|$.

For $X \sqsubseteq A \in \mathcal{E}$ with A finite there is a formula $\sigma_{X,A}$ such that if $E \in \mathcal{E}$:

 $E \models \sigma_{X,A} \Leftrightarrow$ for every embedding $g : X \to E$ there is an extension $f : A \to E$ such that successors of elements of $f(A \setminus X)$ are in A.

Then Th(V) is axiomatised by the axioms for \mathcal{E} and these $\sigma_{X,A}$.

QUESTION: Is the undirected reduct U superstable?

REMARK: This is a variation on the 2003 construction; it's not clear whether that construction can be made to work.

< 日 > < 同 > < 回 > < 回 > < 回 > <

 $\ensuremath{\mathcal{E}}$ is not closed under substructures. However:

LEMMA: Suppose $B \in \mathcal{E}$ and $A \subseteq B$ is closed under successors of vertices of sorts 0,2. Then $A \in \mathcal{E}$. In particular, if $C \subseteq B$ is finite there is a finite $A \subseteq B$ with $C \subseteq A \in \mathcal{E}$ and $|A| \leq 2|C|$.

For $X \sqsubseteq A \in \mathcal{E}$ with A finite there is a formula $\sigma_{X,A}$ such that if $E \in \mathcal{E}$:

 $E \models \sigma_{X,A} \Leftrightarrow$ for every embedding $g : X \to E$ there is an extension $f : A \to E$ such that successors of elements of $f(A \setminus X)$ are in A.

Then *Th*(*V*) is axiomatised by the axioms for \mathcal{E} and these $\sigma_{X,A}$.

QUESTION: Is the undirected reduct U superstable?

REMARK: This is a variation on the 2003 construction; it's not clear whether that construction can be made to work.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 $\ensuremath{\mathcal{E}}$ is not closed under substructures. However:

LEMMA: Suppose $B \in \mathcal{E}$ and $A \subseteq B$ is closed under successors of vertices of sorts 0,2. Then $A \in \mathcal{E}$. In particular, if $C \subseteq B$ is finite there is a finite $A \subseteq B$ with $C \subseteq A \in \mathcal{E}$ and $|A| \leq 2|C|$.

For $X \sqsubseteq A \in \mathcal{E}$ with A finite there is a formula $\sigma_{X,A}$ such that if $E \in \mathcal{E}$:

 $E \models \sigma_{X,A} \Leftrightarrow$ for every embedding $g : X \to E$ there is an extension $f : A \to E$ such that successors of elements of $f(A \setminus X)$ are in A.

Then *Th*(*V*) is axiomatised by the axioms for \mathcal{E} and these $\sigma_{X,A}$.

QUESTION: Is the undirected reduct U superstable?

REMARK: This is a variation on the 2003 construction; it's not clear whether that construction can be made to work.

3

ヘロン 人間 とくほ とくほう

Final Remarks:

- Similar construction for n > 2: the Lemma fails. There is a substitute result in case n = 3.
- Open: Is there a stable T which is not trivial, n-ample for n > 3 and which does not interpret an infinite group? (See next slide.)

周 ト イ ヨ ト イ ヨ ト

Final Remarks:

- Similar construction for n > 2: the Lemma fails. There is a substitute result in case n = 3.
- ② Open: Is there a stable T which is not trivial, *n*-ample for n > 3 and which does not interpret an infinite group? (See next slide.)

A B A A B A

Postscript

After the talk, E. Bouscaren and C. Laskowski pointed out that (2) on the previous slide is not the right question. One can take the 'disjoint union' of the *n*-space of Tent / Baudisch et al. and Hrushovski's s.m. set: the result is not trivial (because of the s.m. set) and *n*-ample (because of the *n*-space). Perhaps the correct question is to ask for a stable *n*-ample *T* which does not interpret an infinite group and where *n*-ampleness is witnessed by elements whose types which are orthogonal to all trivial types. This excludes these 'disjoint union' examples, but I do not know whether the examples given for n = 2, 3actually satisfy this condition.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <