CONSTRUCTING CONTINUUM MANY COUNTABLE, PRIMITIVE, UNBALANCED DIGRAPHS

JOSEPHINE EMMS AND DAVID M. EVANS

Abstract

We construct continuum many non-isomorphic countable digraphs which are highly arc-transitive, have finite out-valency and infinite in-valency, and whose automorphism groups are primitive. 2000 Mathematics Subject Classification: 20B07, 20B15, 03C50, 05C20.

1. Introduction and Notation

By an unbalanced digraph we mean a directed graph in which vertices have finite out-valency and infinite in-valency. A digraph is primitive if its automorphism group is primitive on the set of vertices, that is, the only equivalence relations on the vertex set which are preserved by the automorphism group are the trivial ones.

Primitive unbalanced digraphs were first constructed in [4], answering a question of Peter M. Neumann from [6]. The construction there gives countably many countable examples. Neumann subsequently asked (private communication) whether there are continuum many countable, primitive unbalanced digraphs. The main result of this paper (Theorem 2.14) is a positive answer to this question. We show that there are continuum many pairwise non-isomorphic highly arc transitive directed graphs in which each vertex has finite out-valency and infinite in-valency, and whose automorphism group is primitive on vertices and transitive on directed edges.

The digraphs which we construct are highly arc transitive: the automorphism groups are transitive on the set of n-arcs, for all finite n (and in fact on semi-infinite arcs). In our examples, the descendant set of a vertex is a directed binary tree. Primitive highly arc transitive digraphs with finite out-valency are analysed in detail in [1] and [2]. It is shown that the descendant set of a vertex is quite constrained in such a digraph, in particular, there are only countably many possibilities for the descendant set. Thus whilst results in [1] suggest that there may be a possibility of classifying descendant sets of vertices in highly arc transitive primitive digraphs, our results indicate that there is no possibility
of classifying the ones with a given isomorphism type of descendant set.
The methods we use follow closely those in [4]. However, we will keep this paper reasonably self-contained, and at times amplify on some of the arguments in [4].

We will use the folowing notation and terminology throughout the rest of the paper. We regard a digraph as a relational structure $\left\langle A ; R^{A}\right\rangle$ where $R^{A} \subseteq A^{2}$ is a binary relation. So A (the domain of the structure) is the set of vertices and $R^{A}(a, b)$ means that $(a, b) \in R^{A}$ and there is a directed edge from a to b. Digraphs will be loopless and without multiple edges.

Now suppose $I \subseteq \mathbb{N} \backslash\{0,1,2\}$. An L_{I}-structure $\left\langle A ; R^{A},\left\{R_{n}^{A}: n \in\right.\right.$ $I\}\rangle$ with $\operatorname{domain} A$ is a relational structure where R^{A} is as above and for $n \in I, R_{n}^{A} \subseteq A^{n}$ is an n-ary relation (so if $I=\emptyset$, then the structure is just a digraph). An L_{I}-structure $\left\langle B ; R^{B},\left\{R_{n}^{B}: n \in I\right\}\right\rangle$ is a substructure of $\left\langle A ; R^{A},\left\{R_{n}^{A}: n \in I\right\}\right\rangle$ if $B \subseteq A, R^{B}=R^{A} \cap B^{2}$ and $R_{n}^{B}=R^{A} \cap B^{n}$ for all $n \in I$. An isomorphism between $L_{I^{\prime}}$-structures is a bijection which preserves all the relations (both ways); an embedding between L_{I}-structures is an injective map $B \rightarrow A$ which gives an isomorphism between B and the substructure on its image. Henceforth we freely confuse a structure with its domain (so refer to 'the L_{I}-structure A^{\prime} rather than ' $\left\langle A ; R^{A},\left\{R_{n}^{A}: n \in I\right\}\right\rangle$ ') and drop the superscript of R^{A} if it is clear from the context. We also write R_{n} instead of R_{n}^{A} if the context is clear. Given an L_{I}-structure A we refer to $\left\langle A ; R^{A}\right\rangle$ as the underlying digraph of the structure and denote it by $\left.A\right|_{R}$.
Acknowledgements: The work of the first Author has been supported by a studentship from the EPSRC of Great Britain, and an Early Stage Researcher fellowship from the European Community as part of the Marie Curie Research Training Network MODNET.

2. The construction

For $I \subseteq \mathbb{N} \backslash\{0,1,2\}$ we will construct a countable L_{I}-structure N^{I} whose automorphism group is primitive, and whose underlying digraph $\left.N^{I}\right|_{R}$ is unbalanced. We do this in such a way that if $I \neq$ $J \subseteq \mathbb{N} \backslash\{0,1,2\}$ then the underlying digraphs $\left.N^{I}\right|_{R}$ and $\left.N^{J}\right|_{R}$ are nonisomorphic. This will establish the theorem (the automorphism group of the digraph contains the automorphism group of the L_{I}-structure, so is primitive). The construction follows [4]: we build N^{I} as the Fraïssé limit of a suitable amalgamation class $\left(\mathcal{C}_{I}, \leq^{+}\right)$.
2.1. The amalgamation classes. Denote the rooted (outward) directed binary tree by T. If A is an L_{I}-structure and $a \in A$ then the
set of descendants of a in $A, \operatorname{desc}_{A}(a)$ is the set of vertices (including a) in A that can be reached from a by an outward directed path, that is, $\left\{b: \exists a_{1}, \ldots, a_{n} \in A,\left(a, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{n}, b\right) \in R\right\}$. If X is a set of vertices in A, then write $\operatorname{desc}_{A}(X)=\bigcup\left\{\operatorname{desc}_{A}(x): x \in X\right\}$. If $X=\left\{x_{1}, \ldots, x_{n}\right\}$ write $\operatorname{desc}_{A}\left(x_{1}, \ldots, x_{n}\right)$ for $\operatorname{desc}_{A}(X)$. Say that a set V of vertices of A is finitely generated with generators a_{1}, \ldots, a_{n} if $V=\operatorname{desc}_{A}\left(a_{1}, \ldots, a_{n}\right)$. The set of ancestors of a vertex $a \in A$ is the set of vertices $\left\{b \in A: a \in \operatorname{desc}_{A}(b)\right\}$. If it is clear which structure we are working in then write $\operatorname{desc}(a)$ for $\operatorname{desc}_{A}(a)$ (in [4] the notation $a \Rightarrow$ is used for $\operatorname{desc}(a)$). We say that $d_{1}, \ldots, d_{n} \in A$ are independent (in A) if $\operatorname{desc}\left(d_{i}\right) \cap \operatorname{desc}\left(d_{j}\right)=\emptyset$ for $i \neq j$.

Definition 2.1. Let $A \subseteq B$ be L_{I}-structures. Say that A is descendant closed in B, written $A \leq B$ if for all $a \in A$, $\operatorname{desc}_{B}(a) \subseteq A$. For $A \leq B$ and A finitely generated, define $A \leq^{+} B$ to mean that for all $b \in B$, $\operatorname{desc}(b) \cap A$ is finitely generated and if $\operatorname{desc}(b) \backslash A$ is finite then $b \in A$.

Definition 2.2. Let $\left(\mathcal{C}_{I}, \leq^{+}\right)$consist of countable L_{I}-structures A such that R gives a digraph on A and the following conditions hold:
(1) for all $a \in A$ we have that $\operatorname{desc}(a)$ is isomorphic to T;
(2) for all $a \in A, \operatorname{desc}(a) \leq^{+} A$;
(3) A is finitely generated;
(4) if $a_{1}, \ldots, a_{n} \in A$ and $R_{n}^{A}\left(a_{1}, \ldots, a_{n}\right)$, then $a_{1}, \ldots a_{n}$ are independent in $A, \operatorname{desc}\left(a_{1}, \ldots, a_{n}\right) \leq^{+} A$, and a_{1}, \ldots, a_{n} have no common ancestor in A;
(5) the number of instances of the relations R_{n} on A is finite (i.e. $\bigcup_{n \in I} R_{n}^{A}$ is a finite set).
Proposition 2.3 (Hereditary Property). If $A \in \mathcal{C}_{I}$ and $B \leq A$ is a finitely generated substructure of A, then $B \in \mathcal{C}_{I}$.
Proof. This is straightforward to check.
Lemma 2.4. If $C \in \mathcal{C}_{I}$ and $A, B \leq C$ are finitely generated, then $A \cap B$ is finitely generated.

Proof. Since A, B are finitely generated and $A, B \leq C$ we can write $A=\bigcup_{1 \leq i \leq n} \operatorname{desc}_{C}\left(a_{i}\right)$ and $B=\bigcup_{1 \leq j \leq m} \operatorname{desc}_{C}\left(b_{j}\right)$ for some $n, m \in \mathbb{N}$. Then we have

$$
A \cap B=\bigcup_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}\left(\operatorname{desc}_{C}\left(a_{i}\right) \cap \operatorname{desc}_{C}\left(b_{j}\right)\right)
$$

By condition 2 of Definition 2.2 we have $\operatorname{desc}_{C}\left(a_{i}\right) \cap \operatorname{desc}_{C}\left(b_{j}\right)$ is finitely generated and so $A \cap B$ is finitely generated.

The following lemma is also found in [4] (as Lemma 2.2 (iv)) so the proof is omitted. However, note that whilst the definition of $A \leq^{+} B$ is the same, the definition of $A \leq B$ is different in this case.

Lemma 2.5 ([4], Lemma 2.2 (iv)). Let $X \subseteq Y \subseteq Z \in \mathcal{C}_{I}$. If $X \leq^{+} Y$ and $Y \leq^{+} Z$ and X, Y are finitely generated, then $X \leq^{+} Z$.

We say that an embedding $\alpha: A \rightarrow B$ between structures in \mathcal{C}_{I} is a \leq^{+}-embedding if $\alpha(A) \leq^{+} B$.

Proposition 2.6 (Amalgamation Property). Suppose $A, B_{1}, B_{2} \in \mathcal{C}_{I}$ and $\alpha_{i}: A \rightarrow B_{i}$ are \leq^{+}-embeddings. Then there is an L_{I}-structure $C \in \mathcal{C}_{I}$ and \leq^{+}-embeddings $\beta_{i}: B_{i} \rightarrow C$ such that $\beta_{1} \alpha_{1}=\beta_{2} \alpha_{2}$.

Proof. We may assume $B_{1} \cap B_{2}=A$ and α_{i} is the identity on B_{i}, so $A \leq^{+} B_{i}$ for $i=1,2$. Let C be the free amalgam $B_{1} \coprod_{A} B_{2}$. So C is the L_{I}-structure on the disjoint union $B_{1} \cup B_{2}$ over A where the only relations are those induced from B_{1} and B_{2}. We show that $C \in \mathcal{C}_{I}$ and $B_{i} \leq^{+} C$, so we can let the β_{i} be the identity maps on the respective B_{i}. Note that by construction, $B_{i} \leq C$ and C is finitely generated.
To show that $C \in \mathcal{C}_{I}$ we need to check that the five conditions in Definition 2.2 hold in C. Conditions 1, 3 and 5 are satisfied directly from the construction of C. We next show that condition 4 holds. Since C is the free amalgam of B_{1} and B_{2} over A, if $R_{n}^{C}\left(c_{1}, \ldots, c_{n}\right)$ holds then without loss of generality $c_{1}, \ldots, c_{n} \in B_{1}$. Hence, $\operatorname{desc}\left(c_{i}\right) \cap$ $\operatorname{desc}\left(c_{j}\right)=\emptyset$ for $i \neq j$ and $\operatorname{desc}\left(c_{1}, \ldots, c_{n}\right) \leq^{+} B_{1}$. Using Lemma 2.5 we find $\operatorname{desc}\left(c_{1}, \ldots, c_{n}\right) \leq^{+} C$. Finally, c_{1}, \ldots, c_{n} have no common ancestor in B_{1}, so have no common ancestor in C (otherwise they have a common ancestor in $B_{2} \backslash A$, and as C is a free amalgam this implies $c_{1}, \ldots, c_{n} \in A$, which then contradicts $\left.R_{n}^{B_{2}}\left(c_{1}, \ldots, c_{n}\right)\right)$. This gives 4 .
For condition 2, suppose $b_{1}, b_{2} \in C$. We need to show that $\operatorname{desc}\left(b_{1}\right) \cap$ $\operatorname{desc}\left(b_{2}\right)$ is finitely generated and that if $\operatorname{desc}\left(b_{2}\right) \backslash \operatorname{desc}\left(b_{1}\right)$ is finite then $b_{2} \in \operatorname{desc}\left(b_{1}\right)$. If $b_{1}, b_{2} \in B_{i}$ for some i then this is immediate as $B_{i} \leq C$ and $B_{i} \in \mathcal{C}_{I}$. So assume that $b_{i} \in B_{i}$. Then $\operatorname{desc}\left(b_{1}\right) \cap \operatorname{desc}\left(b_{2}\right)=$ $\left(\operatorname{desc}\left(b_{1}\right) \cap A\right) \cap\left(\operatorname{desc}\left(b_{2}\right) \cap A\right)$. Each of $\operatorname{desc}\left(b_{i}\right) \cap A$ is finitely generated as $A \leq^{+} B_{i}$. Thus their intersection is finitely generated, by Lemma 2.4 applied in A. As $\operatorname{desc}\left(b_{2}\right) \backslash \operatorname{desc}\left(b_{1}\right) \supseteq \operatorname{desc}\left(b_{2}\right) \backslash A$, if this is finite then $A \leq^{+} B_{2}$ implies $b_{2} \in A$, and so $b_{2} \in \operatorname{desc}\left(b_{1}\right)$ because $B_{1} \in \mathcal{C}_{I}$. This gives condition 2 , and so $C \in \mathcal{C}_{I}$.
Finally we show (without loss of generality) that $B_{1} \leq^{+} C$. As B_{1} is finitely generated and $C \in \mathcal{C}_{I}$, Lemma 2.4 shows that $B_{1} \cap \operatorname{desc}(c)$ is finitely generated for all $c \in C$. Suppose that $c \in B_{2}$ and $\operatorname{desc}(c) \backslash B_{1}$ is finite. Then as above $\operatorname{desc}(c) \backslash A$ is finite and it follows that $c \in B_{1}$.

Let $A, A^{\prime}, B, B^{\prime} \in \mathcal{C}_{I}$ and let $f: A \rightarrow B, f^{\prime}: A^{\prime} \rightarrow B^{\prime}$ be $\leq^{+}-$ embeddings. We say that f is isomorphic to f^{\prime} if there exist isomorphisms $g: A \rightarrow A^{\prime}, h: B \rightarrow B^{\prime}$ such that $f^{\prime} g=h f$.
Proposition 2.7. There are countably many isomorphism types of $\leq^{+}{ }_{-}$ embeddings in $\left(\mathcal{C}_{I}, \leq^{+}\right)$.

Proof. Because each structure in \mathcal{C}_{I} has only finitely many instances of the relations R_{n}, it is sufficient to show that there are countably many isomorphism types of \leq^{+}-embeddings between the underlying digraphs of elements of \mathcal{C}_{I}. In other words, it is sufficient to prove the Proposition in the case where $I=\emptyset$. This is done in Lemma 2.14 of [4], but we give a sketch of the argument here.

First we show by induction on $n \in \mathbb{N}$ that there are countably many isomorphism types of n-generator structures in \mathcal{C}_{\emptyset}. This is clear for $n=1$. For the inductive step, note that if $C=\operatorname{desc}\left(c_{1}, \ldots, c_{n}\right)$, then C is the free amalgam of $\operatorname{desc}\left(c_{1}, \ldots, c_{n-1}\right)$ and $\operatorname{desc}\left(c_{n}\right)$ over their intersection A, and there are only countably many possibilities for the isomorphism type of the former. Moreover, A is finitely generated and $A=\operatorname{desc}\left(a_{1}, \ldots, a_{m}\right)$ for some independent set a_{1}, \ldots, a_{m}, by definition of \mathcal{C}. There are only countably many possibilities for this independent set within $\operatorname{desc}\left(c_{1}, \ldots, c_{n-1}\right)$ and within $\operatorname{desc}\left(c_{n}\right)$, and any automorphism of it extends to an automorphism of the latter. Thus there are only countably many possibilities for the isomorphism type of C.

We now prove the stronger statement that if $C, D \in \mathcal{C}_{\emptyset}$ then there are countably many isomorphism types of \leq-embeddings $\alpha: C \rightarrow$ D. Again this is by induction on the number n of generators of C. Suppose $C=\operatorname{desc}\left(c_{1}, \ldots, c_{n}\right)$ and by induction we may assume that $\alpha \mid \operatorname{desc}\left(c_{1}, \ldots, c_{n-1}\right)$ and $\alpha\left(c_{n}\right)$ are fixed. As in [4], it then suffices to observe that as $B \in \mathcal{C}_{\emptyset}$, there is some natural number k such that any automorphism of $\operatorname{desc}\left(c_{n}\right)$ which fixes all vertices at out-distance at most k from c_{n} can be extended to an automorphism of B. For then there are only finitely many possibilities for the isomorphism type of α with the given $\alpha \mid \operatorname{desc}\left(c_{1}, \ldots, c_{n-1}\right)$ and $\alpha\left(c_{n}\right)$.

The above propositions give us that the classes $\left(\mathcal{C}_{I}, \leq^{+}\right)$defined in Definition 2.2 are amalgamation classes.

2.2. The Fraïssé limits.

Theorem 2.8. There is a countable L_{I}-structure N^{I} such that
(1) N^{I} is the union of substructures $N_{1} \subseteq N_{2} \subseteq \ldots$ such that each $N_{i} \in \mathcal{C}_{I}$ and $N_{i} \leq^{+} N_{i+1}$ for $i \in \mathbb{N}$;
(2) (Extension Property) whenever $A \leq^{+} N_{i}$ is finitely generated and $\theta: A \rightarrow B \in \mathcal{C}_{I}$ is $a \leq^{+}$-embedding, there is $s \geq i$ and a \leq^{+}-embedding $f: B \rightarrow N_{s}$ with $f(\theta(a))=a$ for all $a \in A$.
Moreover, N^{I} is determined up to isomorphism by these two properties, and is \leq^{+}-homogeneous: if $A_{1}, A_{2} \leq^{+} N_{i}$ are finitely generated and $f: A_{1} \rightarrow A_{2}$ is an isomorphism, then f can be extended to an automorphism of N^{I}.

We refer to N^{I} in the above as the Fraïssé limit of the amalgamation class $\left(\mathcal{C}_{I}, \leq^{+}\right)$. For finitely generated $A \leq N^{I}$ we write $A \leq^{+} N^{I}$ to indicate that $A \leq^{+} N_{i}$ for some i (this depends only on N^{I}).

Proof. The proof is standard, as in [3]. We construct the N_{i} inductively, taking $N_{1}=\emptyset$, for example. For the purposes of the proof it will be useful to fix a bijection $\eta: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with the property that $\eta(a, b, c) \geq a, b, c$.
Suppose that we have constructed $N_{1} \leq^{+} \ldots \leq^{+} N_{i} \in \mathcal{C}_{I}$. There are countably many finitely generated \leq^{+}-substructures of N_{i}, so we can list these as $\left(A_{j}^{i}: j \in \mathbb{N}\right)$. For each A_{j}^{i} there are countably many isomorphism types of \leq^{+}-embeddings into elements of \mathcal{C}_{I} : list these as $\theta_{j k}^{i}: A_{j}^{i} \rightarrow B_{k}$. Note that at stage i we will have done this for each N_{m} with $m \leq i$. The point is that the extension problem (as in Property 2) corresponding to $\theta_{j k}^{i}$ will be solved at stage $s=\eta(i, j, k)+1$. So let $\left(i^{\prime}, j^{\prime}, k^{\prime}\right)=\eta^{-1}(i)$. We have $\theta_{j^{\prime} k^{\prime}}^{i^{\prime}}: A_{j^{\prime}}^{i^{\prime}} \rightarrow B_{k^{\prime}}$ and $A_{j^{\prime}}^{i^{\prime}} \leq^{+} N_{i^{\prime}} \leq^{+} N_{i}$. Then use the amalgamation property of \mathcal{C}_{I} on $A_{j^{\prime}}^{i^{\prime}}, B_{k^{\prime}}$ and N_{i} to get $N_{i+1} \in \mathcal{C}_{I}$ such that $N_{i} \leq^{+} N_{i+1}$ and $B_{k^{\prime}} \leq^{+} N_{i+1}$. This completes the inductive construction of the N_{j} with properties 1 and 2.

The proof of the 'Moreover' part is a standard back-and-forth argument. Suppose $\left(\tilde{N}^{I} ; \tilde{N}_{i}\right)$ also satisfy properties 1 and 2 . Suppose $A \leq N^{I}$ and $\tilde{A} \leq^{+} \tilde{N}^{I}$ are finitely generated and $f: A \rightarrow \tilde{A}$ is an isomorphism. By countability, and by symmetry, it is enough to show that if $b \in N^{I}$ then there exist finitely generated $B \leq N^{I}$ and $\tilde{B} \leq^{+} \tilde{N}^{I}$, containing A and \tilde{A} respectively, with $b \in B$, and an isomorphism $g: B \rightarrow \tilde{B}$ extending f. Using property 1 in N^{I} we can find a finitely generated $B \leq^{+} N^{I}$ containing A and b. Using property 2 in \tilde{N}^{I}, we can extend f to a \leq^{+}-embedding of B into N^{I}.
2.3. Primitivity of $\operatorname{Aut}\left(N^{I}\right)$. We now prove some properties of the Fraïssé limit of $\left(\mathcal{C}_{I}, \leq^{+}\right)$and show that $\operatorname{Aut}\left(N^{I}\right)$ is primitive.
If $A \in \mathcal{C}_{I}$ and $X \subseteq A$, define the closure of X in A to be $c l^{A}(X)=$ $\left\{y \in A: \operatorname{desc}_{A}(y) \backslash \operatorname{desc}_{A}(X)\right.$ is finite $\}$. It is clear that if $X \subseteq Y \leq^{+} A$ then $c l^{A}(X) \subseteq Y$ and $\operatorname{desc}(X) \leq c l^{A}(X) \leq A$. The following shows that if X is finite then $c l^{A}(X)$ is the smallest \leq^{+}-subset of A which contains X.

Lemma 2.9. Suppose $A \in \mathcal{C}_{I}$ and $X \subseteq A$ is finite. Then $c l^{A}(X)$ is finitely generated and $c l^{A}(X) \leq^{+} A$.

Proof. By Lemma 2.4 we only need to prove that $c l^{A}(X)$ is finitely generated. Let $Y=\operatorname{desc}_{A}(X)$. We claim that $c l^{A}(X) \backslash Y$ is finite. If $b \in A$ then $\operatorname{desc}(b) \cap Y$ is finitely generated, equal to $\operatorname{desc}_{A}\left(c_{1}, \ldots, c_{k}\right)$, say. If $\left.c \in \operatorname{desc}_{A}(b) \cap\left(c l^{A}(X) \backslash Y\right)\right)$ then $c_{i} \in \operatorname{desc}(c)$, for some i. But there are only finitely many possibilities for such a c in $\operatorname{desc}(b)$,
as the latter is a directed, rooted tree. Thus $\left.\operatorname{desc}(b) \cap\left(c l^{A}(X) \backslash Y\right)\right)$ is finite. As A is finitely generated, we obtain the claim, and hence the Lemma.

Note that we can make the same definition for $c l_{N^{I}}(X)$ when X is a finite subset of N^{I}, and the above lemma also holds (by property 1 of N^{I}).

Lemma 2.10. The digraph $\left.N^{I}\right|_{R}$ is connected.
Proof. Let $a_{1}, a_{2} \in N^{I}$. If $\operatorname{desc}\left(a_{1}\right) \cap \operatorname{desc}\left(a_{2}\right) \neq \emptyset$ then there is an undirected path from a_{1} to a_{2} going via this intersection. So suppose a_{1}, a_{2} are independent and let $A=\operatorname{cl}\left(a_{1}, a_{2}\right)$. The structure consisting of the free amalgam of A and a binary tree T over \emptyset is in \mathcal{C}_{I} so using the extension property over A there exists $b \in N^{I}$ such that $\operatorname{desc}(b) \cup$ $A \leq^{+} N^{I}$ and $\operatorname{desc}(b) \cap A=\emptyset$. Then $\operatorname{desc}\left(a_{i}\right) \cap \operatorname{desc}(b)=\emptyset$ and $\operatorname{desc}\left(a_{i}\right) \cup \operatorname{desc}(b) \leq^{+} N^{I}$. Therefore by the extension property there exist $c_{i} \in N^{I}$ such that $a_{i}, b \in \operatorname{desc}\left(c_{i}\right)$. In particular, a_{1} and a_{2} are joined by an undirected path in $\left.N^{I}\right|_{R}$.

Proposition 2.11. The automorphism group $\operatorname{Aut}\left(N^{I}\right)$ is primitive on N^{I}.

Proof. This is similar to the proof of ([4], Theorem 2.9), though we offer a different argument in Case 3 below as the original argument appears to be somewhat inaccurate. We see that $\operatorname{Aut}\left(N^{I}\right)$ is transitive on N^{I} due to its \leq^{+}-homogeneity and by conditions 1 and 2 in Definition 2.2. Suppose $a \neq b \in N^{I}$ and consider the orbital graph G with vertex set the elements of N^{I} and edge set $E=\left\{\{f a, f b\}: f \in \operatorname{Aut}\left(N^{I}\right)\right\}$. By the criterion of D. G. Higman (from [5]) it will suffice to show that all such G are connected. As N^{I} is connected via R-edges by Lemma 2.10 , it is enough to show that if $x, y \in N^{I}$ are such that (x, y) is an R-edge of N^{I} then x and y lie in the same connected component of G. Without loss, we can assume $x=a$. Let $H_{1}=c l_{N^{I}}(a, b)$.

Case 1: Suppose $\operatorname{desc}(a) \cap \operatorname{desc}(b)=\emptyset$. Let H_{2} be a copy of H_{1} with $a^{\prime}, b^{\prime} \in H_{2}$ corresponding to $a, b \in H_{1}$. Recalling that y is an out-vertex of a, identify $\operatorname{desc}_{H_{1}}(y)$ with $\operatorname{desc}_{H_{2}}(b)$, and take the free amalgam $H_{1,2}$ over $\operatorname{desc}_{H_{1}}(y)$ of H_{1} and H_{2}. It is easy to see that $\operatorname{desc}\left(a^{\prime}\right) \cup \operatorname{desc}(b) \leq^{+}$ $H_{1,2}$, so we can adjoin a finite set X of new vertices to $H_{1,2}$ to obtain a structure $P \supseteq H_{1,2}$ in which $H_{3}=c l^{P}\left(a^{\prime}, b\right)=\operatorname{desc}\left(a^{\prime}, b\right) \cup X$ is isomorphic to H_{1} (via an isomorphism taking a^{\prime} to a and b to b). So P is the union of H_{1}, H_{2} and H_{3}, and $H_{1} \cap H_{3}=\operatorname{desc}(b), H_{3} \cap H_{2}=\operatorname{desc}\left(a^{\prime}\right)$ and $H_{1} \cap H_{2}=\operatorname{desc}(y)$. Moreover, any edge (and any R_{n} relation) is contained entirely within some H_{i}.
Claim. $P \in \mathcal{C}_{I}$.
Proof of Claim. It is clear by the construction of P that conditions 1, 3 and 5 in Definition 2.2 hold. For condition 2 note that each
H_{i} is descendant closed in P. We see that $\operatorname{desc}(y) \leq^{+} H_{1}$ and also $\operatorname{desc}(y) \leq^{+} H_{2}$, so by the amalgamation lemma $H_{1} \leq^{+} H_{1,2}$. As $\operatorname{desc}(b) \cup \operatorname{desc}\left(a^{\prime}\right) \leq^{+} H_{1,2}$ and P is the free amalgam of $H_{1,2}$ and H_{3} over this, we get that $H_{3} \leq^{+} P$.

This argument can be seen to be symmetrical in $1,2,3$ (where $H_{i, j}$ is the union of H_{i} and H_{j} : note that these are freely amalgamated over their intersection in P). So we have $H_{i} \leq^{+} P$ for $i=1,2,3$. Then this gives us $\operatorname{desc}(p) \leq^{+} P$ for every $p \in P$, that is, condition 2 holds.
Finally, suppose $R_{n}^{P}\left(p_{1}, \ldots, p_{n}\right)$ for some $p_{1}, \ldots, p_{n} \in P$. By the construction of P this implies that $p_{1}, \ldots, p_{n} \in H_{i}$ for some i. Therefore $R_{n}^{H_{i}}\left(p_{1}, \ldots, p_{n}\right)$ and so the p_{j} are independent, and $\operatorname{desc}\left(p_{1}, \ldots, p_{n}\right) \leq^{+}$ H_{i} and hence by Lemma 2.5 $\operatorname{desc}\left(p_{1}, \ldots, p_{n}\right) \leq^{+} P$. Suppose for a contradiction that p_{1}, \ldots, p_{n} have a common ancestor, say $q \in P$. So $q \in H_{j}$ for some $j \neq i$. But H_{i} and H_{j} are freely amalgamated over their intersection and as this is the descendent set of a single point, not all of p_{1}, \ldots, p_{n} are in the intersection. As $H_{i} \cap H_{j} \leq P$, we have $q \notin H_{i} \cap H_{j}$. But this contradicts freeness of the amalgamation. Therefore condition 4 holds and so we have $P \in \mathcal{C}_{I}$.

Claim.

Now we use the extension property to obtain a \leq^{+}-embedding $\phi: P \rightarrow$ N^{I} which is the identity on H_{1}. By \leq^{+}-homogeneity and the construction of P, we have that $a, \phi(b), \phi\left(a^{\prime}\right), y$ is a path in the orbital graph G. In particular, $x=a$ and y are in the same connected component of G.

Case 2: Suppose that $b \in \operatorname{desc}(a)$. In this case let b_{0} denote the predecessor of b in $\operatorname{desc}(a)$, so $\left(b_{0}, b\right)$ is an R-edge in N^{I}. Let $b_{1} \in$ $\operatorname{desc}(a)$ be the other successor of b_{0}. Then there is an automorphism of N^{I} fixing a and interchanging b and b_{1}. So b and b_{1} are connected in the orbital graph G. We have $\operatorname{desc}(b) \cap \operatorname{desc}\left(b_{1}\right)=\emptyset$ and hence case 1 gives that the orbital graph with $\left\{b, b_{1}\right\}$ as an edge is connected. Therefore the orbital graph G is also connected.

By condition 2 in Definition 2.2, the only remaining case is:
Case 3: Suppose $\operatorname{desc}(b) \backslash \operatorname{desc}(a)$ and $\operatorname{desc}(a) \backslash \operatorname{desc}(b)$ are infinite. In this case let x_{1}, \ldots, x_{r} be a minimal generating set for $\operatorname{desc}(a) \cap \operatorname{desc}(b)$. Thus x_{1}, \ldots, x_{r} are independent, and we prove that the orbital graph G is connected in this case by induction on r, taking $r=0$ as the base case (given by case 1 above). We can assume that x_{r} is at maximal distance from a, amongst the x_{i}. Let z be the immediate predecessor of x_{r} in $\operatorname{desc}(a)$. Note that $z \notin \operatorname{desc}(a) \cap \operatorname{desc}(b)$ by minimality of the generating set. As $\operatorname{desc}(a) \cap \operatorname{desc}(b) \leq^{+} \operatorname{desc}(a)$, not all of the successors of z lie in $\operatorname{desc}(a) \cap \operatorname{desc}(b)$. So we can choose x_{r}^{\prime} to be one of its successors which is not amongst x_{1}, \ldots, x_{r}. The distance of x_{r}^{\prime} from a in $\operatorname{desc}(a)$ is no
smaller than the distance of that of any of the x_{i}. Thus $x_{1}, \ldots, x_{r-1}, x_{r}^{\prime}$ is independent and $\operatorname{desc}\left(x_{1}, \ldots, x_{r-1}, x_{r}^{\prime}\right) \leq^{+} \operatorname{desc}(a)$.
By a free amalgamation and the extension property there is $b_{1} \in N^{I}$ such that $\operatorname{desc}\left(b_{1}\right) \cap \operatorname{cl}(a, b)=\operatorname{desc}\left(x_{1}, \ldots, x_{r-1}, x_{r}^{\prime}\right)$ and there exists an isomorphism $f: c l(a, b) \rightarrow c l\left(a, b_{1}\right)$ with $f\left(a, b, x_{1}, \ldots, x_{r-1}, x_{r}\right)=$ $\left(a, b_{1}, x_{1}, \ldots, x_{r-1}, x_{r}^{\prime}\right)$. By \leq^{+}-homogeneity, this extends to an automorphism of N^{I}. Thus b and b_{1} are in the same connected component of the orbital graph G. But $\operatorname{desc}(b) \cap \operatorname{desc}\left(b_{1}\right)=\operatorname{desc}\left(x_{1}, \ldots, x_{r-1}\right)$, and by the induction hypothesis the orbital graph with $\left\{b, b_{1}\right\}$ as an edge is connected. Thus G is connected.
2.4. Non-isomorphism of the underlying digraphs. Recall that if $I \subseteq \mathbb{N} \backslash\{0,1,2\}$ then $\left.N^{I}\right|_{R}$ denotes the underlying digraph of the L_{I}-structure N^{I} : thus we are forgetting about the relations R_{n}. We show that different choices of I give non-isomorphic digraphs.

Proposition 2.12. Let $n \neq 0,1,2$ be a natural number. Then $n \in I$ if and only if there exist $a_{1}, \ldots,\left.a_{n} \in N^{I}\right|_{R}$ with the following properties:
(1) a_{1}, \ldots, a_{n} are independent and $A=\operatorname{desc}\left(a_{1}, \ldots, a_{n}\right) \leq\left.^{+} N^{I}\right|_{R}$;
(2) a_{1}, \ldots, a_{n} have no common ancestor in $\left.N^{I}\right|_{R}$;
(3) every finite subset X of A with $c^{A}(X) \neq A$ has a common ancestor in $\left.N^{I}\right|_{R}$.
Proof. First suppose that $n \in I$. Then there exist $a_{1}, \ldots, a_{n} \in N^{I}$ with $R_{n}\left(a_{1}, \ldots, a_{n}\right)$ holding, and such that $R_{n}\left(a_{1}, \ldots, a_{n}\right)$ is the only instance of a relation R_{m} which holds on $A=\operatorname{desc}\left(a_{1}, \ldots, a_{n}\right)$ (simply because this structure is in \mathcal{C}_{I}). So conditions 1 and 2 above hold. Now let X be a finite subset of A with $Y=c l^{A}(X) \neq A$. We can assume that $X=\left\{x_{1}, \ldots, x_{r}\right\}$ is a minimal generating set for Y. As A is just n disjoint copies of T, the set $\left\{x_{1}, \ldots, x_{r}\right\}$ is independent. Note that there are no instances of relations R_{m} on Y. We can therefore find a copy of the structure Y as a \leq^{+}-substructure of the tree T (it is simply r disjoint copies of T). By the extension property it follows that there exists $c \in N^{I}$ with $\operatorname{desc}(c) \supseteq Y$. In particular, c is a common ancestor of the elements of X, so condition 3 also holds.
Now suppose that a_{1}, \ldots, a_{n} have the given properties $1,2,3$ and, for a contradiction, $n \notin I$. Then there is no relationship between the points of A except digraph relations. To see this let $a_{1}^{\prime}, \ldots, a_{k}^{\prime} \in A$ and suppose $R_{k}^{A}\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$. So of course $k \neq n$. Then by condition 4 of Definition 2.2 we must have $a_{1}^{\prime}, \ldots, a_{k}^{\prime}$ independent and $\operatorname{desc}\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \leq^{+} A$. As $k \neq n$ we have $c l^{A}\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \neq A$. Hence, by condition $3 a_{1}^{\prime}, \ldots, a_{k}^{\prime}$ have a common ancestor in $\left.N^{I}\right|_{R}$, which contradicts $R_{k}^{A}\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$. But we can now use the same argument as in the previous paragraph to show that there is some $c \in N^{I}$ with $A \subseteq \operatorname{desc}(c)$. This gives a common ancestor of a_{1}, \ldots, a_{n} in N^{I}, which contradicts property 2 of a_{1}, \ldots, a_{n}.

Proposition 2.13. If $I \neq J$ are subsets of $\mathbb{N} \backslash\{0,1,2\}$ then the digraphs $\left.N^{I}\right|_{R}$ and $\left.N^{J}\right|_{R}$ are not isomorphic.

Proof. This follows immediately from Proposition 2.12: properties 1, 2,3 there all relate to the digraph $\left.N^{I}\right|_{R}$ and allow us to recover I from its structure.
We therefore have our main result:
Theorem 2.14. There are continuum many pairwise non-isomorphic countable highly arc transitive directed graphs in which each vertex has finite out-valency and infinite in-valency, and whose automorphism group is primitive.

Proof. As any automorphism of N^{I} is a digraph automorphism, the digraphs $\left.N^{I}\right|_{R}$ are certainly primitive and highly arc transitive. The previous proposition shows that the continuum-many possible choices for I result in non-isomorphic digraphs.

References

[1] Daniela Amato, DPhil Thesis, University Of Oxford, 2006.
[2] Daniela Amato, Descendants in primitive and highly arc-transitive digraphs, Preprint, University of Leeds, February 2008.
[3] David M. Evans, An infinite highly arc-transitive digraph. European J Combin. 18, 3 (1997), 281-286.
[4] David M. Evans, Suborbits in infinite primitive permutation groups. Bull. London Math. Soc. 33, 5 (2001), 583-590.
[5] D. G. Higman, Intersection matrices for finite permutation groups. J. Algebra 6, (1967), 22-42.
[6] Peter M. Neumann, Postscript to Review of [2], Bull. London Math. Soc. 24 (1992), 404-407.

School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK.
E-mail address: j.emms@uea.ac.uk
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK.
E-mail address: d.evans@uea.ac.uk

