Graphs, matroids and the Hrushovski constructions

David Evans, School of Mathematics, UEA, Norwich, UK

Algebra, Combinatorics and Model Theory, Koç University, Istanbul August 2011.

0. Background

- Pregeometry/ matroid: set with a closure operation which satisfies exchange.
- Model-theoretic example: algebraic closure in a strongly minimal set.
- Try to get a better understanding of the (pre)geometries appearing in Hushovski's paper 'A new strongly minimal set' (APAL, 1993).
- Hrushovski's question: How many local isomorphism types of flat strongly minimal sets (of countably infinite dimension) are there?

This talk:

- (with Marco Ferreira) There are countably many local isomorphism types of geometries of strongly minimal sets arising from the examples in Hrushovski's paper.
- Where do Hrushovski's examples appear in matroid theory (– the branch of combinatorics which studies pregeometries)?

1. Pregeometries

A pregeometry $\mathcal{X} = (X, \text{cl})$ consists of a set *X* and a closure operator $\text{cl} : \mathcal{P}(X) \to \mathcal{P}(X)$ which satisfies, for $Y, Z \subseteq X$ and $a, b \in X$:

- (1) $Y \subseteq \operatorname{cl}(Y)$
- (2) $Y \subseteq \operatorname{cl}(Z) \Rightarrow \operatorname{cl}(Y) \subseteq \operatorname{cl}(Z)$
- (3) (Exchange) If $a \in cl(Y \cup \{b\}) \setminus cl(Y)$ then $b \in cl(Y \cup \{a\})$
- (4) (Finitary) $cl(Z) = \bigcup \{cl(Z_0) : Z_0 \subseteq_{fin} Z\}$

Sometimes called a matroid.

If Y = cl(Y) say Y is closed; note cl(Z) is closed (by (1,2)).

EXAMPLE: X a vector space; cl linear span.

Dimension

(X, cl) a pregeometry.

- $I \subseteq X$ is independent if $\forall a \in I, a \notin cl(I \setminus \{a\})$
- *I* is a basis of *X* if it is independent and cl(I) = X
- FACT: If *I*, *J* are bases then |I| = |J|: the dimension of *X*.

If $Y \subseteq X$ we can restrict the closure to Y:

$$\operatorname{cl}^{Y}(Z) = \operatorname{cl}(Z) \cap Y$$
 for $Z \subseteq Y$

and refer to independence, basis and dimension in Y.

Dimension of Y: cardinality of a maximal independent subset of Y.

Geometries; localization

DEFINITION: A pregeometry (*X*, cl) is a geometry if $cl(\emptyset) = \emptyset$ and singletons are closed.

If (X, cl) is a pregeometry, we obtain a geometry (\tilde{X}, \tilde{cl}) in a canonical way: the relation $x \sim y \Leftrightarrow cl(x) = cl(y)$ is an equivalence relation on $X \setminus cl(\emptyset)$, and we take \tilde{X} to be the set of classes.

Why 'Geometry'? Call closed sets of dimensions 1, 2, 3,.. points, lines, planes, ...

DEFINITION: If (X, cl) is a pregeometry and $Y \subseteq X$, define a closure operation cl_Y on X by setting $cl_Y(Z) = cl(Y \cup Z)$. This gives a pregeometry (X, cl_Y) called the localization of (X, cl) over Y.

Pregeometries (X, cl) and (X', cl') are locally isomorphic if there exist finite $Y \subseteq X$ and $Y' \subseteq X'$ such that the localizations (X, cl_Y), (X', cl'_{Y'}) are isomorphic.

2. Examples of pregeometries in model theory

- (1) *X* a strongly minimal structure; cl is algebraic closure. For example:
 - A pure set
 - An infinite vector space
 - An algebraically closed field
- (2) Closure associated with a regular type in a stable theory. For example: differential dependence in a differentially closed field of characteristic 0.
- (3) Algebraic closure in an o-minimal structure.
- (4) (Jonathan Kirby) Exponential closure in an exponential field.

Homogeneity

Pregeometries arising in Examples (1) and (2) have rich automorphism groups (assuming sufficient saturation).

DEFINITION: A pregeometry (X, cl) is homogeneous if whenever $Y \subseteq X$ is closed and finite-dimensional and $z_1, z_2 \in X \setminus Y$ there is an automorphism g with $gz_1 = z_2$ and gy = y for all $y \in Y$.

This implies that the automorphism group is transitive on independent sets of the same finite size.

REMARK: A theorem of Cherlin and Zilber (1980's) classifies *locally finite* infinite dimensional homogeneous geometries: they are pure sets or derived from a vector space over a finite field. More precisely, they have the property that some localization over a finite set is *modular*: if *A*, *B* are closed subsets then

$$d(A \cup B) = d(A) + d(B) - d(A \cap B),$$

where *d* denotes dimension.

3. The basic Hrushovski construction

ROUGH IDEA: Build a homogeneous pregeometry by amalgamating finite structures, each of which carries a pregeometry; the relevant embeddings between the finite structures should preserve the dimension.

Fix $k \in \mathbb{N} \cup \{\infty\}$ with $k \ge 3$.

Consider structures (*A*; *R*) where *A* is a set and $R \subseteq [A]^{\leq k}$ is a set of finite, non-empty subsets of *A*, each of size at most *k*.

[Think of these as L_k -structures where L_k has an *n*-ary relation symbol R_n for each finite $n \le k$.]

If $B \subseteq A$ let $R[B] = \{r \in R : r \subseteq B\}$ and consider (B; R[B]) as a substructure.

If $B \subseteq_{fin} A$ the predimesion of B (in (A; R)) is:

$$\delta(B) = |B| - |R[B]|.$$

The structures

DEFINITION:

- (1) $\bar{C} = \bar{C}_k$ is the class of structures (*A*; *R*) such that $\delta(B) \ge 0$ for all $B \subseteq_{fin} A$.
- (2) $C = C_k$ is the class of finite structures in \overline{C}_k
- (3) If $(A; R) \in \overline{C}$ and $X \subseteq_{fin} A$ let $d(X) = \min(\delta(B) : X \subseteq B \subseteq_{fin} A)$.
- (4) If $(A; R) \in \overline{C}$ and $X \subseteq_{fin} A$ let $cl(X) = \{a \in A : d(X \cup \{a\}) = d(X)\}.$

FACT: (Hrushovski) Let $\mathcal{A} = (A; R) \in \overline{C}$ and $PG(\mathcal{A}) = (A, cl)$. Then $PG(\mathcal{A})$ is a pregeometry and for $X \subseteq_{fin} A$, the dimension of X in the pregeometry is d(X).

The embeddings

DEFINITION: If $(A; R) \in \overline{C}$ and $B \subseteq_{fin} A$ write $B \leq A$ to mean $\delta(B) = d(B)$.

(So $\delta(B) \leq \delta(B')$ for all $B \subseteq B' \subseteq_{fin} A$.)

Say that *B* is self-sufficient in *A*. This can be extended to infinite *B*. We say that an embedding $f : (A; R) \rightarrow (A'; R')$ is self-sufficient if $f(A) \leq A'$.

NOTES:

(1) $(A; R) \in \overline{\mathcal{C}} \Leftrightarrow \emptyset \leq A.$

- (2) If $A \leq B \leq C$ then $A \leq C$.
- (3) If $X \subseteq B \leq (A; R)$, then d(X) is the same whether computed in (A; R) or in (B; R[B]).

(4) If $X \subseteq_{fin} A$ there is $X \subseteq C \subseteq_{fin} A$ with $\delta(C) = d(X)$ and $C \leq A$.

So we have a category $(\bar{\mathcal{C}}, \leq)$ where the maps are self-sufficient embeddings and a functor *PG* to pregeometries.

4. Geometries of the strongly minimal sets

It is easy to see that (C_k, \leq) has the amalgamation property:

If $f_1 : A \xrightarrow{\leq} B_1$ and $f_2 : A \xrightarrow{\leq} B_2$ are \leq -embeddings in (C_k, \leq) , there exist $E \in C_k$ and \leq -embeddings $g_i : B_i \xrightarrow{\leq} E$ with $g_1 \circ f_1 = g_2 \circ f_2$.

We can take *E* to be the free amalgam of B_1 and B_2 over *A*: the disjoint union of B_1 and B_2 over *A* with relations $R[B_1] \cup R[B_2]$.

The usual Fraïssé-style argument allows us to show that there is a generic structure for (C_k, \leq) , denoted by $\mathcal{M}_k = (M; R) \in \overline{C}$:

•
$$M = \bigcup_{i < \omega} A_i$$
 where $A_0 \le A_1 \le A_2 \le \dots$ are in C_k

• if $A \leq A_i$ and $A \leq B \in C_k$, there is $j \geq i$ and $f : B \stackrel{\leq}{\rightarrow} A_j$ with $f|_A = id$.

These properties determine \mathcal{M}_k up to isomorphism.

Various facts

(1) \mathcal{M}_k is ω -stable (of Morley rank ω).

- (2) ('Collapse') Hrushovski defines subclasses $(C_k(\mu), \leq)$ of (C_k, \leq) which are amalgamation classes and whose generic structures $D_k(\mu)$ are strongly minimal (and non-isomorphic for different μ); the dimension function *d* is given by algebraic closure.
- (3) Other variations (with k = 3) in Hrushovski's paper give 2^{\aleph_0} strongly minimal sets of countably infinite dimension whose pregeometries are non-isomorphic.

The situation appears to be chaotic.

However, Hrushovski asks whether the pregeometries in (3) are locally isomorphic, and whether there is more than one local isomorphism type of geometry of a (countable, saturated) strongly minimal set arising here.

Local isomorphism types

Theorem (DE and Marco Ferreira)

- (1) If $k > \ell \ge 3$ then $PG(\mathcal{M}_k)$ and $PG(\mathcal{M}_\ell)$ are not locally isomorphic.
- (2) The pregeometries of the strongly minimal sets $D_k(\mu)$ are all isomorphic to $PG(\mathcal{M}_k)$.
- (3) The pregeometries of the strongly minimal sets in Fact 3 are locally isomorphic to $PG(\mathcal{M}_3)$.
- (4) All other countable, saturated strongly minimal sets in Hrushovski's paper have pregeometries locally isomorphic to PG(M_k) for some k.

(1, 2) are from Marco Ferreira's PhD thesis (for k = 3 in (2)); (3,4) are joint work of MF and DE using an argument which gives a different proof of 2.

Flatness

Hrushovski isolates the following dimension-theoretic property for a pregeometry.

DEFINITION Suppose (A, cl) is a pregeometry with dimension function d and F_1, \ldots, F_s are finite-dimensional closed subsets of A. If $\emptyset \neq S \subseteq \{1, \ldots, s\}$ let $F_S = \bigcap_{i \in S} F_i$. We say that (A, cl) is flat if for all such F_1, \ldots, F_s :

$$d(\bigcup_{i=1}^{s} F_i) \leq \sum_{\emptyset \neq S} (-1)^{|S|+1} d(F_S).$$

NOTES:

- (1) Compare with the inclusion-exclusion principle (eg. if d(X) = |X| for all *X*).
- (2) $d(F_1 \cup F_2) \le d(F_1) + d(F_2) d(F_1 \cap F_2)$ always holds.
- (3) If $(A; R) \in \overline{C}$ then its pregeometry PG(A; R) is flat (Hrushovski).

5. Some results on matroids.

Take $k = \infty$.

The following can be deduced from results in the matroid theory literature.

Theorem 1

The matroids of the form PG(A; R) for $(A; R) \in C$ are the *strict* gammoids (or *cotransversal matroids*).

Theorem 2

If (A, cl) is a finite flat pregeometry, then there exists $R \subseteq \mathcal{P}(A)$ such that $(A; R) \in \mathcal{C}$ and (A, cl) = PG(A; R).

Theorem 1 identifies the finite pregeometries in Hrushovski's construction with a class of matroids studied in the early 1970's. Theorem 2 is a converse to Hrushovski's observation that these pregeometries are flat. Thus these pregeometries are characterised by a property of their dimension function.

Theorem 1: Transversal matroids

DEFINITION: If *A* is a finite set and *R* a set of non-empty subsets of *A*, a transversal of (*A*; *R*) is an injective function $t : R \to A$ with $t(r) \in r$ for all $r \in R$. Abusing terminology, we say that the image t(R) is a transversal.

Hall's Marriage Theorem:

(A; R) has a transversal $\Leftrightarrow || | R'| \ge |R'| \quad \forall R' \subseteq R.$

It is easy to show the latter holds iff $(A; R) \in C$.

THEOREM: (Edmonds and Fulkerson, 1965) Suppose $(A; R) \in C$. Then the transversals of (A; R) form the bases of a pregeometry on A, called the *transversal matroid* of (A; R).

This is not the matroid PG(A; R).

Theorem 1: Duality

THEOREM: (Whitney, 1935) If (A, cl) is a finite pregeometry, there is a pregeometry (A, cl^*) whose bases are the complements of the bases of (A, cl). This is called the *dual pregeometry*.

THEOREM: If $(A; R) \in C$, then PG(A; R) is the dual of the transversal matroid of (A; R).

This can be read off from results of Ingleton-Piff and McDiarmid in the 1970's.

J H Mason (1972) defines a class of matroids known as the *strict gammoids*; Ingleton and Piff show that these are the duals of the transversal matroids. So we get Theorem 1.

Strict gammoids

GIVEN:

 $\Gamma = (A; D)$: finite directed graph; vertices A, directed edges D. B \subseteq A.

In the strict gammoid on A determined by these, a subset $C \subseteq A$ is independent iff it is *linked* to a subset of B: this means that there is a set of disjoint directed paths with the vertices in C as initial nodes and whose terminal nodes are in B.

Suppose $(A; R) \in C$ and $t : R \to A$ is a transversal with image $A \setminus B$. Define a directed graph Γ on A with directed edges $\{(t(r), c) : r \in R, c \in r, c \neq t(r)\}$. Then it can be shown that PG(A; R) is the strict gammoid given by Γ and B.

Theorem 2: Mason's α -function

DEFINITION: Suppose (*A*, cl) is a finite pregeometry with dimension function *d*. We define $\alpha(X)$ for *X* a union of closed sets by the following formula:

$$\alpha(X) = |X| - d(X) - \sum_{F} \alpha(F)$$

where F ranges over the closed subsets of A which are properly contained in X.

REMARK: Think of this as first being defined for closed sets by induction on the dimension.

Lemma

Suppose (A, cl) is a finite pregeometry and $X \subseteq A$ is a union of closed sets. Let F_1, \ldots, F_s be the closed sets properly contained in X. Then

$$-\alpha(X) = d(X) + \sum_{S \neq \emptyset} (-1)^{|S|} d(F_S).$$

Theorem 2: Mason's theorem

Theorem

The following are equivalent for a finite matroid (A, cl):

- (1) $\alpha(X) \ge 0$ whenever $X \subseteq A$ is a union of closed sets.
- (2) There is an α -transversal of the closed sets of (*A*, cl).
- (3) There is a set *R* of non-empty subsets of *A* such that $(A; R) \in C$ and PG(A; R) = (A, cl).

Moreover, we can choose *R* in (3) to be a set of subsets of size $\leq k$ iff $\alpha(F) = 0$ for all closed sets *F* with $d(F) \geq k$.

The first part here is due to J. H. Mason (1972). Theorem 2 follows from ths and the previous lemma. The 'Moreover' part is DE (2011).

This gives a dimension-theoretic characterization of the pregeometries $PG(C_k)$.

Question

If A = (A, cl) is a flat pregeometry, does there exist $(A; R) \in \overline{C}$ with A = PG(A; R)?

So this is asking whether Theorem 2 holds when A is infinite.

Further Questions.

- (1) Is the pregeometry of a (countable, infinite dimensional, non-disintegrated) flat strongly minimal set locally isomorphic to *PG*(*M_k*) (for some *k*)?
- (1)' What are the countable, infinite dimensional, flat homogeneous geometries with infinitely many points on a line?
- (2) Let (\mathcal{P}_k, \leq_k) be the image under the forgetful functor *PG* of (\mathcal{C}_k, \leq) in the category of finite pregeometries and pregeometry embeddings. This is a subcategory which has the amalgamation property. What are the amalgamation subclasses of (\mathcal{P}_k, \leq_k) ?
- (3) Is there a more natural hypothesis which leads to flatness?