Finite Covers

David Evans, School of Mathematics, UEA, Norwich.

Bedlewo, August 2009.

< 🗇 🕨 < 🖃 🕨

Introduction

Connections between higher amalgamation properties and finite covers in the paper

[Hr]: Ehud Hrushovski, 'Groupoids, imaginaries and internal covers', ArXiv:math.LO/0603413v1, March 2006.

This talk: Outline a proof of

Hr, Proposition 3.11

Let *T* be a theory with a canonical 2-amalgamation (for example, *T* stable). There exists an expansion T^* of *T* to a language with additional sorts, such that:

- T is stably embedded in T*, and the induced structure from T* on the T-sorts is the structure of T. Each sort of T* admits a 0-definable map to a sort of T, with finite fibres.
- (2) *T** has existence and uniqueness for independent *N*-amalgamation over acl(∅).

1. Independent amalgamation.

NOTATION: $N \in \mathbb{N}$; $\mathcal{P}(N)^- =$ set of proper subsets of $\{1, \ldots, N\}$. Think of this as a category with inclusion maps as morphisms. Suppose *T* has QE and a canonical 2-amalgamation over algebraically closed sets. Let *C* be the category of algebraically closed substructures of models of *T* (and embeddings). Let $C \in C$.

An (independent) *N*-amalgamation problem over *C* is a functor

 $A: \mathcal{P}(N)^{-} \rightarrow \mathcal{C}$

where $A(\emptyset) = C$ and for any $s \in \mathcal{P}(N)^-$ the set $\{A(i) : i \in s\}$ is independent over C, and $A(s) = \operatorname{acl}(A(i) : i \in s\}$.

A solution to this is an extension of A to a functor

$$\bar{A}:\mathcal{P}(N)\to\mathcal{C}$$

on the full power set, satisfying the same conditions (so including the case $s = \{1, ..., N\}$).

August 2009

3/15

Ā (1,2) N=2: A(Ø) A(Z A(2) N=3: A(2) (ignore A(O)) A(1,2) A(3) A(1) A(1,3)

<ロ> <四> <四> <四> <四> <四</p>

()

- Canonical 2-amalgamation means that each 2-amalgamation problem has a given solution and the resulting notion of independence is assumed to satisfy full transitivity and symmetry. The main result also requires definability.
- *T* has *N*-existence (for independent amalgamation over *C*) if every such amalgamation problem has a solution
- *T* has has *N*-uniqueness (for independent amalgamation over *C*) if every such amalgamation problem has at most one solution.

EXAMPLES:

(1) Stable theories have 2-existence and uniqueness over algebraically closed sets when independence is non-forking.

(2) A vector space of infinite dimension over a finite field has N-existence and uniqueness for all N.

(3) The corresponding projective space does not have 3-uniqueness (if the field has at least 3 elements).

(4) Stable theories have N-existence and uniqueness over models.

A B F A B F

Field = GF(3); $V = V(X_0, 3)$ v. space Example for (3): P(V) : projective space L J2+ V3 7 <v-V2>1 × 242-43> CV.7 (Vi+V37 (V1-V37 A(i,j) = line in P(V) Another <v. solution < v,+ V27 2V27

・ロト ・ 四ト ・ ヨト ・ ヨト

Two reductions

Continue to assume T has a canonical notion of 2-amalgamation.

Lemma (cf. Hr, 3.1)

Suppose that T has N-uniqueness over $\operatorname{acl}(\emptyset)$ for all $N \ge 2$. Then T has N-existence over $\operatorname{acl}(\emptyset)$ for all $N \ge 2$.

Lemma (Hr, Prop 3.5)

T has N-uniqueness over $acl(\emptyset)$ iff the following condition holds for all independent a_1, \ldots, a_N :

(*) if $c \in \operatorname{acl}(a_1, \ldots, a_{N-1})$ is in the definable closure of $\bigcup_{i=1}^{N-1} \operatorname{acl}(a_1 \ldots \widehat{a_i} \ldots a_{N-1} a_N)$, then it is in the definable closure of $\bigcup_{i=1}^{N-1} \operatorname{acl}(a_1 \ldots \widehat{a_i} \ldots a_{N-1})$.

< 🗇 > < 🖻 > < 🖻

2. Finite covers and definable types

DEFINITIONS: Work with multi-sorted structures. Suppose $L \subseteq L^*$ are languages; *T* is an *L*-theory and $T^* \supseteq T$ an L^* -theory.

- *T* is embedded in *T*^{*} if the the induced structure on the *T*-sorts from the 0-definable sets of *T*^{*} is the 0-definable structure of *T*.
- T is stably embedded if the same is true without the 0
- *T* is fully embedded if it is embedded and stably embedded.
- *T*^{*} is an algebraic cover of *T* if *T* is fully embedded and each sort of *T*^{*} admits a 0-definable finite-to-one map to a sort of *T*.
- An algebraic cover T^* is a finite cover of T if it is in the definable closure of the T-sorts and a single T^* -sort.

REMARKS: If *T* is fully embedded in T^* and $M^* \models T^*$ is saturated, then any automorphism of the *T*-part of M^* extends to an automorphism of M^* . For a finite cover, stable embeddedness follows automatically from embeddedness.

・ロン ・四 ・ ・ ヨン ・ ヨン

Finite covers from definable types

Suppose *T* is a complete *L*-theory. Work in a large model *M*^{*} of *T*. Say that a type $p(x) \in S(\emptyset)$ is definable if for each *L*-formula $\phi(x, y)$ there is an *L*-formula $\psi_{\phi}^{p}(y)$ with the property that for every *D*

 $p|D = \{\phi(x, d) : \phi(x, y) \text{ an } L \text{-formula }, d \in D \text{ and } \models \psi_{\phi}^{p}(d)\}$

is a complete type over *D*, and $p|\emptyset = p$.

Let *p* be definable, as above. Suppose θ is an *L*-formula such that if $\models \theta(a', b', c')$, then *c'* is algebraic over a'b'. Let $M \models T$.

Let $a^* \models p | M$ and

$$\textit{C} = \{(\textit{b}',\textit{c}^*):\textit{c}^* \in \textit{M}^*,\textit{b}' \in \textit{M} \text{ and } \textit{M}^* \models \theta(\textit{a}^*,\textit{b}',\textit{c}^*)\}.$$

We make the disjoint union $M \cup C$ into a structure $M^+ = C(M, a^*)$ by giving it the induced structure from (M^*, a^*) .

Lemma

Suppose $M \leq \tilde{M}$ are ω -saturated. 1. If $a^* \models p | \tilde{M}$ then $C(M, a^*) \leq C(\tilde{M}, a^*)$. 2. If d, e are tuples in M^+ then:

$$\operatorname{tp}^{M^+}(d) = \operatorname{tp}^{M^+}(e) \Leftrightarrow \operatorname{tp}^{M^*}(d/a^*) = \operatorname{tp}^{M^*}(e/a^*).$$

3. *M* is fully embedded in M^+ .

Denote $Th(M^+)$ by $T_{\rho,\theta}$.

Note that M^+ is a finite cover of M. We call it a *definable* finite cover.

3. Splitting of finite covers

An algebraic cover T' of T splits over T if there is an expansion of T' to an algebraic cover T'' of T which is interdefinable with T. For a sufficiently saturated model M' of T', this implies that there is an expansion M'' of M' with

$$\operatorname{Aut}(M') = \operatorname{Aut}(M'/M) \rtimes \operatorname{Aut}(M'').$$

Lemma (Free Amalgamation)

Suppose $M_1 \supseteq M_0$ and $M \supseteq M_0$ are algebraic covers. Let $M' = M_1 \coprod_{M_0} M$ be the disjoint union of M_1 and M over M_0 . Then M' is an algebraic cover of M and if M_1 is 0-interpretable in M over M_0 , then M' splits over M.

Proof: There is an injective map $f : M_1 \to M$ which is the identity on M_0 and which sends 0-definable sets to 0-definable sets. If we expand M' by f to obtain M'', then $\operatorname{Aut}(M') = \operatorname{Aut}(M'/M) \rtimes \operatorname{Aut}(M'')$.

4. Splitting and N-uniqueness

Lemma (Splitting Lemma)

Suppose $M \subseteq M'$ is a split algebraic cover, $X_1, \ldots, X_r \subseteq M$ and $\operatorname{acl}^M(X_i) = X_i$ for $i = 1, \ldots, r$. Then

$$\operatorname{Aut}(\bigcup_{i}\operatorname{acl}^{M'}(X_i)/\bigcup_{i}X_i)=\operatorname{Aut}(\bigcup_{i}\operatorname{acl}^{M'}(X_i)/M).$$

Proof: Do this with i = 1. Write $\operatorname{Aut}(M') = \operatorname{Aut}(M'/M) \rtimes \operatorname{Aut}(M'')$. Restriction to the *T*-sorts gives a (topological) group isomorphism $\operatorname{Aut}(M'') \to \operatorname{Aut}(M)$. In the lemma the inclusion \supseteq is clear. Suppose the other direction does not hold. Then there is $c \in \operatorname{acl}^{M'}(X_1)$ which is fixed by $\operatorname{Aut}(M'/M)$ but not by $\operatorname{Aut}(M'/X_1)$. Thus, $\operatorname{Aut}(M''/X_1, c)$ is a proper open subgroup of finite index in $\operatorname{Aut}(M''/X_1)$. Restricting to the *T*-sorts gives a proper open subgroup of finite index in $\operatorname{Aut}(M/X_1)$, contradicting algebraic closure of X_1 in M. \Box

Corollary (Main Lemma)

Let $M \models T$ be ω -saturated, p a complete type definable over \emptyset and $a^* \models p | M$. Suppose all $T_{p,\theta}$ split over T. Suppose $b_0, b_1, \ldots, b_r \in M$ and $c \in \operatorname{acl}(a^*b_0)$, $e_i \in \operatorname{acl}(a^*b_i)$ are such that $c \in \operatorname{dcl}(a^*e_1 \ldots e_r M)$. Then

 $c \in \operatorname{dcl}(a^*e_1 \ldots e_r B_0 B_1 \ldots B_r),$

where $B_i = \operatorname{acl}(b_i)$.

Corollary

Suppose p_1, \ldots, p_N are types definable over \emptyset and a_1, \ldots, a_N are such that $a_i \models p_i | \{a_1, \ldots, \hat{a_i}, \ldots, a_N\}$. Let

$$c \in \operatorname{acl}(a_1 \dots a_{N-1}) \cap \operatorname{dcl}(\bigcup_{i=1}^{N-1} \operatorname{acl}(a_1 \dots \widehat{a}_i \dots a_N)).$$

Suppose further that for all *i* < *N* each $T_{p_i,\theta}$ splits over *T*. Then

$$c \in \operatorname{dcl}(\bigcup_{i=1}^{N-1}\operatorname{acl}(a_1 \dots \widehat{a}_i \dots a_{N-1})).$$

Using this and the characterization of N-uniqueness we get:

Theorem (Theorem A)

Suppose T has a definable canonical 2-amalgamation and all definable finite covers of T split over T. Then T has N-uniqueness for independent amalgamation, for all $N \ge 2$.

5. Guaranteeing the splitting

GIVEN: T_0 with a definable canonical 2-amalgamation.

WANT: Algebraic cover $T \supseteq T_0$ with a definable canonical 2-amalgamation extending that of T_0 such that all definable finite covers of T split over T.

MAIN POINTS:

- A definable finite cover of *T*₀ inherits a definable canonical 2-amalgamation from *T*
- Taking a sequence of definable finite covers we obtain *T* with the property that any definable finite cover of *T*₀ and a finite set of sorts of *T* is interpretable in *T*.
- As in the free amalgamation lemma, any definable finite cover of *T* splits over *T*.