Combinatorial Geometries of the Hrushovski Constructions

David Evans and Marco Ferreira School of Mathematics, UEA, Norwich.

Barcelona, November 2008.

(1.1) Strongly minimal structures

An infinite *L*-structure *D* is strongly minimal if every definable subset of *D* is finite or cofinite in *D*, uniformly in the defining formula: for every *L*-formula $\varphi(x, \bar{y})$ there is n_{φ} such that for all parameters \bar{a} either $\{c \in D : D \models \varphi(c, \bar{a})\}$ or its complement in *D* has at most n_{φ} elements.

EXAMPLES:

- Pure set (S; =)
- 2 *K*-vector space $(V; +, 0, (\lambda_s : s \in K)); K$ any division ring
- Solution Algebraically closed field $(F; +, -, \cdot, 0, 1)$
- D_{μ} : Hrushovski's 3-ary structures from 1988 (published in 1993).
- Fusions
- **◎** ... ?

(1.2) Algebraic closure

In any structure *M*, if $X \subseteq M$ define the algebraic closure acl(X) of *X* in *M* to be the union of the finite *X*-definable subsets of *M*.

This is a (good) closure operator on M, and if M is strongly minimal, then it satisfies the exchange property, giving us a pregeometry.

(1.3) Pregeometries

Suppose *A* is any set; denote by $\mathcal{P}(A)$ the power set of *A*. A function $\operatorname{cl} : \mathcal{P}(A) \to \mathcal{P}(A)$ is a closure operation on *A* if for all $X \subseteq Y \subseteq A$:

- $X \subseteq \operatorname{cl}(X)$
- $\operatorname{cl}(X) \subseteq \operatorname{cl}(Y)$
- $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$
- $\operatorname{cl}(X) = \bigcup \{ \operatorname{cl}(X_0) : X_0 \subseteq X \text{ finite } \}.$

We say that (A, cl) is a pregeometry if additionally it satisfies:

• (Exchange) If $a \in cl(X \cup \{b\}) \setminus cl(X)$ then $b \in cl(X \cup \{a\})$.

Suppose $X \subseteq Y \subseteq A$. Say that X is an independent set if $a \notin cl(X \setminus \{a\})$ for all $a \in X$. If also cl(X) = cl(Y), say that X is a basis of Y. Then we have:

- Any subset Y of A has a basis;
- Any two bases of *Y* have the same cardinality, called the dimension of *Y*.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Geometries

A pregeometry (B, cl) is a geometry if it satisfies

• $cl(b) = \{b\}$ for all $b \in B$.

Given a pregeometry (A, cl) the relation

 $a \sim b \Leftrightarrow \operatorname{cl}(a) = \operatorname{cl}(b)$

is an equivalence relation on $A \setminus cl(\emptyset)$. The set \tilde{A} of equivalence classes inherits a closure operation \tilde{cl} and (\tilde{A}, \tilde{cl}) is a geometry with whose lattice of closed sets is naturally isomorphic to that of the pregeometry (A, cl).

If $X \subseteq A$ the localization of (A, cl) at X is the pregeometry on A with closure $cl_X(Y) = cl(Y \cup X)$. The geometry of the localization has lattice of closed sets isomorphic to the lattice of closed sets in (A, cl) which contain cl(X).

(1.4) Examples from sm structures

Look at the geometry arising from algebraic closure in the examples of sm structures:

- Pure set (S; =). Here cl(X) = X: the geometry is disintegrated.
- K-Vector space (V; +, 0, (λ_s : s ∈ K)): cl is linear closure and the geometry is the projective geometry ℙ(V).
- Algebraically closed field (F; +, ·, (c_e : e ∈ E)), E a subfield. cl is algebraic closure over E; denote the geometry by G(F/E).
- Hrushovski examples D_{μ} : Study this.

(1.5) Other examples of geometries from model theory

Arise from forking on a regular type.

EXAMPLE: In a model of DCF_0 , take the closure operation of differential dependence.

< ロ > < 同 > < 回 > < 回 >

(1.6) Recovering the structure from the geometry

- If $\dim_{\mathcal{K}}(V) \ge 3$ the Fundamental Theorem of Projective Geometry uniformly interprets \mathcal{K} and V in $\mathbb{P}(V)$.
- If F ⊇ E are algebraically closed and trdeg(F/E) ≥ 5 then F and E can be uniformly interpreted in G(F/E) (DE + E. Hrushovski, 1995).
- Generalization of this where F, E not assumed algebraically closed (J. Gismatullin, 2008).
- If F ⊨ DCF₀ is saturated then the pure field F can be uniformly interpreted in the geometry of differential dependence on F and any automorphism of the geometry arises from a field automorphism which preserves differential dependence (R. Konnerth, 2002).

QUESTION: What happens with the D_{μ} ?

(2.1) Predimension

Language *L*: 3-ary relation symbol *R*. If *A* is an *L*-structure the corresponding relation in *A* is $R^A \subseteq A^3$. For a finite *L*-structure *B* the predimension of *B* is

$$\delta(B) = |B| - |R^B|.$$

For $A \subseteq B$ say that A is self-sufficient in B and write $A \leq B$ if

$$\delta(A) \leq \delta(B')$$
 for all B' with $A \subseteq B' \subseteq B$.

Properties:

•
$$A \leq B$$
 and $X \subseteq B \Rightarrow X \cap A \leq X$

• $A \leq B \leq C \Rightarrow A \leq C$

• Self-sufficient closure: $cl_B^{\leq}(X) := \bigcap \{A : X \subseteq A \leq B\} \leq B$

Extend to arbitrary *L*-structures $A \subseteq B$ by:

 $A \leq B \Leftrightarrow X \cap A \leq X$ for all finite $X \subseteq B$.

(2.2) Dimension

Let \overline{C} be the class of *L*-structures *A* with $\emptyset \leq A$: so $\delta(X) \geq 0$ for all finite $X \subseteq A$. Let C be the finite structures in \overline{C} .

If X is a finite subset of $B \in \overline{C}$ there is a finite Y with $X \subseteq Y \subseteq B$ and $\delta(Y)$ as small as possible. Then $Y \leq B$ and so $cl_B^{\leq}(X) \subseteq Y$ is finite.

The dimension of *X* in *B* is:

$$d_B(X) = \delta(\operatorname{cl}_B^{\leq}(X)).$$

The *d*-closure of *X* in *B* is:

$$\mathrm{cl}_B^d(X) = \{a \in B : d_B(X \cup \{a\}) = d_B(X)\}.$$

FACT: (B, cl_B^d) is a pregeometry. Dimension in the pregeometry is d_B .

(4月) とうちょうち うう

Examples

$$A = \xi_{1,2,3} \xi_{1,2,3} \xi_{1,2,3} \xi_{1,2,3} \xi_{1,2,3} \xi_{1,2,3} \xi_{1,2,3} \xi_{1,2,3} \xi_{1,2,3} \xi_{2,3} \xi_{2,3} \xi_{3,3} \xi_{3,3$$

$$A = \{1, 2, 3\}$$

$$B = \{1, 2, 3\}$$

$$\delta(B) = \delta(A) - 1$$

$$B = cl_{R}^{\leq}(A)$$

(日) (四) (日) (日) (日)

(2.3) Free amalgamation and the generic structure

If $B_1, B_2 \in \overline{C}$ have a common substructure A, the free amalgam

 $B_1 \coprod_A B_2$

of B_1 and B_2 over A is the structure whose domain is the disjoint union of B_1 and B_2 over A and whose relations are just those of B_1 and B_2 .

EASY AMALGAMATION LEMMA: If $A \leq B_1$ then $B_2 \leq B_1 \coprod_A B_2 \in \overline{C}$.

So (\mathcal{C}, \leq) is an amalgamation class.

COROLLARY: There is a countable $M_3 \in \overline{C}$ with the property that whenever $A \leq M_3$ is finite and $A \leq B \in C$ then there exists an embedding $f : B \to M_3$ with f(a) = a for all $a \in A$ and $f(B) \leq M_3$. This property determines M_3 up to isomorphism amongst countable structures in \overline{C} and any isomorphism between finite \leq -substructures of M_3 extends to an automorphism of M_3 .

(2.4) Properties of the generic structure

The structure M_3 is called the generic structure associated to the amalgamation class (C, \leq).

FACTS:

- M_3 is ω -stable of MR ω
- algebraic closure in *M*₃ is equal to self-sufficient closure and does not satisfy exchange
- (M_3, cl^d) is a pregeometry; denote the corresponding geometry by $\mathcal{G}(M_3)$.
- there is a unique 1-type of rank ω : points of *d*-dimension 1 in M_3 .

イロト イヨト イヨト イヨト

(2.5) Some results

We can repeat the construction with a 4-ary relation and obtain a generic structure M_4 and compare the resulting geometries.

THEOREM A (Marco Ferreira, 2007)

The following hold:

- $\mathcal{G}(M_3)$ is not isomorphic to $\mathcal{G}(M_4)$;
- 2 $\mathcal{G}(M_3)$ and $\mathcal{G}(M_4)$ have the same finite subgeometries;
- **③** $\mathcal{G}(M_3)$ is isomorphic to any of its localizations over a finite set.

In fact the same is true replacing 3, 4 here by any $m \neq n$. There is also a statement about generic structures constructed using a predimension of the form

$$|\mathcal{A}| - \sum_{i \in I} |\mathcal{R}_i^{\mathcal{A}}|$$

where the R_i are relations of varying arities.

(3.1) The Amalgamation class (C_{μ}, \leq)

Want a similar construction where *d*-closure is equal to algebraic closure ('collapse').

Keep the class C, the predimension δ , the notion of self-sufficient embedding \leq from the previous section.

DEFINITION: A pair of structures $A \leq B \in C$ with $A \neq B$ is a

- algebraic extension if $\delta(A) = \delta(B)$
- simple algebraic extension if also δ(A) < δ(B') whenever A ⊂ B' ⊂ B
- minimal simple algebraic extension if also for every A' ⊂ A the extension A' ⊆ A' ∪ (B \ A) is not simply algebraic.

Now fix a function μ from the class of isomorphism types of msa extensions to \mathbb{N} such that for each msa $A \leq B$ we have

$$\mu(\boldsymbol{A},\boldsymbol{B})\geq\delta(\boldsymbol{A}).$$

イロト 不得 トイヨト イヨト 三日

DEFINITION: The class C_{μ} consists of all structures X in C which for every msa $A \leq B$ omit $\mu(A, B) + 1$ copies of B over A. More precisely, if $B_1, \ldots, B_n \subseteq X$ have pairwise intersection A_0 and (A_0, B_i) is isomorphic to (A, B) for each $i \leq n$, then $n \leq \mu(A, B)$.

THEOREM (Ehud Hrushovski, 1993)

- The class $(\mathcal{C}_{\mu}, \leq)$ is an amalgamation class.
- There is a (unique) countable structure D_µ ∈ C
 _µ with the property that whenever A ≤ D_µ is finite and A ≤ B ∈ C_µ, there is an embedding f : B → D_µ with f(a) = a for all a ∈ A and f(B) ≤ D_µ.
- Algebraic closure in D_{μ} is equal to *d*-closure.
- D_{μ} is strongly minimal.

– Get continuum many non-isomorphic strongly minimal structures by varying μ .

・ロット (四) ・ (日) ・ (日) ・ (日)

(3.2) Geometry of the D_{μ}

THEOREM B (Marco Ferreira, 2008)

The geometry $\mathcal{G}(D_{\mu})$ of algebraic closure in D_{μ} is isomorphic to the geometry $\mathcal{G}(M_3)$ of *d*-closure in the 'uncollapsed' M_3 .

(3.3) Questions

- What about the geometries of other models of $Th(D_{\mu})$ and $Th(M_3)$ and localizations over infinite subsets?
- ² There is a variation on the construction, again due to Hrushovski, which produces sm sets D'_{μ} where the algebraic closure of a pair of points has size 3: non-isomorphic structures give non-isomorphic geometries. Are the localizations of these geometries (over, say a 2-dimensional set) isomorphic to $\mathcal{G}(M_3)$?

4 **A** N A **B** N A **B** N

(4.1) Methods of proof: Theorem A

3-ary language; take δ , (C, \leq), M_3 as before.

IDEA: Given $B \in \overline{C}$, change the structure on some finite $A \leq B$ to $A' \in C$ (– same set, different structure). This gives a new structure B' with the same underlying set as B.

Changing Lemmas

•
$$A' \leq B'$$
 and $B' \in \overline{C}$.

- **2** If $B = M_3$ then $B' \cong M_3$.
- If d-closure is the same in A and A' then it is the same in B and B'.
- If d(A') = 0 then the pregeometry on B' is the localization of B over A.

A similar result holds for *n*-ary structures.

イロト イヨト イヨト イヨト

(4.2) Embedding pregeometries

For $A \in C$ let $\mathcal{PG}(A)$ denote the pregeometry (A, cl_A^d) . Let \mathcal{P} be the resulting class of pregeometries. Make this into a functor:

$$(\mathcal{C},\leq) \stackrel{\mathcal{PG}}{\leadsto} (\mathcal{P},\preceq).$$

Thus for $A \subseteq B \in \mathcal{P}$ we have $A \preceq B$ iff there are structures $\tilde{A} \leq \tilde{B} \in \mathcal{C}$ with underlying sets A, B whose d-closure gives the pregeometry on B.

THEOREM C

- **(** \mathcal{P}, \preceq **)** is an amalgamation class.
- 2 The pregeometry which is the generic structure of this class is isomorphic to $\mathcal{PG}(M_3)$.

Similar results hold for *n*-ary structures.

(4.3) Proof of Theorem B

The Changing Lemma fails for C_{μ} . Instead we have:

Hard Changing Lemma Suppose $A \leq B \in C$ and $A \in C_{\mu}$. Then there is $B' \in C_{\mu}$ with $A \leq B'$ and $\mathcal{PG}(B) \preceq \mathcal{PG}(B')$.

REMARKS:

- Cannot take B a substructure of B' here.
- Together with the Changing Lemmas for M_3 , this allows us to build an isomorphism $\mathcal{PG}(M_3) \cong \mathcal{PG}(D_\mu)$ by back and forth.
- Result *should* hold for *n*-ary structures, but the details are hard.