Expansions of fields by angular functions

David M Evans

School of Mathematics,
UEA, Norwich, UK.
Logicum Lugdunensis, June 2006.

1. Angular functions

- Talk about some questions from the paper

Boris Zilber, 'Non-commutative geometry and new stable structures', Newton Institute Preprint Series, NI05048-MAA, November 2005 .

Notation: For the moment, fix:

- an algebraically closed field $(F ;+, \cdot)$ of characteristic zero;
- multiplicatively independent $\alpha, \beta \in F$;
- a natural number N;
- a primitive N-th root of unity ϵ;
- $\Gamma=\langle\epsilon\rangle$

An angular function (with these data) is a function

$$
\text { ang }: F^{*} \rightarrow \Gamma
$$

satisfying, for all $t \in F$:

$$
\begin{align*}
\operatorname{ang}(\epsilon t) & =\operatorname{ang}(t) \tag{1}\\
\operatorname{ang}(\beta t) & =\operatorname{ang}(t) \tag{2}\\
\operatorname{ang}(\alpha t) & =\epsilon \operatorname{ang}(t) \tag{3}
\end{align*}
$$

Zilber asks the following:
Question: Consider a structure $(F,+, \cdot$, ang $)$ which is existentially closed in the class of structures satisfying these equations. What is the model-theoretic status of this structure? Is it supersimple?

Definitions: Associated to any angular function ang there are two definable subgroups of the multiplicative group of the field:

- The group of periods of ang is

$$
G=\left\{g \in F^{*}: \operatorname{ang}(g t)=\operatorname{ang}(t) \forall t \in F^{*}\right\}
$$

- the group of quasiperiods of ang is

$$
G^{+}=\left\{h \in F^{*}: \exists \gamma \in \Gamma \forall t \in F^{*} \operatorname{ang}(h t)=\gamma \operatorname{ang}(t)\right\}
$$

Note that

- $\Gamma \leq G \leq G^{+}$;
- there is a definable homomorphism $\chi: G^{+} \rightarrow \Gamma$ with kernel G (given by $\operatorname{ang}(h t)=\chi(h) \operatorname{ang}(t)$ for $h \in G^{+}$and $t \in F^{*}$);
- the induced map $\bar{\chi}: G^{+} / G \rightarrow \Gamma$ is an isomorphism.

2. Zilber's examples

EXAMPLE 1: The following explains the terminology 'angular function.' Take:

- $F=\mathbb{C}$
- $\epsilon=\exp (2 \pi i / N)$
- For $k=0, \ldots, N-1$, let P_{k} be the sector of the complex plane consisting of non-zero complex numbers z with an argument $\arg z$ in the range $2 \pi k / N \leq \arg z<2 \pi(k+1) / N$.

Define ang : $\mathbb{C}^{*} \rightarrow \Gamma$ by, for $t \in \mathbb{C}^{*}$:

$$
\operatorname{ang}(t)=\epsilon^{k} \Leftrightarrow t^{N} \in P_{k} .
$$

Note:

- Group of periods: $G=\mathbb{R}^{>0} \Gamma$;
- Group of quasiperiods: $G^{+}=\mathbb{R}^{>0}\left\langle\epsilon_{1}\right\rangle$, where $\epsilon_{1}=\exp \left(2 \pi i / N^{2}\right)$.
- ($\mathbb{C},+, \cdot$, ang $)$ has the strict order property (consider translates of the definable subset P_{0}).

EXAMPLE 2: An example of a non-classical Zariski curve (due to Hrushovski and Zilber) can be obtained from a suitable angular function.

Given $(F ;+, \cdot, \alpha, \beta$, ang) satisfying the above equations.
Define $U, V: F^{*} \rightarrow F^{*}$ by

$$
\begin{aligned}
U(t) & =\alpha t \\
V(t) & =\beta \operatorname{ang}(t) t
\end{aligned}
$$

These are definable permutations of F^{*} and

$$
V U(t)=\epsilon U V(t)
$$

Let

- ($T ; U, V)$ denote the set F with only the structure given by the definable permutations U, V;
- $p: T \rightarrow F$ be given by $p(t)=t^{N}$.

Then the structure $((T ; U, V),(F ;+, \cdot), p: T \rightarrow F)$ is a finite cover of $(F ;+, \cdot)$ which is interpretable in $(F ;+, \cdot$, ang $)$, but not in $(F ;+, \cdot)$.

3. An answer to the question?

Definition:

- The language L_{0} contains:
- the language of rings $+,-, \cdot, 0,1$;
- unary predicates $\mathbf{F}, \boldsymbol{\Gamma}, \mathcal{G}, \mathcal{G}^{+}$
- a unary function symbol χ
- We have a fixed L_{0}-structure M consisting of:
- an algebraically closed field $F=\mathbf{F}(M)$ of characteristic 0 ;
- multiplicative subgroups

$$
\Gamma=\boldsymbol{\Gamma}(M) \subseteq G=\mathcal{G}(M) \subseteq G^{+}=\mathcal{G}^{+}(M) \subseteq F^{*}
$$

- A surjective homomorphism $\chi: G^{+} \rightarrow \Gamma$ with kernel G.
- T_{0} is the L_{0}-theory of M.

Assume (for our purposes, without loss) that T_{0} is model complete.
Let $L_{A}=L_{0} \cup\{A\}$ be the expansion of L_{0} by an extra unary function symbol A. Define T_{A} to be the theory axiomatized by T_{0} and axioms:
(i) $(A(0)=0) \wedge(\forall t)(t \neq 0) \rightarrow \boldsymbol{\Gamma}(A(t))$;
(ii) $(\forall t)(\forall g)(\mathcal{G}(g) \rightarrow A(g \cdot t)=A(t))$;
(iii) $(\forall t)(\forall h)\left(\mathcal{G}^{+}(h) \wedge(t \neq 0) \rightarrow A(h \cdot t)=\chi(h) \cdot A(t)\right)$

Zilber's Question can then be viewed as asking whether the class of existentially closed models of T_{A} is axiomatizable, and if so whether completions of its theory are supersimple.

Theorem 1 (1) If T_{0} eliminates the quantifier $\exists \infty$ in the sorts $\mathbf{F}, \mathbf{F} / \mathcal{G}$ and $\mathbf{F} / \mathcal{G}^{+}$then T_{A} has a model companion T_{A}^{*}.
(2) If additionally T_{0} is simple and Γ is finite then all completions of T_{A}^{*} are simple (and in the same simplicity class as T_{0}).

Discuss:

- why this follows easily from know results
- T_{0} satisfying the hypotheses.

4. Proof of the Theorem

Suppose $M \models T_{0}$. Write \mathcal{G} instead of $\mathcal{G}(M)$ etc.

4.1 From angular functions to sections

Consider the natural map $\nu: \mathbf{F}^{*} / \mathcal{G} \rightarrow \mathbf{F}^{*} / \mathcal{G}^{+}$, given by

$$
\nu(x \mathcal{G})=x \mathcal{G}^{+} .
$$

A section of this is a map $s: \mathbf{F}^{*} / \mathcal{G}^{+} \rightarrow \mathbf{F}^{*} / \mathcal{G}$ which satisfies:

$$
\left(\forall y \in \mathbf{F}^{*} / \mathcal{G}^{+}\right)\left(s(y) \mathcal{G}^{+}=y\right)
$$

Given such an s we have that $s\left(t \mathcal{G}^{+}\right)^{-1} t \mathcal{G} \in \mathcal{G}^{+} / \mathcal{G}$, so

$$
A(t)=\bar{\chi}\left(s\left(t \mathcal{G}^{+}\right)^{-1} t \mathcal{G}\right) \in \boldsymbol{\Gamma}
$$

This satisfies T_{A}. Let L_{s} be the expansion of L_{0} obtained by adding a unary function symbol s between the indicated sorts, and T_{s} obtained from T_{0} by adding the above axiom. Then:

Lemma 2 There is a definable correspondence between the models of T_{A} and the models of T_{s} which preserves the property of existential closure. Thus T_{A} has a model companion if and only if T_{s} does.

4.2. Skolem expansions

Suppose L is any first-order language and T any L-theory.
Definition: Say that T eliminates \exists^{∞} (or is algebraically bounded) if for all L-formulas $\phi(x, \bar{y})$ there is a natural number N_{ϕ} with the property that for all models M of T and \bar{a} in M, if $\phi[M, \bar{a}]$ has more than N_{ϕ} elements, then it is infinite.

Definition: Suppose $\phi(x, \bar{y})$ is an L-formula, where \bar{y} is an n-tuple of variables. Let L^{+}be the expansion of L by a new n-ary function symbol σ. The L^{+}-theory T^{+}is axiomatized by T together with:

$$
(\forall \bar{y})((\exists x) \phi(x, \bar{y}) \rightarrow \phi(\sigma(\bar{y}), \bar{y}))
$$

We refer to T^{+}as a Skolem expansion of T.
Theorem 3 (P. Winkler, 1975) Suppose T is a model-complete L theory which eliminates \exists^{∞}. Then any Skolem expansion T^{+}of T has a model companion $\left(T^{+}\right)^{*}$.

Proof of Theorem 1 (1) The theory T_{s} is the Skolem expansion of T_{0} with respect to the formula $\phi(x, y)$:

$$
(x \in \mathbf{F} / \mathcal{G}) \wedge\left(y \in \mathbf{F} / \mathcal{G}^{+}\right) \wedge\left(x \mathcal{G}^{+}=y\right)
$$

Apply Winkler's Theorem.
(2) If Γ is finite, then the map ν is $|\Gamma|$-to-1. So the Skolem expansion T_{s} is an algebraic Skolem expansion. Results of Nübling (Arch. Math. Logic, 2004) then give what we want.

5. Not the finite cover property

How to verify that $T_{0}=\operatorname{Th}\left(F ; \Gamma, G, G^{+}, \chi, \ldots\right)$ eliminates \exists^{∞} in the various sorts?

Theorem: (Shelah) For a complete theory T, the following are equivalent:
(1) T does not have the finite cover property;
(2) T is stable and $T^{e q}$ eliminates $\exists \infty$.

- The property of being algebraically bounded in all (real and imaginary) sorts is referred to as weak nfcp.

There are various technologies available for checking that a (stable) T has nfcp. For example:

- if T is non-multidimensional, then T has nfcp
- belles paires (Poizat)

6. A better answer?

Theorem 4 Suppose F is an algebraically closed field of characteristic zero of infinite transcendence rank and $\alpha, \beta \in F$ are multiplicatively independent. Let N be a natural number, ϵ a primitive N-th root of 1 and $\Gamma=\langle\epsilon\rangle ; G=\left\langle\alpha^{N}, \beta, \epsilon\right\rangle ;$ and $G^{+}=\langle\alpha, \beta, \epsilon\rangle$. Define $\chi: G^{+} \rightarrow \Gamma$ to have kernel G and $\chi(\alpha)=\epsilon$. Then:
(i) $T_{0}=\operatorname{Th}\left(F ;+,-, \cdot, 0,1, \Gamma, G, G^{+}, \chi\right)$ is superstable of Lascar rank ω and has nfcp.
(ii) T_{A} has a model completion T_{A}^{*} and all completions of this are supersimple of $S U$-rank ω.

Proof: (i) All of the structure is definable in $(F, G, \alpha, \beta, \epsilon)$. It's well known that this is superstable of Lascar rank ω : see Pillay's paper 'Lang's conjecture and model theory.' The argument in Pillay's paper also gives non-multidimensionality, hence nfcp.
(ii) This follows from part (i) and Theorem 1.

QUESTION: Using an omitting-types theorem for e.c. models, one can show that there is a countable model of T_{A}^{*} in which the group of periods is precisely $G=\left\langle\alpha^{N}, \beta, \epsilon\right\rangle$. Is there a model in which the field is \mathbb{C} and the group of periods is still G ?

7. Green points and variations.

Zilber's paper: Do this where the group of periods G is (a variation of) Poizat's 'green points;' consider the case where Γ is infinite (but small).

7.1. Green points.

Bruno Poizat, 'L'Egalité au cube', JSL 66 (2001):
Language $L_{G}:+,-, \cdot, 0,1$ and a 1 -ary predicate \mathcal{G}
CLAss \mathcal{C} : structures $(A, \mathcal{G}(A))$ where:

- A is an algebraically closed field of characteristic 0 and finite transcendence rank
- $G(A)$ is a torsion-free divisible subgroup of A^{*}
- $\delta\left(A_{1}\right)=2 \operatorname{trdeg}\left(A_{1}\right)-\operatorname{rk}_{\mathbb{Q}}\left(\mathcal{G}\left(A_{1}\right)\right) \geq 0$ for every algebraically closed subfield A_{1} of A.

Embeddings: $A \leq B(\in \mathcal{C})$ means $\delta(A) \leq \delta\left(B_{1}\right)$ for all algebraically closed $A \subseteq B_{1} \subseteq B$.
(\mathcal{C}, \leq) has the amalgamation property and we can construct a universalhomogeneous structure $(F, \mathcal{G}(F))$ for the class. Poizat shows how to axiomatize $T_{G}=T h(F, \mathcal{G}(F)$) (using results of Ax/ Zilber on intersecting algebraic varieties with tori). T_{G} is ω-stable of Morley rank $\omega .2$ and the subgroup \mathcal{G} has Morley rank ω. Using similar methods and belles paires one has:

Proposition $5 T_{G}$ has nfcp.

7.2. Variations:

Variation 1 :

\tilde{T}_{G} : Same as Poizat's T_{G}, but $\mathcal{G} \equiv \mathbb{Z}^{2}$. This is superstable of U-rank $\omega .2$ and has nfcp.

For suitable $\alpha, \beta \in \mathbb{C}^{\times}$and $h \in \mathbb{R}$ let

$$
G_{0}=\exp \left(\frac{2 \pi i}{h N} \mathbb{Z}+\frac{\alpha}{h} \mathbb{Z}+\beta \mathbb{R}\right)
$$

Theorem: (Zilber) Assuming Schanuel's conjecture, $\tilde{T}_{G}=T h\left(\mathbb{C}, G_{0}\right)$.
As for Theorem 4, (and assuming SC) one then has:
Theorem 6 With the above notation, let $\Gamma=\langle\epsilon\rangle ; G=G_{0} . \Gamma$; and $G^{+}=\exp ((2 \pi i / h N) \mathbb{Z}+(\alpha / h N) \mathbb{Z}+\beta \mathbb{R}) . \Gamma$ and $\chi(a)=\epsilon$. Then:
(i) $T_{0}=\operatorname{Th}\left(\mathbb{C} ;+,-, \cdot, 0,1, \Gamma, G, G^{+}, \chi\right)$ is superstable of Lascar rank $\omega .2$ and has nfcp.
(ii) T_{A} has a model companion T_{A}^{*} and all completions of this are supersimple of $S U-$ rank $\omega .2$.

QUESTION: Zilber gives an explicit construction of an angular function ang_{N} with the above data. Is it a model of T_{A}^{*} ?

Variation 2: Infinite Γ.

LANGUAGE: $+,-, \cdot, 0,1$; unary predicates $\mathcal{G}, \Gamma, \Gamma^{+}$and unary functions χ, χ^{-1}.

CLASS: algebraically closed fields A of characteristic zero; multiplicative subgroups $\mathcal{G}(A), \Gamma(A), \Gamma^{+}(A)$ with the properties that

- $\Gamma(A) \subseteq \mathcal{G}(A)$ and $\mathcal{G}(A) \cap \Gamma^{+}(A)=1$;
- the groups $\mathcal{G}(A)$ and $\Gamma(A)$ are elementarily equivalent to \mathbb{Z};
- $\chi: \Gamma^{+}(A) \rightarrow \Gamma(A)$ and $\chi^{-1}: \Gamma(A) \rightarrow \Gamma^{+}(A)$ are mutually inverse group isomorphisms;
- the predimension inequality $\delta \geq 0$ holds, where

$$
\delta(A)=2 \cdot \operatorname{trdeg}(A)-\operatorname{rk}_{\mathbb{Q}}(\mathcal{G}(A))-3 \cdot \operatorname{rk}_{\mathbb{Q}}(\Gamma(A))
$$

Theory \hat{T}_{G} : like Poizat's T_{G}.
Define $\mathcal{G}^{+}=\mathcal{G} . \Gamma^{+}$and extend $\chi: \mathcal{G}^{+} \rightarrow \Gamma$.
Obtain L_{0}-theory T_{0} which is superstable of Lascar rank $\omega .2$ with nfcp. So part (i) of Theorem 1 applies and we have a model companion T_{A}^{*} of T_{A}. As Γ is infinite, this is NOT simple.

QUestion: Zilber has natural candidates for models of \hat{T}_{G} and T_{A}^{*}. Are they in fact models?

