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Is strange and singular the same thing?

“Everybody knows” that the combinatorics of singular
cardinals is “strange”!

Let us explore if we do really and if it is really strange.

We shall be interested in singular cardinals and their
successors. We put forward a thesis that they are in fact
nicer than the successors of regulars.
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Mirna Džamonja

Introduction

Some newer
results

Conclusions

Is strange and singular the same thing?

“Everybody knows” that the combinatorics of singular
cardinals is “strange”!

Let us explore if we do really and if it is really strange.

We shall be interested in singular cardinals and their
successors.

We put forward a thesis that they are in fact
nicer than the successors of regulars.



Combinatorics of
singular cardinals

Mirna Džamonja
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Mirna Džamonja

Introduction

Some newer
results

Conclusions

Some well known properties of singular
cardinals 

Singular cardinal compactness (Shelah) : every
almost-free structure on  (e.g. group) is free.

Inner model theory: in the absence of large cardinals ⇤

holds for all singular . Need a Woodin cardinal to kill ⇤⇤
.

SCH: for every singular , if 2cf() <  then cf() = +.

SCH is not true in ZFC + large cardinals (Magidor), its
failure is equiconsistent with 9o() = ++ (Gitik) but
SCH holds if there are no large cardinals (Jensen), above
a supercompact (Solovay) and in models of various
forcing axioms, such as MM (Foreman, Magidor, Shelah)
down to MRP (Viale). However:

(Shelah) (8n < !)2@n < @! =) 2@! < @!4 .
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A universality problem

Consider now trees of size  without un uncountable
branch, under the notion of reduction f : T ! T 0 which
preserves strict order s <T t =) f (s) <T f (t).

Basically, branches go into branches, but f is not 1-1. The
(non-existing) -branch is universal.

These trees arise naturally in the study of EF games and
various logics, and provide a connection between set
theory and computer sciences (see the work of
Väänänen). The resulting structure T has been studied
extensively, for example at @1 (see e.g. Todorčević-
Väänänen). Interestingly, using Todorčević’s �-operator,
we can see that the universality number at @1 under GCH
is the maximal possible, 2@1 = @2. (GCH always gives
universality number 1 if the structure is first order).

Open Question Is there a model of set theory where
uT@1

= 1?
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we can see that the universality number at @1 under GCH
is the maximal possible, 2@1 = @2. (GCH always gives
universality number 1 if the structure is first order).

Open Question Is there a model of set theory where
uT@1

= 1?



Combinatorics of
singular cardinals

Mirna Džamonja
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The singulars are easy!

Theorem (Dž. + Väänänen, Journal of Mathematical
Logic 2011 ) Let  be a strong limit singular of cofinality
!. Then uT = +.

Just in ZFC! This is the only ZFC universality result on the
uncountable that I know.

It is sort of a combinatorial version of SCH.
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κ singular, cf(κ)=ω, κ=supnκn

• κ- Tree: a tree T of

height and cardinality

κ (levels may be large)

• T is bounded if it has

no κ branch

• A reduction f:T→T’ is

a function preserving

the strict order

x<Ty⇒f(x)<T’f(y).

• We are interested in

the structure of the

class of κ-Trees under

the reducibility

relation



In the case of regular cardinals, e.g. κ=ω1 structure of the

 corresponding class is intensively studied (e.g. S. Todorcevic and 

J. Väänänen, Trees and Ehrenfeucht-Fräissé games, Annals of

 Pure and Applied Logic 100 (1999), pp. 69--97).

Motivation from infinitary logics determined by a game. Trees

are used as clocks in these (or other) games and if there is a reduction from

T to T’, then it is easier for the good player to win the game

determined by T than the one determined by T’. These games

generalise the ordinary Ehrenfeucht-Fräissé games where the

clock is ω or a well-founded tree (the latter used by Karp and

also by Barwise in 1970s for back and forth sequences).

There are many ZFC results about such trees but also many 

independence results. In particular, the universality number

 can have various values.



Here, the universality number is the smallest size of a family F of 

κ-Trees such that every κ-Tree has a reduction into a member of

F.

In the case of κ-Trees where κ is singular of countable cofinality,

 we obtain a ZFC calculation of the universality number. It is κ+. 

This makes these κ-Trees really look like ordinals. In fact, we 

introduce a notion of rank and show that within each rank, the 

universality number is ω.

A ZFC calculation of the universality number cannot be obtained 

for κ-Trees where κ is singular of uncountable cofinality, because 

there are results that connect this number to the universality

number of λ -Trees where λ=cf(κ).



rank on κ-Trees

• ρ(t)≥α if for every n

and β< α there is s≥Tt

of height ≥ κn with

ρ(s)≥ β.

• ρ(t)=α if ρ(t)≥α but

not ρ(t)≥α +1

• ρ(T)= ρ(t*), where t*

is the root of T



Note: (1) The value of the rank does not depend on the

choice of < κn:n<ω >.

(2) If T≤T’ then ρ(T) ≤ ρ(T’).

We can introduce a game which can be used to prove

Theorem 1 A κ-Tree T is bounded iff ρ(T)< κ+.

Using the notion of the rank and a certain operation on κ-Trees

we can directly prove the following

Theorem 2 The universality number of the class of bounded

κ-Trees is κ+.

    However:



We can calculate the universality number within each rank,

and this number is not 1, as the analogy with the ordinals

would suggest, it is ω. The theorem we obtain implies 

Theorem 2.

Theorem 3 (1) The universality number of κ-Trees of rank α

for 0< α< κ+ is ω. 

(2) For every rank α there is a tree Tα of rank

α+1 satisfying T≤ Tα for all κ-Trees of rank α.

Corollary: Theorem 2.

Proof: The universal family is {Tα : α< κ+ } and this family

is minimal because if α<β then Tβ cannot embed into Tα .



About Proof of Theorem 3

We illustrate the proof of Theorem 3 by concentrating

on  the case of rank=1. A typical tree of rank 1 is the

fan F:

    it consists of a branch of length κn for each n, joined

by a common root.

…

κ0

κ0

κ1

κ2

κn

F



For each n let Fn consist of a stem of length κn topped up with a

copy of F. If n<m then there is no reduction from Fm to Fn,

because the reduction would have to be to a branch of Fn.

If a tree T has rank 1, then there is n such that no point of height

more than κn  has rank 1, so we can map T into Fn.

F

κn



Other cofinalities

Clearly, one cannot hope to get a rank with trees that have nothing

to do with well-foundedness, for example for trees of singular 

cardinality κ whose cofinality is uncountable. We still may ask if

it the analogue of Theorem 2 (the universality number for 

bounded κ-Trees is κ+). 

The answer is negative. Namely, suppose e.g. cf(κ)=ω1. Then

we can to each bounded κ-Tree T associate its ‘small twin’ tw(T)

so that tw(T) is an ω1 -Tree with no uncountable branch, and

if T≤T’ then tw(T) ≤ tw(T’). It is consistent that the universality

number for bounded ω1 -Trees is as large as desired (one can use

a GMA).



More on ω1

Mekler and Väänänen (1993) showed that it is consistent that the

universality number of bounded ω1-Trees is ω2 while 2 ω1 > ω2 .

(Preliminary work with Katherine Thompson indicates that is

also consistent to have one universal bounded ω1-Tree.)

On the other hand, it is known that the universality number

of bounded ω1-Trees can be 2 ω1 which can be as large as desired.

Therefore, using the twinning operator, the universality number of

 κ -Trees for κ singular of cofinality ω1 cannot have a ZFC value

 κ+.



Boundedness theorems
The classical boundedness theorem in descriptive set theory is

that, denoting by WO a complete ∏1
1 set, then for every ∑1

1 

subset A of WO we have that the sup of ordinals coded by  is

< ω1 .Mekler  and Väänänen (1993) gave a similar theorem for

∑1
1-subsets of the topological space ω1 ω1, under CH. The

topology here is generated by 

    N(f,ξ)={g: g| ξ=f| ξ}, f: ω1 → ω1, ξ< ω1

and the set WO is replaced by the set TO which is a universal

∏1
1 set of codes for ω1-Trees with no uncountable branch.

Theorem (Mekler  and Väänänen)(CH) If A⊆TO is ∑1
1 then

there is T in TO with t≤T for all t in A.

(2) (Dz. and Väänänen) Analog for κ strong limit, cf(κ)=ω.
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Universality of graphs

Let  be a cardinal � @1. Consider the embeddings
f : G ! H between graphs on  which preserve the edge
and the non-edge relation and say that G  H if there is
such an embedding. We are interested in the smallest
size of a dominating family in the resulting structure, call
this u.

If GCH holds then u = 1 for all .

For  the successor of a regular Cohen forcing gives the
consistency of u = 2 > +.

For  the successor of a regular it is consistent to have
u < 2 > + (Mekler, Shelah for @1, Dž. + Shelah in
general).



Combinatorics of
singular cardinals

Mirna Džamonja
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Successors of singulars

The following was obtained by Dž. and Shelah for � = @0
(2005) and by Cummings, Dž., Magidor, Morgan and
Shelah (recent) in general:

Theorem If  is a supercompact cardinal, � <  is a
regular cardinal and ✓ � +3 is a cardinal with
cf(✓) � ++, then there is a cardinal preserving forcing
extension in which cf() = �, 2 = 2+

= ✓ � +3 and
u+  +2.
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Some ideas of the proof

Iterate a forcing which blows up the power of , builds the
future universal graphs and controls the names in Radin
forcing of graphs on +. Radin forcing with respect to
what, subsets of  are being added all the time? Well, a
measure sequence is being constructed as we go. The
universal family is obtained using a cofinal sequence in �.
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With Cummings and Morgan we have recent work where
 can be made to be @!. Cummings and his student
Jacob Davis are working on the case @!1 .

The point is: *For all we know* u+ might be + (so 1) in
our model (and these other models)!
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> ++?

The good old proof with the Cohen reals does not seem
to generalize in any sense!

*For all we know* u+ might be + (so 1) in every model,
i.e. in ZFC!
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Mirna Džamonja

Introduction

Some newer
results

ConclusionsQuestion Can we have  singular and u+ = 2+
> ++?

The good old proof with the Cohen reals does not seem
to generalize in any sense!

*For all we know* u+ might be + (so 1) in every model,
i.e. in ZFC!



Combinatorics of
singular cardinals

Mirna Džamonja

Introduction

Some newer
results

ConclusionsQuestion Can we have  singular and u+ = 2+
> ++?

The good old proof with the Cohen reals does not seem
to generalize in any sense!

*For all we know* u+ might be + (so 1) in every model,
i.e. in ZFC!



Combinatorics of
singular cardinals

Mirna Džamonja
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Cardinal invariants at singulars and their
successors

The two examples presented show that the cardinal
invariants at a singular and its successor are genuinely
different than what we know and, I think, that they should
be studied systematically. Not everything can be a ZFC
result, of course we know that SCH can fail (Magidor),
and GCH can fail everywhere (Foreman and Woodin).
There are combinatorial results which show that some
cardinal invariants can be made as high as possible, for
example Cummings and Shelah (1995) show that it is
consistent modulo l.c. to have that every infinite Boolean
algebra B has 2|B| subalgebras.

We need a systematic study, involving also development -
if possible of forcing axioms.
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Mirna Džamonja

Introduction

Some newer
results

Conclusions

Cardinal invariants at singulars and their
successors

The two examples presented show that the cardinal
invariants at a singular and its successor are genuinely
different than what we know and, I think, that they should
be studied systematically. Not everything can be a ZFC
result, of course we know that SCH can fail (Magidor),
and GCH can fail everywhere (Foreman and Woodin).
There are combinatorial results which show that some
cardinal invariants can be made as high as possible,

for
example Cummings and Shelah (1995) show that it is
consistent modulo l.c. to have that every infinite Boolean
algebra B has 2|B| subalgebras.

We need a systematic study, involving also development -
if possible of forcing axioms.



Combinatorics of
singular cardinals

Mirna Džamonja
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Mirna Džamonja

Introduction

Some newer
results

Conclusions

A Question suggested by Stevo

Consider the universality of graphs on  with no complete
subgraph of size , as a generalization of the problem of
tree reductions.

This is a very general problem and has to do with the so
called Rado conjecture (there one restricts to intersection
graphs of linear orders).
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Foundational and philosophical remarks

The fact that ZFC determines to some extent the
combinatorics at the singulars and their successors has a
philosophical significance. If one is a platonist then the
fact that we have independence in set theory and
elsewhere speaks just of our inability to model the true
universe by our methods. The combinatorics at the
singulars shows that to some extent we catch our tail at
singular cardinals. ZFC is capable of telling us the truth
asymptotically.

This is very pleasing and stands as a good answer, at
least to me, to “what is the relevance of set theory in
mathematics? Why work in ZFC and not in some other
system”.
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