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Abstract we present the first continuous in situ atmospheric observations from the central Iceland Sea
collected from a meteorological buoy deployed for a 2 year period between 23 November 2007 and 21
August 2009. We use these observations to evaluate the ERA-Interim reanalysis product and demonstrate
that it represented low-level meteorological fields and surface turbulent fluxes in this region very well.
The buoy observations showed that moderate to strong winds were common from any direction, while
wind speeds below 5 ms~! were relatively rare. The observed low-level air temperature and surface heat
fluxes were related to the wind direction with cold-air outbreaks most common from the northwest. Mean
wintertime turbulent heat fluxes were modest (<60 Wm™2), but the range was substantial. High heat flux
events, greater than 200 Wm~2, typically occurred every 1-2 weeks in the winter, with each event lasting
on average 2.5 days with an average total turbulent heat flux of ~200 Wm~2 out of the ocean. The most
pronounced high heat flux events over the central Iceland Sea were associated with cold-air outbreaks from
the north and west forced by a deep Lofoten Low over the Norwegian Sea.

1. Introduction

In terms of its physical oceanography and meteorology the Iceland Sea is arguably the least studied of the
North Atlantic’s subpolar seas. Major field campaigns in the Greenland Sea [e.g., Schlosser et al., 1991; Watson
et al., 1999; Briimmer, 1997], the Labrador Sea [e.g., The Lab Sea Group, 1998; Renfrew et al., 1999], and the
Irminger Sea and Denmark Strait [e.g., Pickart et al., 2003; Renfrew et al., 2008] have given a picture of the
dense water production in these regions and the role of air-sea fluxes in driving this process. As the most
accessible, and motivated by operational weather forecasting, the Norwegian Sea has generally received con-
sistent attention. In contrast, the Iceland Sea—between Iceland and Jan Mayen (see Figure 1)—has generally
garnered less scientific attention.

This is now changing, in part because of the discovery of the North Icelandic Jet [Jénsson and Valdimarsson,
2004], a new pathway of dense water that flows along the north slope of Iceland and feeds the Denmark
Strait Overflow, a major source of the Deep Western Boundary Current. The North Icelandic Jet is thought
to transport southward up to half of Denmark Strait’s dense water [Vdge et al., 2011] and is hypothesized to
originate in the Iceland Sea [Vdge et al., 2013]. However, its exact source and related water mass transformation
processes are currently unknown. Deep convection in the Iceland Sea had been previously discussed by Swift
and Aagaard [1981], but it is the new potential role that the Iceland Sea plays in feeding the Denmark Strait
Overflow that focuses our attention on where and when deep convection could occur, and the atmospheric
conditions and surface heat fluxes that might drive it.

From a meteorological standpoint, what is maybe most perplexing about the prospect of dense water forma-
tion in the Iceland Sea is that this region is a local heat flux minimum [Moore et al., 2012]. In other regions of
oceanic deep convection, for example, the Labrador Sea, Greenland Sea, and the Irminger Sea, the large-scale
atmospheric circulation ensures consistently high heat fluxes and, as such, readily promotes water mass
transformation. However, in the Iceland Sea, Moore et al. [2012] show that the Iceland Sea is at a saddle
point between the climatological Icelandic and Lofoten Lows, and according to ERA-Interim reanalyses, the
winter-mean heat fluxes are only 57 Wm~=2 (out of the ocean), with winter-mean air and sea surface temper-
atures of 1.3 and 2.3°C, respectively. Using composites of high and low heat flux months, they show that this
local minimum is the result of a balance between relatively low heat flux months (including negative heat
fluxes—the atmosphere warming the ocean) and modest heat flux months; e.g., the average of the highest
10% of months has a total surface heat flux of 116 Wm~=2. It is unlikely that such modest heat fluxes would be
sufficient to drive deep convection in the Iceland Sea even during high heat flux months.
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Figure 1. Map showing key locations and features referred to in the text. The location of the meteorological buoy in the
Iceland Sea is shown with a red cross. The bathymetry is plotted every 500 m. The North Icelandic Jet (NIJ) is shown
along the north slope of Iceland. This newly discovered current is thought to originate in the Iceland Sea and feed the
Denmark Strait with half its dense overflow water.

However, Moore et al. [2012] only used monthly mean fields and were not able to detail the characteristics of
typical air-sea flux events. It is clear that we need to increase our temporal resolution if we are to determine,
for example, whether the surface fluxes in the highest heat flux months are consistently moderate (around
100 Wm~2 of cooling) or are composed of episodic periods of higher and lower heat fluxes as is prevalent
in the Labrador Sea [Renfrew et al., 2002] and Irminger Sea [Vdge et al., 2008]. Moreover, we do not currently
know whether there are locations in the Iceland Sea that might be susceptible to stronger forcing than the
basin-scale mean. This knowledge would be vital to inform deep convection studies and focus field campaigns
in the region.

Moore et al. [2012] also did not establish how close the reanalysis flux fields are to observations in the Ice-
land Sea. Reanalyses are powerful tools for investigating air-sea interaction, but only if we can validate their
low-level fields. Calculating turbulent heat fluxes in reanalyses is sensitive to the representation of sea sur-
face temperature, low-level properties, and stability [Renfrew et al., 2002], and validating these fields is hard in
regions with sparse in situ observations, such as the Nordic Seas. Reanalyses have been shown to exhibit both
low and high heat flux biases in other regions of the subpolar and polar seas [Lammertetal., 2010; Harden et al.,
2011; Jakobson et al., 2012] highlighting the importance of local verification of heat flux products, especially
in the Iceland Sea which sits at a large-scale confluence of diverse air masses.

The aim of this paper is to address some of these knowledge gaps and provide a more in-depth look at the
temporal and spatial scales of air-sea fluxes in the Iceland Sea. To do this, we use in situ observations from
a meteorological buoy deployed in the central Iceland Sea for almost 2 years. We use this data to present a
brief surface climatology and provide valuable validation for a global reanalysis product (ERA-Interim). We
then use the buoy observations, in conjunction with reanalyses fields, to determine the atmospheric forcing
one might expect for different synoptic-scale situations and to characterize the temporal and spatial extent
of high heat flux events.

2. Data

The meteorological buoy was deployed by the Icelandic Meteorological Office in the central Iceland Sea to
obtain information on local weather as a part of a governmental preparation phase for exploration for oil and
gas on the Icelandic continental shelf. The buoy was deployed from 23 November 2007 to 21 August 2009 and
was anchored at 68.47°N, 9.27°W (see Figure 1 for location). It was serviced once during this period on 7 June
2008. The buoy measured wind velocity (at a height of 4 m), air temperature (3.5 m), humidity (3.5 m), and
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sea level pressure with a time resolution of 1 h. In addition, the buoy measured the ocean temperature and
velocity at 1.5 m depth. The meteorological data were adjusted to standard heights using well-established
stability-dependent formulas, based the algorithm of Smith [1988], with constant exchange coefficients from
DeCosmo et al. [1996], with the same algorithms also used to calculate bulk fluxes. The sea surface tempera-
ture needed for this was available from the buoy. This method has previously been shown to be reasonably
accurate for the subpolar seas [e.g., Renfrew et al., 2009]. All data were quality controlled manually by remov-
ing outliers and other nonphysical data points. The pressure sensor suffered some water damage after two
large storms; times when this was clearly a problem have been removed from the analysis.

After 17 April 2009, the buoy broke free of its mooring and drifted northward in the Iceland Sea. It was later
recovered on 21 August 2009 at 69.40°N, 9.62°W. During this period the buoy recorded no ocean proper-
ties, but the collection of meteorological data was unaffected and the buoy stayed mostly within the same
ERA-Interim grid box. To produce a continuous time series of observed surface heat fluxes and to implement
the stability-dependent height adjustments at these times, we used the reanalysis sea surface temperature
which, as we will show, agrees well with the observations (Figure 2).

We will use the buoy data to validate the European Centre for Medium-Range Weather Forecasts (ECMWF)'s
ERA-Interim reanalysis product [Berrisford et al., 2009] for the central Iceland Sea region. This product is a
6-hourly consistent analysis of the atmospheric conditions produced by constraining a global forecast model
to observations using a 4D-VAR data assimilation system [Berrisford et al., 2009; Dee et al., 2011]. ERA-Interim
has 255 horizontal spectral modes (T255) and 60 vertical levels. For grid point fields, a reduced Gaussian
grid is used with an approximate spacing of 80 km. For near-surface variables we use the analysis output
every 6 h interpolated onto a uniform latitude-longitude grid of 0.70°. Comparisons with buoy data are made
for the nearest grid point in the ERA-Interim product. Sensitivity tests with surrounding grid points showed
that the nearest grid point has the best comparison, but the sensitivity in this central Iceland Sea location is
not large.

The surface turbulent fluxes that are available from ERA-Interim are diagnostic quantities accumulated over
3 hintervals from a forecast. We use the output on the same 6-hourly temporal resolution as the analysis fields.
This means that, for example, the 00 UTC fluxes that we present are actually an average over the 3 h from 00
to 03 UTC and the 06 UTC fluxes are an average over the 3 h from 06 to 09 UTC. We use a similar 3 h averaging
of the buoy fluxes to enable a direct comparison to the ERA-Interim flux data.

3. Results

3.1. Reanalysis Verification

In general, the ERA-Interim reanalyses compare remarkably well with the buoy observations (Table 1 and
Figure 2). The correlation coefficients are high, the linear regression slopes are close to unity, and the bias
errors are relatively small. Perhaps the most notable bias is 0.43°C in the 2 m air temperature (T,,,), which
combined with a —0.34°C bias in SST means a bias in the air-sea temperature difference of almost 0.8°C. The
modeled relative humidity has a moderate spread and a bias of —5.5%, although this only equates to a small
bias in specific humidity. Root-mean-square errors in the turbulent heat fluxes are both around 15 Wm~2, and
the biases are relatively small and negative. ERA-Interim underestimates the heat leaving the ocean, mostly
due to the 2 m air and sea surface temperature biases noted above.

ERA-Interim is biased marginally high for wind speed (by 0.12 ms~") compared to the Iceland Sea buoy obser-
vations. This is unusual compared to previous such comparisons in the region, which typically show that
reanalyses underestimate wind speeds [e.g., Renfrew et al., 2002; Moore et al., 2008; Renfrew et al., 2009; Harden
etal., 2011]. To investigate this further, we conditionally sampled for wind direction and found that the bias
was significantly greater for southerlies (0.39 ms~" or 5.2% of the southerly mean) than it was for northerlies
(—0.09 ms~" or 1.1% of the northerly mean). We hypothesize that this bias is due to ERA-Interim’s poor repre-
sentation of the sheltering effect of Iceland. The topography of Iceland is known to generate significant jets
and wakes [Smith, 1982; Renfrew et al., 2008]; during southerly flows a wake region commonly occurs in the
lee of Iceland (to the north) and this can extend into the central Iceland Sea. We suggest that a poor represen-
tation of this wake in ERA-Interim, due to the model’s relatively coarse resolution, could be the cause of this
wind bias. Another cause of the bias for southerly flow might be how ERA-Interim represents low-level, stable
boundary conditions that might be formed when warm air from the south is advected over the relatively cold
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Figure 2. Meteorological buoy observations versus ERA-Interim reanalyses values as scatterplots for the ~2 year
deployment. Panels are the 10 m wind speed (U;¢,,), 2 m air temperature (T,,,), 2 m relative humidity (RH,,,), sea surface
temperature (SST), surface momentum flux, and surface sensible heat flux. A linear regression line is overlaid (bold).
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Table 1. Comparison of ERA-Interim With Meteorological Buoy Data?

MSLP Tom SST Gom RHym  Uiom WD T SHF LHF

(hPa) Q) (O (gkg™") (%) (ms™") (deg) (Nm=2) (Wm™2) (Wm)
Mean: buoy 1004.7 239 3.45 4.18 883 7.91 162 0.131 20.5 34.0
ERA-Interim 10049 2.82 3.11 4.09 82.8 8.03 157 0.158 123 27.6
SD: buoy 14.1 3.93 2.72 1.40 9.7 3.62 107 0.127 39.9 38.6
ERA-Interim 14.0 4.08 2.88 1.48 11.3 3.88 105 0.183 421 38.6
Correlation coefficient 0.99 0.99 0.99 0.98 0.83 0.91 0.97 0.89 0.95 0.94
Slope 0.99 1.02 1.04 1.04 0.96 0.97 0.98 1.27 1.00 0.95
Bias error 0.12 043 -034 -0.09 -5.5 0.12 -5 0.026 -83 -6.4
RMS error 0.54 0.82 0.61 0.30 8.4 1.6 23 0.095 15.8 14.4
Number 920 2536 2029 2439 2439 2536 2415 2536 2536 2439

aComparison of 6-hourly buoy observations and ECMWF Interim reanalysis time series for mean sea level pressure,
MSLP (hPa); 2 m temperature, T,,, (°C); sea surface temperature, SST (°C); 2 m specific humidity, g5, (gkg™"); 2 m rela-
tive humidity, RH,,,, (%); wind speed, U;om, (ms™1); wind direction, WD (deg); surface momentum flux, = (Nm~2); surface
sensible heat flux, SHF (Wm~2); and surface latent heat flux, LHF (Wm~2). The number of points used in the comparisons
is shown in the last row. Note that to avoid spurious wind direction statistics if the difference in wind direction is greater
than 270°, it is assumed that this is because of a 360-0 crossing and these points are neglected.

ocean in the Iceland Sea. Resolving wakes and boundary layers accurately could therefore be important for
representing wind strength and air masses over the Iceland Sea and improving air-sea fluxes.

However, there are other possibilities for the wind speed bias. Previous studies have shown that sheltering
effects and elevation changes during rough seas can negatively bias the wind field measured by met buoys at
high wind speeds [Large et al., 1995; Zeng and Brown, 1998]. In addition, the met buoy measures flow features
on a smaller spatial scale than ERA-Interim; there is a representativity uncertainty due this point measurement
being compared to a grid box average, possibly leading to the buoy recording higher winds than ERA-Interim,
as discussed by, e.g., Stoffelen [1998]. However, this representativity uncertainty does not explain the incon-
sistency of our comparison with previous comparisons for the subpolar seas [e.g., Renfrew et al., 2002; Moore
etal., 2008; Renfrew et al., 2009; Harden et al., 2011].

Our comparison for the central Iceland Sea is noticeably better than previous studies in other subpolar seas.
Renfrew et al. [2009] compared aircraft-based observations for the Irminger Sea, Denmark Strait, and one flight
over the Iceland Sea, to two resolutions of ECMWF operational analyses. That version of the ECMWF forecast
system was very similar to that employed for ERA-Interim. In our comparison the wind speed slope, bias, and
RMS errors are significantly improved (slope is 0.97 here compared to 0.73 in Renfrew et al. [2009]; and the
RMS error is 1.6 ms~' compared to 2.6 ms~" in Renfrew et al. [2009]); the temperature comparison is better
(r=0.99, compared to 0.92 in Renfrew et al. [2009]); and the humidity comparison is similar. These differences
may be partly explained by the persistent strong wind, cold air outbreak conditions in the Renfrew et al. [2009]
comparison, which produced large errors over, and downwind, of the sea ice zone.

One can also compare the performance of ERA-Interim in our study to that of the North American Regional
Reanalyses (see Mesinger et al. [2006]) when compared to a meteorological buoy in the Irminger Sea—see
Moore et al. [2008]. Here despite a coarser horizontal resolution, the ERA-Interim generally performs better;
e.g., Tom: Uigms @and humidity are all better represented. In addition, in the nearby Denmark Strait and northern
Irminger Sea, Harden et al. [2011] showed that the 2 m air temperature in ERA-Interim is negatively biased
by —1°C resulting in surface fluxes being too large by ~10%. We have shown that this is not the case in the
central Iceland Sea; ERA-Interim is marginally high biased in its 2 m temperature and slightly underestimates
heat fluxes. Even though we are only just upstream of their study region, this comparison demonstrates the
need for local verification of reanalyses, especially over the subpolar seas that experience a wide range of
wind regimes.

3.2. Wind Field
The Iceland Sea sits at a saddle point between the competing influences of the Icelandic Low to the west and
the Lofoten Low to the east [Moore et al., 2012]. The result is that, although the mean wind field is weakly from
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the northeast, the instantaneous wind

field is typically moderate to strong

(10-20 ms~") and from a range of direc-

tions (Figure 3). Winds from all directions

are common, with a slight preference

/ toward northeasterly flow and fewer
occurrences of westerly flow. It is very rare

for the winds to be lower than 5 ms='.

In order to more fully describe the
low-level wind field we employed a
detection routine to find high wind
speed events. In light of the lack of a
well-defined preferred wind direction,
we employed this detection routine for
all wind directions in 15° increments.
We resolved the wind velocity into each
direction, then found all of the local max-
ima greater than a threshold of 10 ms™',
and separated by more than 48 h (to
allow time between synoptic systems). If
two maxima were found to be closer than
48 h, then the larger of the two events
was chosen. The following results are
qualitatively similar for different choices
of wind speed threshold or event spacing.

For each event, from each direction, we
calculate the mean 2 m temperature and

_ - _ -1

0.1-5 5-10 10-15 15-20ms total turbulent heat flux as measured by
Figure 3. Wind rose for the central Iceland Sea based on observed the met buoy in a 12 h window centered
10 m winds from the meteorological buoy. The wind direction is on the wind event. In addition, we used

divided into 22.5° bins (i.e., N, NNE, NE, etc.) and the wind speed into
5 ms~ bins. The width of the bar is proportional to the wind speed, .
and the length is proportional to the frequency from that direction. the nearest model time step to represent

the wider meteorological environment at

the time of the event. The number of wind events is not equally distributed through the range of directions. In
accordance with the wind rose (Figure 3), the largest number of events are found for northerly flow (68 events),
and the fewest for westerly flow (31 events). Most events are triggered between the months of September
and May.

the low-level fields from ERA-Interim at

Each high wind speed event was triggered by a passing low-pressure system (as seen from manually inspect-
ing individual events, not shown). For each wind direction, we produced a composite pressure field from the
ERA-Interim data as a mean over all the events. This allowed us to map the centers of action and determine
where a typical storm that triggers a high wind event from a given angle resides. The location of the low
pressure center at the time of the wind maximum determines the wind direction at the buoy site (Figure 4).
For example, lows over the Norwegian Sea will trigger northerly wind events, while lows along the southeast
coast of Greenland will trigger southerly wind events. The Norwegian and Irminger Seas are both regions of
seasonally lower pressure where more storms pass during the winter. As such, a higher proportion of winds
come from these directions (Figure 3). To trigger a westerly event, the pressure center has to be confined close
to the east coast of Greenland, where lows are less frequently found, hence the fewer events and the weaker
mean winds from this direction.

For a given high wind speed event direction the synoptic-scale pressure system will draw in air with markedly
different properties (Figure 4). At the most extreme, northwesterly events draw in cold, dry Arctic air off the
seaice to the north and west. Air temperatures are on average —1°C (+1 standard deviation of +3 to —5°C) but
can be as low as —9°C during these events. In contrast, southeasterly events bring in warm maritime air that is
on average 3°C but can be as warm as 10°C in extreme cases. Accompanying these shifts in temperature are
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Figure 4. The influence of the synoptic scale situation on temperature and heat fluxes at the meteorological buoy (the
red cross in Figure 4a). (a) The location of the center of composite low-pressure systems (shaped markers) as a function
of wind direction at the buoy (in 15° increments, see text), grouped into four predominant directions: northerly winds
(pluses, 315°-30°), easterly winds (circles, 45°-120°), southerly winds (squares, 135°-210°), and westerly winds
(triangles, 225°-300°). There are six low centers for each wind direction group. For southerly events, the ERA-Interim
horizontal resolution means that multiple low pressure centers fall on the same grid point, hence the few number of
markers for this direction group. Shaded contours show the wintertime (October to April) mean sea level pressure field
from ERA-Interim for the 2 years of deployment. (b and c) Polar plots of the range in mean 2 m air temperature (°C) and
mean total turbulent heat flux (Wm™2), respectively, measured by the buoy over a 12 h window centered on the events
from each wind direction. The mean (bold line) and +1 standard deviation (light blue shading) are plotted. Gray axial
lines and shaped markers are plotted for every second wind direction used in the analysis.

large changes in total surface heat flux over the Iceland Sea. The cold, dry air of the northwesterly events draws
on average more than 150 Wm™2 from the ocean, although in some events the heat flux exceeds 300 Wm~2,
On the other hand, the southwesterly events produce little to no heat flux due to their high temperatures
and humidity.

3.3. Heat Fluxes

In the mean, the heat flux field over the Iceland Sea is a local minimum [Moore et al., 2012]. However, the
time series of heat fluxes from the met buoy (Figure 5) clearly shows that isolated high heat flux events can
occur on short time scales. The probability distribution is centered near to zero but has a very long tail; the
95th percentile is 211 Wm~2 and the 99th percentile is 336 Wm™2. This latter value is low compared to the
~1000 Wm~2 reported by Gulev and Belyaev [2012] for the 99th percentile in this region based on the National
Centers for Environmental Prediction (NCEP) reanalyses fluxes. Even given the moderate high bias of NCEP
fluxes atlarge values [Renfrew et al., 2002; Moore and Renfrew, 2002] this is a large discrepancy. Part of this could
result from the coarser resolution of the NCEP reanalysis or the limited period of our data (2 years) compared
to that used by Gulev and Belyaev [2012] (60 years), allowing them to sample more extreme events.
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Figure 5. (top) Time series of total turbulent heat flux calculated from the buoy observations, grey bars indicate high
heat flux events (see text for details). (bottom) Composite of total turbulent heat flux (shading), mean sea level pressure
(contours every 2 hPa) and 10 m winds (vectors) for all of the high heat flux events. The location of the meteorological
buoy is marked with a red cross. The mean wintertime sea ice edge is shown with a thick gray line.

To examine high heat flux events in more detail, we applied a similar detection routine to that for the high wind
speed events. High heat flux events are defined as peaks in the total turbulent heat flux of over 200 Wm—2,
separated by at least 48 h with a minimum of less than 100 Wm~2 between peaks to ensure distinct events are
being sampled. We chose 200 Wm~2 as our threshold as this corresponds to approximately the 95th percentile
of heat fluxes. Higher values produce qualitatively similar results but reduce the number of events that are
afforded for statistics and compositing. We defined the length of an event as the time that the heat flux was
greater than 100 Wm™2. In this manner, we found 34 high heat flux events in the buoy time series.

All the events are clustered in the winter months, between October and April (Figure 5). On average, events
lasted 2.5 days (with a standard deviation of 1.5 days) and the longest event lasted 7 days. Over the duration
of each event, the mean total turbulent heat flux was 199 Wm~2 with the largest event extracting an average
of 299 Wm~2 over a 3.5 day period. Between events the heat fluxes are relatively small (e.g., see Figures 4 and
5) with 43% of measured total heat fluxes below 20 Wm~2. The result is a moderate record-long mean of 54.5
Wm~2 (Table 1). Consequently, the designation of the Iceland Sea as a local minimum disguises the impact of
individual high heat flux events.

The meteorological conditions during these high flux events are characteristic of cold-air outbreaks (Figure 5).
A strong composite Lofoten Low is over the eastern Norwegian Sea, which drives strong northerly winds,
bringing cold, dry air off the ice and over the Iceland Sea. Although these events are representative of local
heat flux maxima at the buoy location, higher heat fluxes elsewhere in the region are possible during these
events. Of particular interest is the region of high heat flux to the northwest of the buoy location along the
ice edge. Here the ocean is likely to experience the coldest, driest air and hence the largest heat fluxes. We
speculate that this region could be particularly important for forcing deep convection in the Iceland Sea
although the use of the ERA-Interim, or other reanalyses or model fluxes, at this transition needs to be verified
observationally.
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Our analysis shows that isolated high heat flux events occur in the Iceland Sea and that these events are
disguised in annual and monthly means by low fluxes between them. However, the heat fluxes we report
during events are modest (~200 Wm~2) in contrast to events in other regions of deep convection such as the
Labrador Sea and Greenland Sea (~500-1000 Wm~2 [The Lab Sea Group, 1998; Watson et al., 1999]). As we
have discussed, it might be possible for areas near the ice edge to experience larger fluxes, but it remains to
be seen whether these are supported by observations and whether they are large enough to drive the water
mass conversions that are hypothesized to be occurring in the Iceland Sea.

4, Discussion and Conclusions

We have examined the surface meteorological conditions in the central Iceland Sea from 2 years of observa-
tions from a meteorological buoy and the ERA-Interim reanalysis product. In general, ERA-Interim appears to
be doing a very good job at representing the low-level meteorological conditions in the central Iceland Sea.
The low-level temperature biases witnessed in previous work for the Denmark Strait (low) and in the Arctic
(high) are largely absent in this region, and as a result, the turbulent heat fluxes are well represented. The 10 m
wind is slightly biased high in the ERA-Interim, during high wind speeds from the south, potentially due to
the poor model representation of wake effects in the lee of Iceland.

A wide range of possible storm positions relative to the Iceland Sea ensures that a range of wind directions
occur, with a slight preference toward northeasterly flow and fewer westerlies. The wind speed is rarely below
5 ms~'. Thus, the Iceland Sea can be characterized as a part of the North Atlantic that is always experiencing
moderate to strong winds with the wind direction changing on synoptic time scales. The different wind direc-
tions bring with them air masses from very different sources. At the extremes, northwesterlies bring cold, dry
air down from the Arctic and southeasterlies bring warmer, moist air from southern latitudes. These regimes
change on synoptic timescales resulting in a rapidly changing turbulent heat flux field over the Iceland Sea.
This, coupled to generally cooler ocean temperatures in the region, means that the mean turbulent heat flux
is a local minimum for the subpolar North Atlantic. Other regions either have higher surface temperatures or
experience more consistent cool, dry conditions.

However, on shorter timescales the Iceland Sea frequently experiences high heat flux events in the winter-
time. We find 34 high heat flux events over the two winters, i.e., an event every week or so. Each event lasted
on average 2.5 days, extracting on average 199 Wm~2 from the ocean. These events occurred during cold-air
outbreaks driven by low pressure centers over the Norwegian Sea (i.e., a deep Lofoten Low). At these times,
the largest heat fluxes were found nearest to the ice edge, to the north of the buoy, due to the large tem-
perature difference found here. However, given the distance of the ice edge from the buoy, additional in situ
observations are needed to verify reanalyses products in this area. Between high heat flux events, the over-
lying atmosphere was typically moist and at a similar temperature to the ocean ensuring near-zero surface
heat fluxes.
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