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Club Guessing on wjy

Well-known weakening of Jensen’s {:

Club Guessing on wy (CG) (Shelah?): There is a ladder system
(Cs | 0 € Lim(wy)) (i.e., forall 6, Cs C ¢ is cofinal in § and of
order type w) such that for every club C C wq there is

0 € Lim(wq) such that Cs sy, C.

Club Guessing on « with cf(x) > w» is a ZFC theorem (Shelah).



Some weakenings of CG
Consider the following weakenings of CG:

Kunen’s Axiom (KA) (Kunen): There is a ladder system
(Cs | 6 € Lim(wy)) such that for every club C C wq there is §
such that

[Cs(n), Cs(n+1))NC#D

for a tail of n,
where (Cs(n))n<. is the increasing enumeration of Cs.

Clearly: CG = KA.



U (Todorcevi¢, J. Moore): There is a ladder system
(Cs | 0 € Lim(wq)) and colourings gs : 6 — w (for ¢ € Lim(wy))
such that

e Forall § and n < w, |gs“(Cs(n), Cs(n+1)]| = 1, and

e for every club C C wq there is some ¢ such that
g5 '({m}) N C is unbounded in § for al m < w.

Clearly: KA = U.



Weak Club Guessing (WCQG) (Shelah): There is a ladder
system (C;s | § € Lim(wy)) such that for every club C C wq there
is 0 such that Cs N C is unbounded in .

Very Weak Club Guessing (VWCG) (Shelah): There is a set X’
of size Ny consisting of subsets of wy of order type w such
that every club of wy has infinite intersection with a member of X'.

Very Weak Club Guessing, (VWCG,) (A.—Mota): There is a set
X of size < X consisting of subsets of wq of order type w such
that every club of wq has infinite intersection with a member of
X.



CG = WCG = VWCG = VWCGy,
VWCG, = VWCG,, for A < p.

b < A= VWCG,



The ‘strong’ form of these (weak)
guessing principles

We can define these strong forms by requiring that the relevant
guessing occurs on a club of §’s. For example:

Strong Club Guessing (Strong CG): There is a ladder system
(Cs | 6 € Lim(wq)) such that for every club C C w4 there are
club—many § € Lim(w) such that Cs Cyip, C.

Similarly we can define strong KA, strong U, strong weak club
guessing, and so on.



Of course Strong P implies P for all these guessing principles
P. And the reverse implications don’t hold. Also, Strong P;
implies Strong P, if Py implies Py.

Caution: Even if ¢ implies CG, {* (which is a ‘weakly strong’
form of {») does not imply Strong CG (Ishiu, P. Larson)



Of course Strong P implies P for all these guessing principles
P. And the reverse implications don’t hold. Also, Strong P;
implies Strong P, if Py implies Py.

Caution: Even if ¢ implies CG, {* (which is a ‘weakly strong’
form of ) does not imply Strong CG (Ishiu, P. Larson)

These strong guessing principles are consistent (folklore): Add
a CG sequence C by initial segments. Then do a countable
support iteration in which you shoot all relevant clubs to make
C strongly club guessing.



Some innocent forcing notions and
weak forcing axioms

Given a partial order P and a cardinal A\, FA(P), means: For
every collection {D; | i < \} of dense subsets of P there is a
filter G C P such that GN D; # () for all i < \.

Given a class I' of partial orders and a cardinal A, FA(I")
means FA(P), for every P € T.



BPFA implies -~VWCG and —U (using the natural poset for
adding, by initial segments, a club destroying the relevant
guessing sequence).
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BPFA implies -~VWCG and —U (using the natural poset for
adding, by initial segments, a club destroying the relevant
guessing sequence).

On the other hand, every club of wy in every ccc extension
contains a club in V. In particular, all these guessing principles
P are preserved by ccc forcing, and so they are consistent with
2% large.

In particular, no forcing axiom MA, implies — Strong CG.



Of course MA,,, implies neither VWCG nor U, since
BPFA — MA,, and BPFA — (-VWCG A —0).



Of course MA,,, implies neither VWCG nor U, since
BPFA — MA,, and BPFA — (-VWCG A —0).

What about MA,, for A > w{? Or at least FA(I), for a
reasonable class ' C ccc?



Add(w, #) always preserves -CG. On the other hand, Cohen
forcing adds a WCG-sequence.
Application: One can always force

—CG + WCG + Strong KA + 2% large + FA(Add(w, A)),, for all
A, < 2%



Add(w, #) always preserves -CG. On the other hand, Cohen
forcing adds a WCG-sequence.

Application: One can always force

—CG + WCG + Strong KA + 2% large + FA(Add(w, A)),, for all
A, < 2%

(Start with a Strong KA sequence C. Then force ~CG while
preserving that Cisa strong KA sequence with a suitable
countable support proper forcing iteration. Then add many
Cohen reals.)

In fact one can get

—CG + b = wy + Strong KA + 2% large + FA(Add(w, ))),, for all
A < 2%,



For every )\, “w—bounding forcing preserves -WCG and
-VWCG,.

Application: One can always force

Strong KA + —-VWCG + 2% large + FA(\-randoms),, for all A,
p < 2%



For every )\, “w—bounding forcing preserves -WCG and
-VWCG,.

Application: One can always force

Strong KA + —-VWCG + 2% large + FA(\-randoms),, for all A,
p < 2%

(Start with Strong KA + -VWCG, which can be forced in a
similar way as before, and add lots of random reals.)
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Two natural questions at this point

What about showing MA,, for large ), consistent with —P for
some / all of our guessing principles P? (Note that any long
enough finite support c.c.c. iteration will force WCG since it
adds a Cohen real over V at stage w, and therefore a
WCG—-sequence which will remain WCG in the end.)

What about forcing -VWCG),, for any A > w¢? (Maybe
VWCGy, is a ZFC theorem?)



Extending Martin’s Axiom

Definition (A.—Mota): A poset P is X s—c.c. if there is a
decomposition P = J,_,, P, such that for all v, p € P, and all
countable elementary substructures N, ... N, < H(0)
containing P, 6 > |P|, if v € N; Nwy for all i < n, then there is

q <p p, q (N;, P)—generic for all i.



Extending Martin’s Axiom
Definition (A.—Mota): A poset P is X s—c.c. if there is a
decomposition P = J,_,, P, such that for all v, p € P, and all
countable elementary substructures N, ... N, < H(0)

containing P, 6 > |P|, if v € N; Nwy for all i < n, then there is
g <p p, q (N;, P)—generic for all i.

Ny—c.c. C Ny 5—C.c. C No—cC.C.

Ny—c.c. C finitely proper C proper.

If |P| = N4, then P is 8y 5—c.c. if and only if P is finitely proper.



Definition (A.—Mota): MA!5 is FA(R; 5—c.c.)».

Theorem 1 (A.—Mota): Suppose CH holds. Let x > w3 be a
regular cardinal such that ;*' < « for all 1 < x and

O{a < k| cf(a) > wa}) holds. Then there exists a proper
forcing notion P of size x with the No—c.c. such that the
following statements hold in the generic extension by P:

(1) %o — g
2) MA!S for every \ < 2%,
by

The proof of Theorem 1 is by a finite support iteration with
(partial) homogeneous systems of countable structures as side
conditions.



A prominent X¢ s—c.c. forcing

B: Baumgartner’s forcing for adding a club of w¢ with finite
conditions:

Conditions are finite functions p C wq x wq such that p can be
extended to a strictly increasing and continuous function
F:w — ws.

B is Ny 5—c.c. (in fact, finitely proper and of size Xy).
B adds a generic for Add(w, wy).

Zapletal: (PFA) Every nowhere ccc poset (i.e., not ccc below
any condition) of size R4 adds a generic for B.



Definition: A set C of subsets of wy of order type w is a KA set if
for every club D C wq there is some C € C such that
DN [C(n), C(n+ 1)) # 0 for a tail of n < w.

B destroys every KA—sequence from the ground model. In
particular, FA(B), implies there are no KA sets of size < )\, and
hence Theorem 1 shows the consistency of

MA + 2% large + There are no KA sets of size < 2%,



Another application of MA1®

Also: MAI* implies -VWCG,.

Given a potential VWCG,, set X, the forcing for this consists of
conditions of Baumgartner’s forcing together with finite sets of
promises of avoiding certain co-finite subsets of finitely
members from X.



Another application of MA1®

Also: MAI* implies -VWCG,.
Given a potential VWCG,, set X, the forcing for this consists of
conditions of Baumgartner’s forcing together with finite sets of

promises of avoiding certain co-finite subsets of finitely
members from X.

Hence,Theorem 1 shows in fact the consistency of

MA + 2% large + “VWCG, for all A < 2%,



Separating guessing principles in the
presence of fragments of MA'>

Theorem 2 (A.—Mota): Suppose CH holds and suppose there is
a strong U—sequence C. Let « be a regular cardinal such that
kM =k and 2<% = k. Then there exists a proper poset P with

the No—c.c. such that the following statements hold in V7.
(1) Cisa strong U—sequence.
(2) ﬂVWCGA for all A < 2%,

@) M

4) F ( )i forall A < 2% In particular, there are no KA sets of
size < 2%,

(5) 2% =g



Theorem 3 (A.—Mota): Suppose CH holds and suppose there is
a strong WCG—sequence C.Letxbea regular cardinal such
that ™ = k and 2<% = x. Then there exists a proper poset P
with the No—chain condition such that the following statements
hold in V7.

1) Cisa strong WCG-sequence.

2) -0

3) MA

4) FA(B), for all A < 2% In particular, there are no KA sets of
size < 2%,

(5) 2% =k

P



Theorems 2 and 3 have similar proofs, but the proof of
Theorem 2 doesn’t need to use predicates (see below).

Rough proof sketch of Theorem 3:

Suppose C = (Cs | 0 € Lim(wy)) is a strong WCG—sequence.
We build P = P, where (P, | a < k) is a certain finite support
iteration with “homogeneous systems of countable structures
with predicates” as side conditions.



Conditions of P,,: pairs of the form q = (F, A), where
(1) Fis a a—sequence with finite support giving finite
information on the relevant tasks specified by some
book-keeping (killing instances of U, shooting clubs to
preserve that Cis strongly WCG, and forcing with B and
with c.c.c. posets).
(2) A= {(N;,W' ~)|i< n}, where
e {N;|i < n}is afinite ‘homogeneous’ system of elementary
substructures of H(x),
e 7 < min{a, sup(N; N k)}, and



Conditions of P,: pairs of the form q = (F, A), where
(1) Fis a a—sequence with finite support giving finite
information on the relevant tasks specified by some
book-keeping (killing instances of U, shooting clubs to
preserve that Cis strongly WCG, and forcing with B and
with c.c.c. posets).
(2) A= {(N;,W' ~)|i< n}, where
e {N;|i < n}is afinite ‘homogeneous’ system of elementary
substructures of H(x),
e 7 < min{a, sup(N; N k)}, and
o W = (W.)me. and for all m, Wi, C N; and W, consists of
pairs (M, V), etc., such that M Nwy € Cyn,-



The side condition specification at stage o + 1:

If (N, (Wn)m<w,a+1) € Aand a+1 € N, then
la = (F I o, {(N;, W', min{y;, a}) | (N, W', ;) € A})

forces in P,:
(a) Forall m < w, the set

V={(MV)e Wp|(M,V, a)ec A, forsomerc G,}

is “N—large”, in the sense that for every x € N there is
some (M,V) € Y such that x € M.

(b) If aisin the support of F, then q|,, forces that F(«) is
(N[G.], Qa)-proper, for the relevant forcing Q,, picked at
stage a.



One proves the relevant facts about (P, | o < k).
All proofs are quite standard except for the proof of properness.

The proof of properness is by induction on «: One proves that if
N € M1, where M+ is a club of countable M C H(k) such
that (M, e, P, N M) < (H(k),€,P,),and g = (F,A) € P, NN,
then there is W such that

(F',AU{(N,W,a)})

is (N, P,)—generic, where F’ is easily constructed from F. The
homogeneity of the side conditions is used only in the case
cf(«) > w of the induction.



One proves the relevant facts about (P, | o < k).
All proofs are quite standard except for the proof of properness.

The proof of properness is by induction on «: One proves that if
N € M1, where M+ is a club of countable M C H(k) such
that (M, e, P, N M) < (H(k),€,P,),and g = (F,A) € P, NN,
then there is W such that

(F',AU{(N,W,a)})

is (N, P,)—generic, where F’ is easily constructed from F. The
homogeneity of the side conditions is used only in the case
cf(«) > w of the induction. The fact that C is strongly WCG is
used. We don’t know how to prove the theorem if we assume C
is just WCG.

End of proof sketch. [J



Observation: (GCH) Given a regular x > w, there is a
<rk—directed closed forcing which is proper with respect to
internally approachable elementary substructures of size ~ and
which forces that for every club—sequence (Cs | § € k™ N cf(x))
there is a club D C x* such that for all § € D N cf(x) there are
stationarily many « < ot(Cs) such that

(Cs(a), Cs(a+1)] N D =0.

(Proof: Do a xk—support xT—iteration adding clubs of x* by
approximations of size <. No iteration theory is needed to
prove the relevant properness.)



On the other hand:

Theorem (Shelah): For every regular cardinal x > wq there is a
club—sequence (Cs | § € k* Ncf(x)) with ot(Cs) = « for all &
and such that for every club D C x* there is some

§ € kT Ncf(x) such that Cs(a + 1) € D for stationarily many

o < K.

Given a club—sequence C = (Cs | 6 € T N cf(x)) with

ot(Cs) = « for all  there is a forcing for destroying the above
guessing property of C and which is <x—directed closed and
proper with respect to internally approachable elementary
structures of size . The above theorem of course shows that
there can be no iteration theory for this version of high
properness.



Thank you!
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