Separating club–guessing principles in the presence of fat forcing axioms

David Asperó

University of East Anglia

International Conference on Topology and Geometry + 6th Japan–Mexico Topology Symposium

Matsue, 5 September 2013

This is joint work with Miguel Angel Mota.

Club Guessing on ω_1

Well-known weakening of Jensen's \diamond :

Club Guessing on ω_1 (CG) (Shelah?): There is a ladder system $(C_{\delta} \mid \delta \in \text{Lim}(\omega_1))$ (i.e., for all δ , $C_{\delta} \subseteq \delta$ is cofinal in δ and of order type ω) such that for every club $C \subseteq \omega_1$ there is $\delta \in \text{Lim}(\omega_1)$ such that $C_{\delta} \subseteq_{\text{fin}} C$.

Club Guessing on κ with $cf(\kappa) \ge \omega_2$ is a ZFC theorem (Shelah).

Some weakenings of CG

(日) (日) (日) (日) (日) (日) (日)

Consider the following weakenings of CG:

Kunen's Axiom (KA) (Kunen): There is a ladder system $(C_{\delta} \mid \delta \in \text{Lim}(\omega_1))$ such that for every club $C \subseteq \omega_1$ there is δ such that

$$[C_{\delta}(n), C_{\delta}(n+1)) \cap C \neq \emptyset$$

for a tail of n,

where $(C_{\delta}(n))_{n < \omega}$ is the increasing enumeration of C_{δ} .

Clearly: CG \Longrightarrow KA.

𝔅 (Todorčević, J. Moore): There is a ladder system ($C_δ | δ ∈ Lim(ω_1)$) and colourings $g_δ : δ → ω$ (for $δ ∈ Lim(ω_1)$) such that

- For all δ and $n < \omega$, $|g_{\delta} "(C_{\delta}(n), C_{\delta}(n+1)]| = 1$, and
- for every club C ⊆ ω₁ there is some δ such that g_δ⁻¹({m}) ∩ C is unbounded in δ for al m < ω.

Clearly: $KA \Longrightarrow \mho$.

Weak Club Guessing (WCG) (Shelah): There is a ladder system $(C_{\delta} | \delta \in \text{Lim}(\omega_1))$ such that for every club $C \subseteq \omega_1$ there is δ such that $C_{\delta} \cap C$ is unbounded in δ .

Very Weak Club Guessing (VWCG) (Shelah): There is a set \mathcal{X} of size \aleph_1 consisting of subsets of ω_1 of order type ω such that every club of ω_1 has infinite intersection with a member of \mathcal{X} .

Very Weak Club Guessing_{λ} (VWCG_{λ}) (A.–Mota): There is a set \mathcal{X} of size $\leq \lambda$ consisting of subsets of ω_1 of order type ω such that every club of ω_1 has infinite intersection with a member of \mathcal{X} .

 $CG \Longrightarrow WCG \Longrightarrow VWCG = VWCG_{\aleph_1}$ $VWCG_{\lambda} \Longrightarrow VWCG_{\mu} \text{ for } \lambda < \mu.$

 $\mathfrak{b} \leq \lambda \Longrightarrow \mathsf{VWCG}_{\lambda}$

The 'strong' form of these (weak) guessing principles

We can define these strong forms by requiring that the relevant guessing occurs on a club of δ 's. For example:

Strong Club Guessing (Strong CG): There is a ladder system $(C_{\delta} \mid \delta \in \text{Lim}(\omega_1))$ such that for every club $C \subseteq \omega_1$ there are club–many $\delta \in \text{Lim}(\omega_1)$ such that $C_{\delta} \subseteq_{\text{fin}} C$.

Similarly we can define strong KA, strong $\mho,$ strong weak club guessing, and so on.

Of course Strong *P* implies *P* for all these guessing principles *P*. And the reverse implications don't hold. Also, Strong P_1 implies Strong P_0 if P_1 implies P_0 .

Caution: Even if \diamond implies CG, \diamond^+ (which is a 'weakly strong' form of \diamond) does not imply Strong CG (Ishiu, P. Larson)

These strong guessing principles are consistent (folklore): Add a CG sequence \vec{C} by initial segments. Then do a countable support iteration in which you shoot all relevant clubs to make \vec{C} strongly club guessing.

Of course Strong *P* implies *P* for all these guessing principles *P*. And the reverse implications don't hold. Also, Strong P_1 implies Strong P_0 if P_1 implies P_0 .

Caution: Even if \diamond implies CG, \diamond^+ (which is a 'weakly strong' form of \diamond) does not imply Strong CG (Ishiu, P. Larson)

These strong guessing principles are consistent (folklore): Add a CG sequence \vec{C} by initial segments. Then do a countable support iteration in which you shoot all relevant clubs to make \vec{C} strongly club guessing.

Some innocent forcing notions and weak forcing axioms

Given a partial order \mathcal{P} and a cardinal λ , FA(\mathbb{P}) $_{\lambda}$ means: For every collection $\{D_i \mid i < \lambda\}$ of dense subsets of \mathcal{P} there is a filter $G \subseteq \mathcal{P}$ such that $G \cap D_i \neq \emptyset$ for all $i < \lambda$.

Given a class Γ of partial orders and a cardinal λ , FA(Γ) $_{\lambda}$ means FA(\mathcal{P}) $_{\lambda}$ for every $\mathcal{P} \in \Gamma$.

BPFA implies \neg VWCG and \neg ^(U) (using the natural poset for adding, by initial segments, a club destroying the relevant guessing sequence).

On the other hand, every club of ω_1 in every ccc extension contains a club in V. In particular, all these guessing principles P are preserved by ccc forcing, and so they are consistent with 2^{\aleph_0} large.

(日) (日) (日) (日) (日) (日) (日)

In particular, no forcing axiom MA_{λ} implies \neg Strong CG.

BPFA implies \neg VWCG and \neg \mho (using the natural poset for adding, by initial segments, a club destroying the relevant guessing sequence).

On the other hand, every club of ω_1 in every ccc extension contains a club in *V*. In particular, all these guessing principles *P* are preserved by ccc forcing, and so they are consistent with 2^{\aleph_0} large.

(日) (日) (日) (日) (日) (日) (日)

In particular, no forcing axiom MA $_{\lambda}$ implies – Strong CG.

BPFA implies \neg VWCG and \neg \mho (using the natural poset for adding, by initial segments, a club destroying the relevant guessing sequence).

On the other hand, every club of ω_1 in every ccc extension contains a club in *V*. In particular, all these guessing principles *P* are preserved by ccc forcing, and so they are consistent with 2^{\aleph_0} large.

(日) (日) (日) (日) (日) (日) (日)

In particular, no forcing axiom MA $_{\lambda}$ implies \neg Strong CG.

Of course MA_{ω_1} implies neither VWCG nor \mho , since BPFA $\Longrightarrow MA_{\omega_1}$ and BPFA $\Longrightarrow (\neg VWCG \land \neg \mho)$.

What about MA_{λ} for $\lambda > \omega_1$? Or at least $FA(\Gamma)_{\lambda}$ for a reasonable class $\Gamma \subseteq ccc$?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Of course MA_{ω_1} implies neither VWCG nor \mho , since BPFA $\Longrightarrow MA_{\omega_1}$ and BPFA $\Longrightarrow (\neg VWCG \land \neg \mho)$.

What about MA_{λ} for $\lambda > \omega_1$? Or at least $FA(\Gamma)_{\lambda}$ for a reasonable class $\Gamma \subseteq ccc$?

Add(ω , θ) always preserves \neg CG. On the other hand, Cohen forcing adds a WCG–sequence.

Application: One can always force

 $\neg CG + WCG + Strong KA + 2^{\aleph_0} \text{ large } + FA(Add(\omega, \lambda))_{\mu} \text{ for all } \lambda, \mu < 2^{\aleph_0}$

(Start with a Strong KA sequence \vec{C} . Then force \neg CG while preserving that \vec{C} is a strong KA sequence with a suitable countable support proper forcing iteration. Then add many Cohen reals.)

In fact one can get

 $\neg CG + \mathfrak{b} = \omega_1 + Strong KA + 2^{\aleph_0} \text{ large} + FA(Add(\omega, \lambda))_{\mu} \text{ for all } \lambda, \mu < 2^{\aleph_0}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Add(ω , θ) always preserves \neg CG. On the other hand, Cohen forcing adds a WCG–sequence.

Application: One can always force

 $\neg CG + WCG + Strong KA + 2^{\aleph_0} \text{ large } + FA(Add(\omega, \lambda))_{\mu} \text{ for all } \lambda, \mu < 2^{\aleph_0}$

(Start with a Strong KA sequence \vec{C} . Then force \neg CG while preserving that \vec{C} is a strong KA sequence with a suitable countable support proper forcing iteration. Then add many Cohen reals.)

In fact one can get

 $\neg CG + \mathfrak{b} = \omega_1 + \text{Strong KA} + 2^{\aleph_0} \text{ large } + FA(Add(\omega, \lambda))_{\mu} \text{ for all } \lambda, \mu < 2^{\aleph_0}.$

For every λ , $\omega \omega$ -bounding forcing preserves $\neg WCG$ and $\neg VWCG_{\lambda}$.

Application: One can always force

Strong KA + \neg VWCG + 2^{\aleph_0} large + FA(λ -randoms)_{μ} for all λ , $\mu < 2^{\aleph_0}$

(Start with Strong KA $+ \neg$ VWCG, which can be forced in a similar way as before, and add lots of random reals.)

For every λ , $\omega \omega$ -bounding forcing preserves $\neg WCG$ and $\neg VWCG_{\lambda}$.

Application: One can always force

Strong KA + \neg VWCG + 2^{\aleph_0} large + FA(λ -randoms)_{μ} for all λ , $\mu < 2^{<math>\aleph_0}$

(Start with Strong KA $+ \neg$ VWCG, which can be forced in a similar way as before, and add lots of random reals.)

Two natural questions at this point

(日) (日) (日) (日) (日) (日) (日)

What about showing MA_{λ} , for large λ , consistent with $\neg P$ for some / all of our guessing principles *P*? (Note that any long enough finite support c.c.c. iteration will force WCG since it adds a Cohen real over *V* at stage ω , and therefore a WCG–sequence which will remain WCG in the end.)

What about forcing \neg VWCG $_{\lambda}$ for any $\lambda > \omega_1$? (Maybe VWCG $_{\aleph_2}$ is a ZFC theorem?)

Two natural questions at this point

What about showing MA_{λ} , for large λ , consistent with $\neg P$ for some / all of our guessing principles *P*? (Note that any long enough finite support c.c.c. iteration will force WCG since it adds a Cohen real over *V* at stage ω , and therefore a WCG–sequence which will remain WCG in the end.)

What about forcing \neg VWCG $_{\lambda}$ for any $\lambda > \omega_1$? (Maybe VWCG_{\aleph_2} is a ZFC theorem?)

Two natural questions at this point

A D A D A D A D A D A D A D A
A

What about showing MA_{λ} , for large λ , consistent with $\neg P$ for some / all of our guessing principles *P*? (Note that any long enough finite support c.c.c. iteration will force WCG since it adds a Cohen real over *V* at stage ω , and therefore a WCG–sequence which will remain WCG in the end.)

What about forcing $\neg VWCG_{\lambda}$ for any $\lambda > \omega_1$? (Maybe $VWCG_{\aleph_2}$ is a ZFC theorem?)

Extending Martin's Axiom

Definition (A.–Mota): A poset \mathcal{P} is $\aleph_{1.5}$ –c.c. if there is a decomposition $\mathcal{P} = \bigcup_{\nu < \omega_1} P_{\nu}$ such that for all $\nu, p \in P_{\nu}$ and all countable elementary substructures $N_0, \ldots N_n \preccurlyeq H(\theta)$ containing $\mathcal{P}, \theta > |\mathcal{P}|$, if $\nu \in N_i \cap \omega_1$ for all $i \le n$, then there is $q \le_{\mathcal{P}} p, q$ (N_i, \mathcal{P})–generic for all i.

 \aleph_1 -c.c. $\subseteq \aleph_{1.5}$ -c.c. $\subseteq \aleph_2$ -c.c.

 \aleph_1 -c.c. \subseteq finitely proper \subseteq proper.

If $|\mathcal{P}| = \aleph_1$, then \mathcal{P} is $\aleph_{1.5}$ –c.c. if and only if \mathcal{P} is finitely proper.

Extending Martin's Axiom

(日) (日) (日) (日) (日) (日) (日)

Definition (A.–Mota): A poset \mathcal{P} is $\aleph_{1.5}$ –c.c. if there is a decomposition $\mathcal{P} = \bigcup_{\nu < \omega_1} P_{\nu}$ such that for all $\nu, p \in P_{\nu}$ and all countable elementary substructures $N_0, \ldots N_n \preccurlyeq H(\theta)$ containing $\mathcal{P}, \theta > |\mathcal{P}|$, if $\nu \in N_i \cap \omega_1$ for all $i \le n$, then there is $q \le_{\mathcal{P}} p, q$ (N_i, \mathcal{P})–generic for all i.

$$\aleph_1$$
-c.c. $\subseteq \aleph_{1.5}$ -c.c. $\subseteq \aleph_2$ -c.c.

 \aleph_1 –c.c. \subseteq finitely proper \subseteq proper.

If $|\mathcal{P}| = \aleph_1$, then \mathcal{P} is $\aleph_{1.5}$ –c.c. if and only if \mathcal{P} is finitely proper.

Definition (A.–Mota): $MA_{\lambda}^{1.5}$ is $FA(\aleph_{1.5}$ –c.c.)_{λ}.

Theorem 1 (A.–Mota): Suppose CH holds. Let $\kappa \ge \omega_3$ be a regular cardinal such that $\mu^{\aleph_1} < \kappa$ for all $\mu < \kappa$ and $\diamondsuit(\{\alpha < \kappa \mid cf(\alpha) \ge \omega_2\})$ holds. Then there exists a proper forcing notion \mathcal{P} of size κ with the \aleph_2 –c.c. such that the following statements hold in the generic extension by \mathcal{P} :

(1)
$$2^{\aleph_0} = \kappa$$

(2) $\mathsf{MA}^{1.5}_{\lambda}$ for every $\lambda < 2^{\aleph_0}$.

The proof of Theorem 1 is by a finite support iteration with (partial) homogeneous systems of countable structures as side conditions.

A prominent ℵ_{1.5}–c.c. forcing

 $\mathbb B$: Baumgartner's forcing for adding a club of ω_1 with finite conditions:

Conditions are finite functions $p \subseteq \omega_1 \times \omega_1$ such that p can be extended to a strictly increasing and continuous function $F : \omega_1 \longrightarrow \omega_1$.

 \mathbb{B} is $\aleph_{1.5}$ -c.c. (in fact, finitely proper and of size \aleph_1).

 \mathbb{B} adds a generic for Add(ω , ω_1).

Zapletal: (PFA) Every nowhere ccc poset (i.e., not ccc below any condition) of size \aleph_1 adds a generic for \mathbb{B} .

Definition: A set C of subsets of ω_1 of order type ω is a KA set if for every club $D \subseteq \omega_1$ there is some $C \in C$ such that $D \cap [C(n), C(n+1)) \neq \emptyset$ for a tail of $n < \omega$.

 \mathbb{B} destroys every KA–sequence from the ground model. In particular, FA(\mathbb{B})_{λ} implies there are no KA sets of size $\leq \lambda$, and hence Theorem 1 shows the consistency of

MA + 2^{\aleph_0} large + There are no KA sets of size $< 2^{\aleph_0}$.

Another application of $MA_{\lambda}^{1.5}$

```
Also: MA_{\lambda}^{1.5} implies \neg VWCG_{\lambda}.
```

Given a potential VWCG_{λ} set \mathcal{X} , the forcing for this consists of conditions of Baumgartner's forcing together with finite sets of promises of avoiding certain co-finite subsets of finitely members from \mathcal{X} .

Hence, Theorem 1 shows in fact the consistency of

 $MA + 2^{\aleph_0}$ large $+ \neg VWCG_{\lambda}$ for all $\lambda < 2^{\aleph_0}$.

Another application of $MA_{\lambda}^{1.5}$

(日) (日) (日) (日) (日) (日) (日)

```
Also: MA_{\lambda}^{1.5} implies \neg VWCG_{\lambda}.
```

Given a potential VWCG_{λ} set \mathcal{X} , the forcing for this consists of conditions of Baumgartner's forcing together with finite sets of promises of avoiding certain co-finite subsets of finitely members from \mathcal{X} .

Hence, Theorem 1 shows in fact the consistency of

MA + 2^{\aleph_0} large + \neg VWCG $_{\lambda}$ for all $\lambda < 2^{\aleph_0}$.

Separating guessing principles in the presence of fragments of MA^{1.5}

Theorem 2 (A.–Mota): Suppose CH holds and suppose there is a strong \Im –sequence \vec{C} . Let κ be a regular cardinal such that $\kappa^{\aleph_1} = \kappa$ and $2^{<\kappa} = \kappa$. Then there exists a proper poset \mathcal{P} with the \aleph_2 –c.c. such that the following statements hold in $V^{\mathcal{P}}$.

- (1) \vec{C} is a strong \Im -sequence.
- (2) $\neg VWCG_{\lambda}$ for all $\lambda < 2^{\aleph_0}$.
- (3) MA
- (4) $FA(\mathbb{B})_{\lambda}$ for all $\lambda < 2^{\aleph_0}$. In particular, there are no KA sets of size $< 2^{\aleph_0}$.

(5) $2^{\aleph_0} = \kappa$

Theorem 3 (A.–Mota): Suppose CH holds and suppose there is a strong WCG–sequence \vec{C} . Let κ be a regular cardinal such that $\kappa^{\aleph_1} = \kappa$ and $2^{<\kappa} = \kappa$. Then there exists a proper poset \mathcal{P} with the \aleph_2 –chain condition such that the following statements hold in $V^{\mathcal{P}}$.

(1) \vec{C} is a strong WCG–sequence.

- (<mark>2)</mark> ¬℧
- (<mark>3</mark>) MA
- (4) $FA(\mathbb{B})_{\lambda}$ for all $\lambda < 2^{\aleph_0}$. In particular, there are no KA sets of size $< 2^{\aleph_0}$.

(日) (日) (日) (日) (日) (日) (日)

(5) $2^{\aleph_0} = \kappa$

Theorems 2 and 3 have similar proofs, but the proof of Theorem 2 doesn't need to use predicates (see below).

Rough proof sketch of Theorem 3:

Suppose $\vec{C} = (C_{\delta} | \delta \in \text{Lim}(\omega_1))$ is a strong WCG–sequence. We build $\mathcal{P} = \mathcal{P}_{\kappa}$, where $(\mathcal{P}_{\alpha} | \alpha \leq \kappa)$ is a certain finite support iteration with "homogeneous systems of countable structures **with predicates**" as side conditions.

Conditions of \mathcal{P}_{α} : pairs of the form $q = (F, \Delta)$, where

- (1) *F* is a α -sequence with finite support giving finite information on the relevant tasks specified by some book-keeping (killing instances of \Im , shooting clubs to preserve that \vec{C} is strongly WCG, and forcing with \mathbb{B} and with c.c.c. posets).
- (2) $\Delta = \{ (N_i, \vec{\mathcal{W}}^i, \gamma_i) \mid i < n \}, \text{ where }$
 - {N_i | i < n} is a finite 'homogeneous' system of elementary substructures of H(κ),
 - $\gamma_i \leq \min\{\alpha, \sup(N_i \cap \kappa)\}$, and
 - *W*ⁱ = (*W*ⁱ_m)_{m<ω} and for all *m*, *W*ⁱ_m ⊆ *N*_i and *W*ⁱ_m consists of pairs (*M*, *V*), etc., such that *M* ∩ ω₁ ∈ *C*_{N_i∩ω₁}.

Conditions of \mathcal{P}_{α} : pairs of the form $q = (F, \Delta)$, where

- (1) *F* is a α -sequence with finite support giving finite information on the relevant tasks specified by some book-keeping (killing instances of \Im , shooting clubs to preserve that \vec{C} is strongly WCG, and forcing with \mathbb{B} and with c.c.c. posets).
- (2) $\Delta = \{ (N_i, \vec{\mathcal{W}}^i, \gamma_i) \mid i < n \}, \text{ where }$
 - {N_i | i < n} is a finite 'homogeneous' system of elementary substructures of H(κ),
 - $\gamma_i \leq \min\{\alpha, \sup(N_i \cap \kappa)\}$, and
 - *W*ⁱ = (*W*ⁱ_m)_{m<ω} and for all *m*, *W*ⁱ_m ⊆ *N*_i and *W*ⁱ_m consists of pairs (*M*, *V*), etc., such that *M* ∩ ω₁ ∈ *C*_{N_i∩ω₁}.

The side condition specification at stage α + 1:

If $(N, (W_m)_{m < \omega}, \alpha + 1) \in \Delta$ and $\alpha + 1 \in N$, then

 $|\boldsymbol{q}|_{\alpha} = (\boldsymbol{F} \upharpoonright \alpha, \{(\boldsymbol{N}_{i}, \vec{\mathcal{W}}^{i}, \min\{\gamma_{i}, \alpha\}) \mid (\boldsymbol{N}_{i}, \vec{\mathcal{W}}^{i}, \gamma_{i}) \in \Delta\})$

forces in \mathcal{P}_{α} : (a) For all $m < \omega$, the set

 $\mathcal{Y} = \{ (\boldsymbol{M}, \vec{\mathcal{V}}) \in \boldsymbol{W}_m \mid (\boldsymbol{M}, \vec{\mathcal{V}}, \alpha) \in \Delta_r \text{ for some } \boldsymbol{r} \in \dot{\boldsymbol{G}}_{\alpha} \}$

is "*N*–large", in the sense that for every $x \in N$ there is some $(M, \vec{V}) \in \mathcal{Y}$ such that $x \in M$.

(b) If α is in the support of F, then q|_α forces that F(α) is (N[G_α], Q_α)-proper, for the relevant forcing Q_α picked at stage α. One proves the relevant facts about $(\mathcal{P}_{\alpha} \mid \alpha \leq \kappa)$.

All proofs are quite standard except for the proof of properness.

The proof of properness is by induction on α : One proves that if $N \in \mathcal{M}_{\alpha+1}$, where $\mathcal{M}_{\alpha+1}$ is a club of countable $M \subseteq H(\kappa)$ such that $(M, \in, \mathcal{P}_{\alpha} \cap M) \prec (H(\kappa), \in, \mathcal{P}_{\alpha})$, and $q = (F, \Delta) \in \mathcal{P}_{\alpha} \cap N$, then there is \vec{W} such that

 $(F', \Delta \cup \{(N, \vec{\mathcal{W}}, \alpha)\})$

is $(N, \mathcal{P}_{\alpha})$ -generic, where F' is easily constructed from F. The homogeneity of the side conditions is used only in the case $cf(\alpha) > \omega$ of the induction. The fact that \vec{C} is strongly WCG is used. We don't know how to prove the theorem if we assume \vec{C} is just WCG.

End of proof sketch. □

One proves the relevant facts about $(\mathcal{P}_{\alpha} \mid \alpha \leq \kappa)$.

All proofs are quite standard except for the proof of properness.

The proof of properness is by induction on α : One proves that if $N \in \mathcal{M}_{\alpha+1}$, where $\mathcal{M}_{\alpha+1}$ is a club of countable $M \subseteq H(\kappa)$ such that $(M, \in, \mathcal{P}_{\alpha} \cap M) \prec (H(\kappa), \in, \mathcal{P}_{\alpha})$, and $q = (F, \Delta) \in \mathcal{P}_{\alpha} \cap N$, then there is \vec{W} such that

 $(F', \Delta \cup \{(N, \vec{W}, \alpha)\})$

is $(N, \mathcal{P}_{\alpha})$ -generic, where F' is easily constructed from F. The homogeneity of the side conditions is used only in the case $cf(\alpha) > \omega$ of the induction. The fact that \vec{C} is strongly WCG is used. We don't know how to prove the theorem if we assume \vec{C} is just WCG.

End of proof sketch. \Box

What about higher cardinalities?

Observation: (GCH) Given a regular $\kappa \geq \omega$, there is a $<\kappa$ -directed closed forcing which is proper with respect to internally approachable elementary substructures of size κ and which forces that for every club-sequence $\langle C_{\delta} | \delta \in \kappa^+ \cap cf(\kappa) \rangle$ there is a club $D \subseteq \kappa^+$ such that for all $\delta \in D \cap cf(\kappa)$ there are stationarily many $\alpha < ot(C_{\delta})$ such that $(C_{\delta}(\alpha), C_{\delta}(\alpha + 1)] \cap D = \emptyset$.

(Proof: Do a κ -support κ^+ -iteration adding clubs of κ^+ by approximations of size $<\kappa$. No iteration theory is needed to prove the relevant properness.)

On the other hand:

Theorem (Shelah): For every regular cardinal $\kappa \ge \omega_1$ there is a club–sequence $\langle C_{\delta} | \delta \in \kappa^+ \cap cf(\kappa) \rangle$ with $ot(C_{\delta}) = \kappa$ for all κ and such that for every club $D \subseteq \kappa^+$ there is some $\delta \in \kappa^+ \cap cf(\kappa)$ such that $C_{\delta}(\alpha + 1) \in D$ for stationarily many $\alpha < \kappa$.

Given a club–sequence $\vec{C} = \langle C_{\delta} | \delta \in \kappa^+ \cap cf(\kappa) \rangle$ with $ot(C_{\delta}) = \kappa$ for all κ there is a forcing for destroying the above guessing property of \vec{C} and which is $<\kappa$ -directed closed and proper with respect to internally approachable elementary structures of size κ . The above theorem of course shows that there can be no iteration theory for this version of high properness.

Thank you!

・ロン ・四マ・モン ・田・三田