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Club Guessing on !1

Well–known weakening of Jensen’s }:

Club Guessing on !1 (CG) (Shelah?): There is a ladder system
(C� | � 2 Lim(!1)) (i.e., for all � , C� ✓ � is cofinal in � and of
order type !) such that for every club C ✓ !1 there is
� 2 Lim(!1) such that C� ✓fin C.

Club Guessing on  with cf() � !2 is a ZFC theorem (Shelah).



Some weakenings of CG

Consider the following weakenings of CG:

Kunen’s Axiom (KA) (Kunen): There is a ladder system
(C� | � 2 Lim(!1)) such that for every club C ✓ !1 there is �
such that

[C�(n), C�(n + 1)) \ C 6= ;

for a tail of n,
where (C�(n))n<! is the increasing enumeration of C�.

Clearly: CG =) KA.



f (Todorčević, J. Moore): There is a ladder system
(C� | � 2 Lim(!1)) and colourings g� : � �! ! (for � 2 Lim(!1))
such that

• For all � and n < !, |g�“(C�(n),C�(n + 1)]| = 1, and
• for every club C ✓ !1 there is some � such that

g�1
� ({m}) \ C is unbounded in � for al m < !.

Clearly: KA =) f.



Weak Club Guessing (WCG) (Shelah): There is a ladder
system (C� | � 2 Lim(!1)) such that for every club C ✓ !1 there
is � such that C� \ C is unbounded in �.

Very Weak Club Guessing (VWCG) (Shelah): There is a set X
of size @1 consisting of subsets of !1 of order type ! such
that every club of !1 has infinite intersection with a member of X .

Very Weak Club Guessing� (VWCG�) (A.–Mota): There is a set
X of size  � consisting of subsets of !1 of order type ! such
that every club of !1 has infinite intersection with a member of
X .



CG =) WCG =) VWCG = VWCG@1

VWCG� =) VWCGµ for � < µ.

b  � =) VWCG�



The ‘strong’ form of these (weak)
guessing principles

We can define these strong forms by requiring that the relevant
guessing occurs on a club of �’s. For example:

Strong Club Guessing (Strong CG): There is a ladder system
(C� | � 2 Lim(!1)) such that for every club C ✓ !1 there are
club–many � 2 Lim(!1) such that C� ✓fin C.

Similarly we can define strong KA, strong f, strong weak club
guessing, and so on.



Of course Strong P implies P for all these guessing principles
P. And the reverse implications don’t hold. Also, Strong P1
implies Strong P0 if P1 implies P0.

Caution: Even if } implies CG, }+ (which is a ‘weakly strong’
form of }) does not imply Strong CG (Ishiu, P. Larson)

These strong guessing principles are consistent (folklore): Add
a CG sequence ~C by initial segments. Then do a countable
support iteration in which you shoot all relevant clubs to make
~C strongly club guessing.
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Some innocent forcing notions and
weak forcing axioms

Given a partial order P and a cardinal �, FA(P)� means: For
every collection {Di | i < �} of dense subsets of P there is a
filter G ✓ P such that G \ Di 6= ; for all i < �.

Given a class � of partial orders and a cardinal �, FA(�)�
means FA(P)� for every P 2 �.



BPFA implies ¬VWCG and ¬f (using the natural poset for
adding, by initial segments, a club destroying the relevant
guessing sequence).

On the other hand, every club of !1 in every ccc extension
contains a club in V . In particular, all these guessing principles
P are preserved by ccc forcing, and so they are consistent with
2@0 large.
In particular, no forcing axiom MA� implies ¬ Strong CG.
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Of course MA!1 implies neither VWCG nor f, since
BPFA =) MA!1 and BPFA =) (¬VWCG ^ ¬f).

What about MA� for � > !1? Or at least FA(�)� for a
reasonable class � ✓ ccc?
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Add(!, ✓) always preserves ¬CG. On the other hand, Cohen
forcing adds a WCG–sequence.

Application: One can always force

¬CG + WCG + Strong KA + 2@0 large + FA(Add(!, �))µ for all
�, µ < 2@0

(Start with a Strong KA sequence ~C. Then force ¬CG while
preserving that ~C is a strong KA sequence with a suitable
countable support proper forcing iteration. Then add many
Cohen reals.)

In fact one can get

¬CG + b = !1 + Strong KA + 2@0 large + FA(Add(!, �))µ for all
�, µ < 2@0 .
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For every �, !!–bounding forcing preserves ¬WCG and
¬VWCG�.

Application: One can always force

Strong KA + ¬VWCG + 2@0 large + FA(�–randoms)µ for all �,
µ < 2@0

(Start with Strong KA + ¬VWCG, which can be forced in a
similar way as before, and add lots of random reals.)
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Two natural questions at this point

What about showing MA�, for large �, consistent with ¬P for
some / all of our guessing principles P? (Note that any long
enough finite support c.c.c. iteration will force WCG since it
adds a Cohen real over V at stage !, and therefore a
WCG–sequence which will remain WCG in the end.)

What about forcing ¬VWCG� for any � > !1? (Maybe
VWCG@2 is a ZFC theorem?)
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Extending Martin’s Axiom

Definition (A.–Mota): A poset P is @1.5–c.c. if there is a
decomposition P =

S
⌫<!1

P⌫ such that for all ⌫, p 2 P⌫ and all
countable elementary substructures N0, . . .Nn 4 H(✓)
containing P, ✓ > |P|, if ⌫ 2 Ni \ !1 for all i  n, then there is
q P p, q (Ni ,P)–generic for all i .

@1–c.c. ✓ @1.5–c.c. ✓ @2–c.c.

@1–c.c. ✓ finitely proper ✓ proper.

If |P| = @1, then P is @1.5–c.c. if and only if P is finitely proper.
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Definition (A.–Mota): MA1.5
� is FA(@1.5–c.c.)�.

Theorem 1 (A.–Mota): Suppose CH holds. Let  � !3 be a
regular cardinal such that µ@1 <  for all µ <  and
}({↵ <  | cf (↵) � !2}) holds. Then there exists a proper
forcing notion P of size  with the @2–c.c. such that the
following statements hold in the generic extension by P:

(1) 2@0 = 

(2) MA1.5
� for every � < 2@0 .

The proof of Theorem 1 is by a finite support iteration with
(partial) homogeneous systems of countable structures as side
conditions.



A prominent @1.5–c.c. forcing

B: Baumgartner’s forcing for adding a club of !1 with finite
conditions:
Conditions are finite functions p ✓ !1 ⇥ !1 such that p can be
extended to a strictly increasing and continuous function
F : !1 �! !1.

B is @1.5–c.c. (in fact, finitely proper and of size @1).

B adds a generic for Add(!, !1).

Zapletal: (PFA) Every nowhere ccc poset (i.e., not ccc below
any condition) of size @1 adds a generic for B.



Definition: A set C of subsets of !1 of order type ! is a KA set if
for every club D ✓ !1 there is some C 2 C such that
D \ [C(n), C(n + 1)) 6= ; for a tail of n < !.

B destroys every KA–sequence from the ground model. In
particular, FA(B)� implies there are no KA sets of size  �, and
hence Theorem 1 shows the consistency of

MA + 2@0 large + There are no KA sets of size < 2@0 .



Another application of MA1.5
�

Also: MA1.5
� implies ¬VWCG�.

Given a potential VWCG� set X , the forcing for this consists of
conditions of Baumgartner’s forcing together with finite sets of
promises of avoiding certain co-finite subsets of finitely
members from X .

Hence,Theorem 1 shows in fact the consistency of

MA + 2@0 large + ¬VWCG� for all � < 2@0 .
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Separating guessing principles in the
presence of fragments of MA1.5

Theorem 2 (A.–Mota): Suppose CH holds and suppose there is
a strong f–sequence ~C. Let  be a regular cardinal such that
@1 =  and 2< = . Then there exists a proper poset P with
the @2–c.c. such that the following statements hold in VP .

(1) ~C is a strong f–sequence.
(2) ¬VWCG� for all � < 2@0 .
(3) MA
(4) FA(B)� for all � < 2@0 . In particular, there are no KA sets of

size < 2@0 .
(5) 2@0 = 



Theorem 3 (A.–Mota): Suppose CH holds and suppose there is
a strong WCG–sequence ~C. Let  be a regular cardinal such
that @1 =  and 2< = . Then there exists a proper poset P
with the @2–chain condition such that the following statements
hold in VP .

(1) ~C is a strong WCG–sequence.
(2) ¬f
(3) MA
(4) FA(B)� for all � < 2@0 . In particular, there are no KA sets of

size < 2@0 .
(5) 2@0 = 



Theorems 2 and 3 have similar proofs, but the proof of
Theorem 2 doesn’t need to use predicates (see below).

Rough proof sketch of Theorem 3:
Suppose ~C = (C� | � 2 Lim(!1)) is a strong WCG–sequence.
We build P = P, where (P↵ | ↵  ) is a certain finite support
iteration with “homogeneous systems of countable structures
with predicates” as side conditions.



Conditions of P↵: pairs of the form q = (F ,�), where
(1) F is a ↵–sequence with finite support giving finite

information on the relevant tasks specified by some
book-keeping (killing instances of f, shooting clubs to
preserve that ~C is strongly WCG, and forcing with B and
with c.c.c. posets).

(2) � = {(Ni , ~W i , �i) | i < n}, where
• {Ni | i < n} is a finite ‘homogeneous’ system of elementary

substructures of H(),
• �i  min{↵, sup(Ni \ )}, and
• ~W i = (W i

m)m<! and for all m, W i
m ✓ Ni and W i

m consists of
pairs (M, ~V), etc., such that M \ !1 2 CNi\!1 .
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The side condition specification at stage ↵+ 1:

If (N, (Wm)m<!,↵+ 1) 2 � and ↵+ 1 2 N, then

q|↵ = (F � ↵, {(Ni , ~W i ,min{�i ,↵}) | (Ni , ~W i , �i) 2 �})

forces in P↵:
(a) For all m < !, the set

Y = {(M, ~V) 2 Wm | (M, ~V,↵) 2 �r for some r 2 Ġ↵}

is “N–large”, in the sense that for every x 2 N there is
some (M, ~V) 2 Y such that x 2 M.

(b) If ↵ is in the support of F , then q|↵ forces that F (↵) is
(N[Ġ↵], Q̇↵)–proper, for the relevant forcing Q̇↵ picked at
stage ↵.



One proves the relevant facts about (P↵ | ↵  ).

All proofs are quite standard except for the proof of properness.

The proof of properness is by induction on ↵: One proves that if
N 2 M↵+1, where M↵+1 is a club of countable M ✓ H() such
that (M,2,P↵ \ M) � (H(),2,P↵), and q = (F ,�) 2 P↵ \ N,
then there is ~W such that

(F 0,� [ {(N, ~W,↵)})

is (N,P↵)–generic, where F 0 is easily constructed from F . The
homogeneity of the side conditions is used only in the case
cf(↵) > ! of the induction. The fact that ~C is strongly WCG is
used. We don’t know how to prove the theorem if we assume ~C
is just WCG.

End of proof sketch. ⇤
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What about higher cardinalities?

Observation: (GCH) Given a regular  � !, there is a
<–directed closed forcing which is proper with respect to
internally approachable elementary substructures of size  and
which forces that for every club–sequence hC� | � 2 + \ cf()i
there is a club D ✓ + such that for all � 2 D \ cf() there are
stationarily many ↵ < ot(C�) such that
(C�(↵), C�(↵+ 1)] \ D = ;.

(Proof: Do a –support +–iteration adding clubs of + by
approximations of size <. No iteration theory is needed to
prove the relevant properness.)



On the other hand:

Theorem (Shelah): For every regular cardinal  � !1 there is a
club–sequence hC� | � 2 + \ cf()i with ot(C�) =  for all 
and such that for every club D ✓ + there is some
� 2 + \ cf() such that C�(↵+ 1) 2 D for stationarily many
↵ < .

Given a club–sequence ~C = hC� | � 2 + \ cf()i with
ot(C�) =  for all  there is a forcing for destroying the above
guessing property of ~C and which is <–directed closed and
proper with respect to internally approachable elementary
structures of size . The above theorem of course shows that
there can be no iteration theory for this version of high
properness.



Thank you!
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