How bacteria evolve resistance to antibiotics

Published by  Communications

On 11th May 2023

A scientist inspects a petri dish of bacteria.
Getty images.

Bacteria can rapidly evolve resistance to antibiotics by adapting special pumps to flush them out of their cells, according to new research from the Quadram Institute and University of East Anglia.

Antimicrobial resistance is a growing problem of global significance. The rise of resistant “superbugs” threatens our ability to use antimicrobials like antibiotics to treat and prevent the spread of infections caused by microorganisms.

It is hoped that the findings will improve how antibiotics are used to help prevent further spread of antimicrobial resistance.

Prof Mark Webber, from UEA’s Norwich Medical School, and the Quadram Institute, said: “Knowing the details of the mechanisms bacteria develop to become resistant is a key step to understanding antimicrobial resistance. We hope that this kind of work to understand when and how resistance emerges can help us use antibiotics better to minimise selection of resistance.”

The team studied how exposure to antimicrobials leads to the emergence of resistance.

Broadly, superbugs’ defences against antibiotics involve inactivating or evading drugs, stop them getting into their cells, or getting them out of their cells before they can have any effect. But exactly how they do this is still being worked out.

In this new study Dr Eleftheria Trampari from QI, Prof Webber, and colleagues recreated the evolutionary stresses that lead to antimicrobial resistance by exposing Salmonella bacteria to two different antibiotics.

The bacteria were allowed to grow and reproduce in two different states that mimic how they live in the environment.

Some were planktonic - floating in a liquid broth - but others were in biofilms. Bacteria form biofilms on surfaces, as a way of protecting themselves against stresses and most bacteria in the real world exist in a biofilm.

Hundreds of generations of bacteria were grown and exposed to the antibiotics, and in this evolution simulation, survival of the fittest selected those bacteria best adapted to cope with the presence of the antibiotics.

To identify how these ‘winners’ had become resistant, the researchers sequenced the genomes of the resistant bacteria, to identify which genes had changed compared to their non-resistant ancestors.

They found that both antibiotics selected different mutations in a molecular pump that Salmonella uses to get rid of toxic compounds from inside its cells. With colleagues from the University of Essex and University of Cagliari, they found that these two different changes altered how the pump worked in totally different ways. One made it easier for the pumps to catch drugs, the other made it easier for drugs to slide through the pump.

A search of a databases of genomes of Salmonella isolates found that one of these mutations has also arisen multiple times in the real world, in Salmonella from patients, livestock and food in the UK, US and EU, as far back as 2003.

The findings confirm a primary role for these pumps as the first line of defence against antimicrobials.

“This work simulates what happens in the real world where bacteria are constantly exposed to varying concentrations of antimicrobials” said Dr Eleftheria Trampari from the Quadram Institute and first author on the study. “Studying how resistant strains emerge and predict which drugs they will not respond to can be helpful in developing diagnostics and treatment strategies”.

The study was supported by the Biotechnology and Biological Sciences Research Council, part of UKRI.

‘Functionally distinct mutations within AcrB underpin antibiotic 2 resistance in different lifestyles’ is published in the journal Antimicrobials and Resistance.

Latest News

Chemistry diagram titled: Facilitating surface functionalisation and biological applicability
01 Jun 2023

UEA researchers develop a synthetic strategy to protect and functionalise inorganic nanoparticles, enhancing their theranostic potential

Researchers at UEA, led by Dr María J. Marín, have worked in collaboration with the group of Dr Thomas Hirsch at the University of Regensburg to develop a...

Read more >
L-R: A computer screen with coding; the UEA logo and TenderFlow logo
01 Jun 2023

UEA to introduce new AI programme based on Google’s open-source hardware-accelerated JavaScript library

Students from the University of East Anglia (UEA) will be among the first in the country to be taught skills in artificial intelligence based on TensorFlow.js,...

Read more >
UEA campus
01 Jun 2023

UEA rises into world’s top 40 sustainable universities

UEA has climbed into the top 40 universities in the world for sustainability according to the Times Higher Education Impact Rankings, the first and only global...

Read more >
Are you searching for something?
UEA campus
01 Jun 2023

UEA rises into world’s top 40 sustainable universities

UEA has climbed into the top 40 universities in the world for sustainability according to the Times Higher Education Impact Rankings, the first and only global...

Read more >
A woman receiving treatment for diabetes.
31 May 2023

The breakthrough that could lead to new obesity treatments

Researchers at the University of East Anglia and the University of Cambridge have made an important discovery in the race to find treatments for obesity and...

Read more >
Charterhouse Warren, taken in 1972-1973.
30 May 2023

4,000-year-old plague DNA found – the oldest cases to date in Britain

A researcher from the University of East Anglia has helped find the oldest case of the plague in Britain.

Read more >
A group of friends drinking pints at a table.
26 May 2023

Heavy drinkers risk muscle loss, new study finds

Heavy drinkers could be putting themselves at risk of muscle loss and frailty in later life, according to new research from the University of East Anglia.

Read more >
A neonatal baby being held by its mother.
26 May 2023

Identifying the gut bacteria that threaten neonatal babies

Researchers from the Quadram Institute and University of East Anglia have identified what makes some strains of gut bacteria life-threatening in pre-term babies.

Read more >
Plastic garbage floating in the ocean.
23 May 2023

Uncovering the consequences of plastic pollution

Experts at the University of East Anglia have warned of the dangers of plastic pollution ahead of a UN meeting on the topic.

Read more >
All seven of the UEA mathematicians
01 May 2023

British Applied Mathematics Colloquium

Well done to all seven of the UEA mathematicians who delivered talks at this years British Applied Mathematics Colloquium in Bristol (BAMC). 

Read more >