Module syllabuses for the academic year 2010-11 Module syllabuses for the academic year 2010-11

Level 0

  • MTH-0B91 : Basic Mathematics I
  • MTH-0B92 : Basic Mathematics II

Level 1

  • MTH-1B24 : Multivariable Calculus
  • MTH-1B27 : Calculus
  • MTH-1C14 : Analysis and Algebra
  • MTH-1C17 : Pure Mathematics
  • MTH-1C24 : Multivariable Calculus
  • MTH-1C27 : Calculus
  • MTH-1C31 : Geometry
  • MTH-1C32 : Mechanics and Modelling
  • MTH-1C33 : IT for Mathematicians
  • MTH-1C34 : Probability
  • MTH-1C36 : Discrete Mathematics - Computational Number Theory

Level 2

  • MTH-2C1Y10/11 : Analysis
  • MTH-2C2Y10 : Fluids and Solids
  • MTH-2C2Y11 : Linear Elasticity
  • MTH-2C3Y10 : Algebra
  • MTH-2C3Y11 : Algebra
  • MTH-2C4Y10 : Differential Equations
  • MTH-2C4Y11 : Differential Equations and Algorithms
  • MTH-2C41 : Differential Equations
  • MTH-2G28 : Cryptography
  • MTH-2G37 : Combinatorics             
  • MTH-2G41 : Dynamical Systems
  • MTH-2G50 : Quantum Mechanics
  • MTH-2M01 : Mathematics Miniproject
  • MTH-2M02 : Mathematics Miniproject

Level 3

  • MTH-3D71 : History of Mathematics
  • MTH-3E18 : Set Theory
  • MTH-3E21 : Galois Theory
  • MTH-3E23 : Graph Theory
  • MTH-3E37 : Asymptotic Analysis
  • MTH-3E48 : Dynamical Oceanography
  • MTH-3E54 : An Introduction to Lie Groups
  • MTH-3E64 : Statistical Mechanics
  • MTH-3E73 : Electricity and Magnetism
  • MTH-3E75 : Financial Mathematics

M level

  • MTH-MA2Y : Research Methods in Mathematics
  • MTH-ME18 : Set Theory with Advanced Topics
  • MTH-ME21 : Galois Theory with Advanced Topics
  • MTH-ME23 : Graph Theory with Advanced Topics
  • MTH-ME37 : Asymptotic Analysis with Advanced Topics
  • MTH-ME48 : Dynamical Oceanography with Advanced Topics
  • MTH-ME54 : An Introduction to Lie Groups with Advanced Topics
  • MTH-ME64 : Statistical Mechanics with Advanced Topics
  • MTH-ME73 : Electricity and Magnetism with Advanced Topics
  • MTH-ME75 : Financial Mathematics with Advanced Topics
  • MTH-ME80 : Model Theory
  • MTH-ME82 : Boundary Element and Finite Element Methods