In a Year 13 class, students are asked to solve the following problem:

“It is given that \(y = -\frac{1}{x} \) is the a solution to the differential equation \(\frac{dy}{dx} = y^2 \).

Find the general solution to this differential equation.”

The conversation between Students A and B follows.

Student A: If \(y = -\frac{1}{x} \) is a solution, then \(y = -\frac{1}{x} + C \) should be the general solution, where \(C \) is a constant. It seems to me that the graphs of all these functions are vertical translations of the \(y = -\frac{1}{x} \) graph. Let me sketch these graphs in GeoGebra, I can make a slider for \(C \) and keep the trace of the graphs for the different values of \(C \), look:

Student B: Hold on, you say that \(y = -\frac{1}{x} + 1 \), for example, is a solution of the equation \(\frac{dy}{dx} = y^2 \). Let me check [he writes]: \(\frac{dy}{dx} = \frac{1}{x^2} \), but \(y^2 = \left(-\frac{1}{x} + 1\right)^2 \) is not \(\frac{1}{x^2} \).

What’s the problem here?

You are the teacher and you just heard this conversation.

Questions:

a. What is a solution to this mathematical problem?

b. What are the aims of using this problem in class?

c. What are the issues emerging from the exchange between Students A and B?

d. How would you respond to the two students and to the whole class?