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Abstract Chagas disease is caused by the parasite Trypa-
nosoma cruzi. The critical initial event is the interaction of
the trypomastigote form of the parasite with host receptors.
This review highlights recent observations concerning these
interactions. Some of the key receptors considered are those
for thromboxane, bradykinin, and for the nerve growth
factor TrKA. Other important receptors such as galectin-3,
thrombospondin, and laminin are also discussed. Investiga-
tion into the molecular biology and cell biology of host
receptors for T. cruzi may provide novel therapeutic targets.

Chagas disease caused by the parasite Trypanosoma cruzi
remains an important cause of morbidity and mortality in
endemic areas of Mexico and Central and South America.
Although there are still areas where acute infection remains
a public health problem, the greatest human burdens are
due to the consequences of chronic infection including
cardiomyopathy and the gastrointestinal megasyndromes
(Tanowitz et al. 1992). T. cruzi infection has gained
notoriety because of its association with immunosuppres-
sive states such as HIV/AIDS (Vaidian et al. 2004) and
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because of the threat of being transmitted by blood
transfusion and organ transplantation.

A critical event in infection with T. cruzi is the initial
interaction of the trypomastigote form of the parasite with
the host cell. These interactions result in the activation of
signal transduction pathways important in the pathogenesis
of Chagas disease. Over the years, there have been many
important studies on the interaction of this parasite and
receptors on host cells. We have chosen to highlight some
recent aspects of this important relationship.

Trypanosoma cruzi–thromboxane receptor interactions

Chagas disease is characterized by intense inflammation
and fibrosis (Tanowitz et al. 2005; Petkova et al. 2000)
associated with alterations in cardiovascular function,
vascular tone (Factor et al. 1985, Tanowitz et al. 1996),
hemostasis (Tanowitz et al. 1992; Petkova et al. 2001), and
platelet reactivity. An agent that displays some of these
pathophysiological properties is the bioactive lipid throm-
boxane A2 (TXA2). Systemic elevation in TXA2 levels
(measured as the stable hydrolytic product TXB2) is
observed in mice infected with T. cruzi (Tanowitz et al.
1990; Cardoni and Antunez 2004) suggesting that TXA2

may be important in Chagas disease. The assumption has
been that the host was the source of the elevated TXA2

observed in the circulation. However, it was recently
reported that the parasite is another source of this mediator
(Ashton et al. 2007). TXA2 has a complicated role in the
pathophysiology of Chagas disease; however, parasite-
derived TXA2 alone is sufficient to mediate disease
progression as deletion of TXA2 synthase from the host
genome does not influence pathogenesis (Ashton et al.
2007). Conversely, appropriate host response to parasite-
derived TXA2 is essential for maintaining host viability and
disease pathogenesis. Employing TXA2 receptor (TP)-null
mice, it was determined that a failure of the host to respond
to parasite-derived TXA2 resulted in a higher parasitemia,
increased tissue parasitism, and shorter survival time after
infection (Ashton et al. 2007).

The TP is a member of the serpentine family of G-protein
-coupled receptors. The coupling of this receptor is compli-
cated involving multiple heterotrimeric G-proteins as well as
a number of other signaling intermediates. The key signal
from TP that appears to regulate the growth phenotype of the
amastigote is linked to the activation of Gαq-containing
heterotrimeric G-proteins (Ashton et al. 2007) although the
specific mediator involved has yet to be confirmed. These
may include phospholipase C β and inositol phosphates
(Garg et al. 1997) and extracellular signal-regulated kinase
(Leal et al. 2007) or protein kinase C (PKC; Einicker-
Lamas et al. 2007) activation. Many of these have been

previously identified as mediators of experimental Chagas
disease. The commonality between these pathways and the
host receptors that activate them (such as those for
endothelin, TXA2 and bradykinin) indicates that G-αq
signaling from the host may contribute to the pathogenesis
of Chagas disease.

In addition to mediating the symptomatic aspects of the
disease, there are a number of suggested roles for TP
activation in the development of Chagas disease. The first
is a means by which the parasite manipulates the responses
of the host during infection. The intracellular amastigote
produces TXA2 in substantial quantities (about half as
much as platelets). Parasite-derived TXA2 acts on putative
receptors in somatic cells of the host to regulate parasite
growth and differentiation. This signaling loop ensures that
the parasite does not overwhelm the host too quickly
increasing the likelihood of further transmission to a new
host. These data may explain differences in the suscepti-
bility to experimental T. cruzi infection (Cardoni and
Antunez 2004). The higher the TXA2 production, the
earlier this regulatory system would be established which
would slow the rate of parasite growth.

Similarly, the response of the host to parasite-derived
TXA2 appears to be largely anti-inflammatory. TP-null
mice show significant areas of inflammation while wild-
type (WT) mice display minimal pathology (Ashton et al.
2007). Despite being considered a pro-inflammatory medi-
ator, the anti-inflammatory effects of TXA2 may result from
the suppression of NFκB activation by other inflammatory
mediators in the more complex setting of T. cruzi infection
in vivo as previously indicated (Ashton et al. 2003).
Moreover, the secretion of TXA2 also prevents the initiation
of an adaptive immune response by the host (Kabashima
et al. 2003). Thus, TXA2 release by the parasite would
severely compromise the adaptive and innate immune
responses of the host to infection, allowing continued
parasite survival and progression to the chronic phase of
the disease. Collectively, these events produce some of the
diverse pathophysiological changes that result in the com-
plicated phenotype of acute and chronic Chagas disease.

Eicosanoids are produced by several parasitic organisms
(Liu and Weller 1990; Belley and Chadee 1995; Kubata et
al. 2000). While the contribution of these modulators to
disease pathogenesis remains largely unexplored, they
represent ideal modulators of infection. If parasite-derived
eicosanoids act as immunoregulatory agents for the host,
similar to TXA2, then this mechanism may represent a
common mechanism used by intracellular parasites to affect
host response. This hypothesis is supported by data
indicating enhanced mortality rates in Chagas patients
(Celentano et al. 1995; Sterin-Borda et al. 1996) and
T.-cruzi-infected mice (Celentano et al. 1995; Hideko-
Tatakihara et al. 2008) with cyclooxygenase inhibitor use.
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Thus, TXA2 appears to be one of a few parasite-derived
molecules shown to be essential for host survival and
disease progression.

Parasite–bradykinin receptor interaction

The term “kinin” refers to a small group of vasoactive
metabolites structurally related to the nonapeptide bradykinin
(BK), which are released from an internal moiety of high
(HK) or low (LK) molecular weight kininogens by the action
of plasma or tissue kallikrein (Bhoola et al. 1992). In the
settings of infection, kinins can be liberated from the
kininogens by the action of microbial cysteine proteases,
such as those expressed by T. cruzi (Del Nery et al. 1997;
Lima et al. 2002; Scharfstein et al. 2000). Once released, the
short-lived kinins (half life of <15 s in the plasma) bind to
a wide range of cells through distinct subtypes of
heterotrimeric G-protein-coupled receptors: bradykinin
B2 receptors (B2R), which are constitutively expressed
by cardiovascular cells; B1R, whose expression is upregu-
lated in injured tissues (Leeb-Lundberg et al. 2005;
Marceau and Bachvarov 1998). The effects of BK on the
vascular endothelium are prevented by the action of kinin-
degrading peptidases, such as the angiotensin converting
enzyme (ACE)/kininase II (Skidgel and Erdos 2004).
While intact kinins such as BK or lysyl-BK (LBK) are
the agonists for B2R, the proteolytic excision of the C-
terminal Arg of BK/LBK by carboxypeptidase N/M
(kininase I) generates high-affinity ligands for B1R (des-
Arg-BK or des-Arg-LBK; Marceau and Bachvarov 1998).

Cruzipain (CZ), the major lysosomal-like cysteine
protease of T. cruzi, was characterized as a potential
therapeutic target for the treatment of this infection
(McGrath et al. 1995). Initial studies conducted with first-
generation CZ inhibitors indicated that trypomastigotes rely
on the enzymatic activity of CZ to invade and multiply in
cardiac myocytes (Meirelles et al. 1992). The elucidation of
the X-ray structure of the catalytic domain of CZ (McGrath
et al. 1995) led to development of potent and selective
irreversible inhibitors of CZ, some of which were able to
protect mice from lethal infection (Engel et al. 1998).

Clues to understanding the functional roles of CZ came
from studies demonstrating that this papain-like cysteine
protease resembles tissue kallikrein, i.e., both enzymes
efficiently cleave HK at the flanking sites of the internal
kinin moiety, liberating lysyl-BK (Del Nery et al. 1997).
Subsequently, it was demonstrated that HK interactions
with heparan sulfate reduced the cysteine inhibitory activity
of the cystatin-like domains of HK (Lima et al. 2002). In
addition, this sulfated proteoglycan re-directed the substrate
specificity of CZ, generating multiple HK breakdown
products, including kinin peptides (Lima et al. 2002).

These studies suggested that tissue culture trypomastigotes
generate kinins through mechanisms that involve coopera-
tive interactions between CZ, HK, and heparan sulfate
proteoglycans (Lima et al. 2002).

When Chinese hamster ovary (CHO) cells were trans-
fected with the rat-B2 receptor (B2R) gene (Scharfstein et
al. 2000; CHO-B2R) and subsequently infected, there was
an induction of IP3-mediated influx of intracellular calcium
in transfected cells. Similarly, activated CZ elicited potent
intracellular calcium responses in transfected cells which
were blocked by HOE-140, a specific antagonist of the B2R
subtype (Scharfstein et al. 2000). Monoclonal antibodies
directed to the BK epitope of kininogens blocked invasion
into CHO-B2R without interfering with the baseline levels
of mock infection of CHO cells. Furthermore, parasite
uptake by CHO-B2R was increased upon addition of
purified HK or, alternatively, by increasing physiological
concentrations of the B2R peptide agonist, while showing
negligible affects on mock-transfected CHO cells. These
observations suggest that CZ liberates the B2R peptide
agonist from kininogen molecules docked to cell surfaces
of mammalian cells. It is possible that the kinin-releasing
reaction occurs within compartmentalized areas of the host
cell plasma membrane. This possibility was supported by
the observations that membrane-permeable CZ inhibitors
efficiently reduced parasite invasion of endothelial cells via
the B2R pathway, while addition of soluble inhibitors such
as cystatin C or E-64 did not interfere with cell invasion.

Since trypomastigotes are poorly endocytic and accu-
mulate CZ in the flagellar pocket, the failure of hydrophilic
inhibitors in preventing cellular invasion was interpreted as
evidence that the kinin-releasing reaction most likely occurs
in enclosed areas formed by juxtaposition of host cell and
parasite plasma membranes. Thus, Scharfstein et al. (2002)
proposed a mechanistic model whereby active CZ mole-
cules diffuse from the flagellar pocket of the parasite into
this intercellular space. In this secluded microenvironment,
CZ may cleave surface-bound kininogens while being
spared from physiological inactivation by soluble forms of
plasma protease inhibitors (e.g., cystatins, kininogens,
α2-macroglobulin).

Importantly, there is significant residual infection in
cultures (CHO-B2R), endothelial cells or neonatal cardiac
myocytes maintained in the presence of HOE-140 (B2R
antagonist), indicating that the kinin signaling pathway is
not the only pathway driving infectivity. However, interac-
tion assays performed with endothelial cells that had been
pre-activated by lipopolysaccharide via toll-like receptor
(TLR)-4, or with primary murine cardiac myocytes,
revealed that the parasites can invade these activated host
cells via the upregulated B1R pathway (Todorov et al.
2003). These effects were canceled after the addition of
inhibitors of carboxypeptidase N/M (kininase I) to the
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cultures, suggesting that the B1R ligand [des-Arg]-BK/LBK
is generated by kininase I. The authors noted that, unlike
the effects on B2R signaling, addition of ACE inhibitors is
not required for parasite invasion via the upregulated B1R
pathway. Additional work is required to determine if the
parasites may take advantage of upregulated expression of
B1R in the chronically inflamed myocardium to infect
macrophages, fibroblasts, endothelial cells, and/or cardiac
myocytes.

After demonstrating that tissue-culture-derived trypo-
mastigotes released kinins while interacting with cultured
mammalian cells, additional studies were performed to
verify if the parasites were able to activate B2R at early
stages of infection in vivo. Indeed, studies in a mouse
subcutaneous infection model demonstrated that tissue-
culture-derived trypomastigotes (but not epimastigotes)
evoked paw edema through the sequential activation of
B2R and B1R (Monteiro et al. 2006). Intravital microscopy
(Monteiro et al. 2006) demonstrated that signals leading to
plasma leakage at early stages of infection allow for the
accumulation of kininogens (i.e., substrates for the kinin-
releasing cruzipain enzyme) in interstitial spaces. The
dissection of the signaling pathways that initiate edemato-
genic inflammation was performed in the mouse model.
These studies demonstrated that tissue-culture-derived trypo-
mastigotes initiate inflammation by triggering Toll-like
receptor (TLR) 2-dependent secretion of CXC chemokines
by macrophages (Schmitz et al. 2009). Following endotheli-
um/neutrophil activation, there is a discrete extravasation of
plasma proteins into interstitial spaces. Acting further
downstream, the blood-borne kininogens undergo proteolysis
by CZ thus generating high levels of bioactive kinins in the
peripheral tissues. The extent of B2R signaling by the short-
lived kinins is tightly regulated by the action of ACE/
kininase II, a kinin-degrading metallopeptidase that is highly
expressed in subcutaneous tissues (Monteiro et al. 2006).
Thus, the intensity of edematogenic inflammation in infected
peripheral tissues is controlled by an intricate interplay of
TLR2, B2R, and ACE.

Analysis of the outcome of kinin system activation in the
subcutaneous infection model revealed that kinins released
in peripheral tissues activate antigen-loaded dendritic cells
(DCs) via B2R and switch their maturation program. After
migrating to the T-cell-rich areas of draining lymph nodes,
the mature DCs stimulate adaptive (type-1) immunity. As
noted, the extent of DC activation by kinins in vivo is
tightly regulated by ACE, a kinin-degrading metallopepti-
dase expressed in subcutaneous tissues. Consistent with
this, mice pretreated with ACE inhibitors developed
vigorous innate responses via B2R, and these effects
translated into upregulated Th1 responses (Marceau and
Bachvarov 1998). These studies suggest that TLR2 and
ACE play opposite roles in the regulation of pathways

linking innate immunity (via the kinin/B2R pathway) to
adaptive immunity (Monteiro et al. 2006; Aliberti et al.
2003; Scharfstein et al. 2007).

A recent development was the description of the
consequences of infection in B2R-null mice (Monteiro
et al. 2007). Infection of these mice results in increased
parasitemia, mortality, and myocardial parasitism. The
susceptible B2R-null mice initially developed fairly potent
type-1 responses in the spleen, but the number of
intracardiac interferon (IFN)-γ-producing CD4+ and CD8+

effector T cells was already reduced at relatively early
stages of infection. Furthermore, as the infection pro-
gressed, there was a sharp decline in the frequency of
type-1 effector cells in B2R-null mice, both in lymphoid
and cardiac tissues. Notably, the decayed TH1 response of
B2R-deficient mice was accompanied by a rise in the pro-
inflammatory TH17 subset (Monteiro et al. 2007).

The hypothesis that DC signaling via B2R is required for
induction of protective effector T cells was underscored by
adoptive cell transfer of WT DCs into B2R-null mice. This
procedure not only rescued the resistant phenotype in the
recipient B2KR-null mice but also restored the development
of protective IFN-γ-producing CD4+ CD44+ and CD8+

CD44+ effector T cells in the recipient mutant mice, while
dampening the potentially detrimental TH17 (CD4+ subset)
responses (Monteiro et al. 2007). The analysis of CD11c+

DC interaction with tissue-culture-derived trypomastigotes
demonstrated that interleukin (IL)-12 and co-stimulatory
molecules (CD86, CD80, CD40) were upregulated in wild-
type DCs but not in B2R-null DCs (Monteiro et al. 2007)
and tissue-derived trypomastigotes pre-treated with irre-
versible inhibitors of CZ failed to induce overt DC
maturation. These observations support the notion that
T. cruzi relies on CZ to enzymatically generate the B2R
agonist while interacting with immature DCs. Although it is
not known if conventional DCs are the primary or even
unique in vivo targets of T. cruzi in the spleen, these results
support the idea that kinin-releasing pathogens convert
immature DCs into drivers of type-1 adaptive responses
through the activation of B2R, a G-protein-coupled recep-
tor, that acts as a sensor of danger to tissue integrity.
Additional studies are required to evaluate if myocardial
DCs (Andrade et al. 2000) sense the parasite via the B2R.

Parasite–host cell interactions with other receptors

Mucins are the major T. cruzi surface glycoproteins and their
sugar residues interact with invasive trypomastigotes and
mammalian cells (Villalta and Kierszenbaum 1984, 1985;
Yoshida et al. 1989). The monoclonal antibody B5,
recognizing a critical T. cruzi 45-kDa mucin epitope, inhibits
trypomastigote attachment to heart myoblasts, which pre-
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vents parasite entry suggesting that the 45-kDa mucin is used
by trypomastigotes to adhere to heart myoblasts (Turner et
al. 2002). Others have also implicated mucins in mammalian
cell infection (Yoshida et al. 1989; Di Noia et al. 1995;
Buscaglia et al. 2006). Mucins function as ligands (Schenk-
man et al. 1991). For example, mucins bind to galectin-3
(Moody et al. 2000), a β-galactosyl-binding lectin, and the
binding has been suggested to mediate parasite attachment
and entry (Moody et al. 2000; Kleshchenko et al. 2004).
Lipid tail in the GPI-anchor of mucins and other T. cruzi
ligands interact with the TLRs (Campos and Gazzinelli
2004) and T. cruzi infection of cardiac myocytes results in
IL-1β-dependent myocyte hypertrophy mediated by TLR-2
(Petersen et al. 2005). These parasite–TLR interactions may
promote B2R signaling by kininogens, which is balanced by
ACE signaling as discussed earlier.

Trans-sialidase and enzymatically inactive members of
the trans-sialidase superfamily are also present on the
parasite surface, but in much lower abundance compared
with mucins. Trans-sialidases transfer sialic acid residues
from host glycoconjugates to parasite mucins (Previato et
al. 1985). Trans-sialidases, independent of its trans-sialidase
activity, bind to surface receptors on neurons and glial cells
such as Schwann cells, leading to the activation of survival
signaling pathways such as mitogen-activated protein
kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/
Akt kinase signaling (Chuenkova and Pereira 2000;
Chuenkova et al. 2001). Trans-sialidase binding to neuronal
cells leads to survival and differentiation and an enhance-
ment in the synthesis and activity of tyrosine hydroxylase, a
rate-limiting enzyme of dopamine and other catecholamine
neurotransmitters. A trans-sialidase has also been termed
a parasite-derived neurotrophic factor (Chuenkova and
PereiraPerrin 2006) and the binding of this trans-sialidase
to the nerve growth factor receptor TrkA leads to T. cruzi
invasion of neuronal and dendritic cells in vitro and in
the murine model of this infection (Chuenkova and
PereiraPerrin 2004; de Melo-Jorge and PereiraPerrin 2007).
Trans-sialidase superfamily members bind to mammalian
cell receptors to mediate trypanosome binding and entry
(Frasch 2000; Lima and Villalta 1988, 1989; Villalta and
Lima 1990; Villalta et al. 1992, 1996, 1998, 1999, 2001;
Nde et al. 2006). Although the crystal structure of a T. cruzi
trans-sialidase has been elucidated (Buschiazzo et al. 2002),
its validation as a target for the development of new
interventions to block infection appears complex (Agusti
et al. 2004). Trans-sialidase and trans-sialidase-like super-
family members are shed into the bloodstream and
upregulate early infection in phagocytic and nonphagocytic
cells (Villalta et al. 1998, 1999, 2001) and exert other
biological effects on several cell types.

Gp83 is a ligand expressed in all T. cruzi strains and
employed by the parasite to attach and enter macrophages as

well as nonphagocytic cells (Lima and Villalta 1988; Villalta
et al. 1998, 1999, 2001, 2008). Notably, it is expressed only
in invasive trypomastigotes (Villalta et al. 1992) and is more
highly expressed in highly infective trypomastigote clones
(Lima and Villalta 1989). Monovalent Fab fragments of the
monoclonal antibody 4A4 specific for gp83 inhibit gp83
binding to myoblasts, fibroblasts, and macrophages, block
trypanosomes from attaching to and entering these cells, and
neutralize T. cruzi infection in vivo (Villalta et al. 2001). A
subset of the trans-sialidase super gene family, Tc-85, has
been implicated in cell infection since antibodies to Tc-85
partially block parasite internalization (Alves et al. 1986);
Tc-85 binds to laminin (Giordano et al. 1999) and
cytokeratin 18 (Magdesian et al. 2001). Trypomastigotes
release gp83 via parasite glycosylphosphatidylinositol–
phospholipase C (PLC) cleavage to activate the host
MAPK pathway and PKC in order to promote parasite
infection (Villalta et al. 1998, 1999; Nde et al. 2006).

A surface casein kinase II (CKII) substrate (Tc-1) of
trypomastigotes participates in early cell infection (Augustine
et al. 2006). Exogenous human CKII phosphorylates serine
residues on recombinant and trypomastigote Tc-1 and this
phosphorylation is inhibited by CKII inhibitors (Augustine
et al. 2006). Antibodies to Tc-1 or CKII inhibitors block
the invasion of host cells by trypomastigotes and reduce
parasite load in cells. Tc-1 is phosphorylated by human
CKII, and whether the latter functions as a Tc-1 receptor is
unknown. Since there are no human homologs of Tc-1, the
gene and encoded protein could provide targets for drug
discovery. Since Tc-1 is highly immunogenic and anti-
bodies directed against Tc-1 neutralize T. cruzi infection of
mammalian cells, Tc-1 could also be a candidate for
vaccine development.

The LYT1 T. cruzi protein is required for efficient in vitro
infection (Manning-Cela et al. 2001). The LYT1 gene
product was characterized and is involved in parasite lysis
and therefore affects its infectivity. Other parasite proteins of
unknown molecular structure have been implicated in the
invasion process since antibodies to these molecules partially
inhibit cellular infection. These include penetrin (Ortega-
Barria and Pereira 1991), a secreted peptidyl-prolyl cis-trans
isomerase (Pereira et al. 2002) and a lectin-like 67-kDa
glycoprotein (Silber et al. 2002).

T. cruzi proteases have been implicated in the infection
process. Thus, an inhibitor of the T. cruzi prolyloligopepti-
dase Tc80, a member of the serine protease family that
hydrolyses fibronectin, reduces trypomastigote entry into
nonphagocytic cells (Grellier et al. 2001; Bastos et al.
2005). This suggests that prolyloligopeptidase Tc80 may be
important for the parasite's transit through the extracellular
matrix (ECM) towards target cells. The parasite secretes
oligopeptidase B, a cytosolic serine endopeptidase, which
triggers calcium release in host cells (Burleigh and
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Andrews 1995) required for trypanosome entry and anti-
bodies directed against T. cruzi surface metalloproteases
partially reduce cell invasion (Cuevas et al. 2003).

Several other candidate host cell receptors mediating the
first step of infection have been suggested; however,
validation of these candidate receptors at the molecular
genetics level is needed in vitro and in vivo. Interestingly,
another heterotrimeric G-protein-coupled receptor, the
cannabinoid receptor CB1, is present at parasite host cell
junction (parasite synapse). Ligation of this receptor
induces Gi/o signaling and actually prevents parasite
infection of cultured myocytes although use of cannabi-
noids in mice models did not improve outcome presumably
because of their well-characterized immunosuppressive
effects (Croxford et al. 2005). Cytokeratin 18, a cytoskel-
etal protein of Vero cells, was suggested to function as a
T. cruzi receptor (Magdesian et al. 2001). However,
recently, it has been shown that it does not function as a
receptor for T. cruzi since silencing of cytokeratin 18
expression by RNAi does not affect trypomastigote binding
to host cells nor its entry (Claser et al. 2009). Furthermore,
a p74 heart myoblast surface protein has also been
suggested to function as a T. cruzi receptor mediating
attachment leading to entry since it binds to the trypomas-
tigote surface and p74 antibodies block parasite attachment
to mammalian cells (Villalta et al. 1993). The ECM, human
lectins, and parasite mucins have been shown to play an
important role in the early process of T. cruzi infection.
Accordingly, human galectin-3 binds to a trypomastigote
surface mucin (Turner et al. 2002; Moody et al. 2000) and to
human coronary artery smooth muscle cells in a lectin-like
manner (Kleshchenko et al. 2004) to significantly increase
the adhesion of trypomastigotes to human coronary artery
smooth muscle cells. Silencing galectin-3 expression in
mammalian cells by antisense approach significantly reduces
trypomastigote adhesion to cells. Galectin-3 molecules
interact with T. cruzi 45- (mucin), 32-, and 30-kDa surface
proteins on one hand and with laminin on the other, via their
carbohydrate recognition domains and are joined together
using the R-domains (Moody et al. 2000). In this way,
galectin-3 binds to laminin and trypomastigotes to recruit
them to the extracellular matrix thus facilitating initial
infection. Thus, galectin-3 provides a bridge between
parasite and host cell thereby enhancing infection. Some
ECM proteins play critical roles in early T. cruzi infection
and the parasite regulates them to facilitate infection.
Interestingly, silencing laminin γ-1 and thrombospondin 1
expression in human cells by stable RNAi significantly
reduced T. cruzi binding to mammalian cells leading to
infection (Nde et al. 2006; Simmons et al. 2006). T. cruzi
gp83 ligand upregulates the expression of laminin γ-1 to
facilitate entry (Nde et al. 2006). Additionally, T. cruzi
surface antigens bind to laminin (Giordano et al. 1999) and

fibronectin (Ouaissi et al. 1986) and have been postulated to
participate in the infection process. Thus, the parasite
modulates some ECM components and interacts with them
to facilitate infection by exploiting these molecules to recruit
parasites in the early process of infection.

The completion of the T. cruzi genome project
highlighted the need to extend the range of techniques
available to study gene function of trypanosome attach-
ment and entry. The inability to use RNAi in T. cruzi to
rapidly study gene function in T. cruzi during early
infection and pathogenesis poses significant limitations.
However, a recent development has been described
(Taylor and Kelly 2006) to overcome this problem. The
pTcINDEX expression vector for T. cruzi (Taylor and
Kelly 2006) may facilitate studies of inducible expression
of tagged proteins, the generation of conditional knockout
trypanosome cell lines, and dominant-negative approaches
to validate the role of candidate invasive genes in the
process of parasite infection of heart and other cells.
Microarray platforms containing the whole human ge-
nome and the whole T. cruzi genome may facilitate the
rapid identification of host and parasite genes involved in
the process of early infection and the molecular signature
induced by T. cruzi in host cells during attachment and
entry of cardiac and other cells. Microarray studies have
been reported using only partial host and parasite
genomes. Silencing cellular host gene expression by RNAi
has been an important method to validate candidate host
genes implicated in the early process of infection of
cardiac and other cells.

T. cruzi induces calcium-triggered recruitment of lyso-
somes and lysosome fusion with the plasma membrane.
This process is dependent on subversion of host cell
microtubule dynamics by the parasite (Tyler et al. 2005)
as part of as a strategy to form a vacuole, through which
they gain entry to the host cells (Burleigh and Andrews
1998; Andrade and Andrews 2005). While lysosome-
dependent entry was initially considered to be the primary
mechanism by which the parasite gains access to nonpro-
fessional phagocytic cells, it now appears that trypomasti-
gotes can penetrate cells utilizing a PI3K-mediated
mechanism which induces invagination of the host cell
plasma membrane and is independent of host cell micro-
filaments (Woolsey et al. 2003; Burleigh 2005). There are
several reviews that deal with host–parasite interaction and
cellular response (Burleigh and Andrews 1998; Andrade
and Andrews 2005; Woolsey et al. 2003) and molecular
analysis of early infection (Villalta et al. 2008).

T. cruzi activates several signal transduction events
during entry for its initial establishment in cells (Burleigh
and Andrews 1998; Andrade and Andrews 2005; Burleigh
2005). T. cruzi induces calcium mobilization in cardiac
myocytes and other cells, mediated by IP3, which is
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generated upon PLC activation. PI3K, other protein
kinases, and phosphatases are also implicated in the
mechanisms of T. cruzi invasion of phagocytic and non-
phagocytic cells (Chuenkova and Pereira 2000; Chuenkova
and PereiraPerrin 2004; de Melo-Jorge and PereiraPerrin
2007). The T. cruzi gp83 activates the MAPK pathway and
PKC to enhance infection of macrophages (Villalta et al.
1998, 1999) and infection of endothelial vascular smooth
muscle cells activates the MAPK pathway (Mukherjee et al.
2004, Hassan et al. 2006)

Activation of parasite protein tyrosine phosphorylation is
involved in trypomastigote entry into nonphagocytic cells
(Favoreto et al. 1998). Trypomastigotes induce tyrosine
dephosphorylation of heart myoblast proteins (Favoreto et
al. 1998) and the transcription growth factor beta pathway
is required for T. cruzi invasion of epithelial cells (Ming et
al. 1995).

Global gene expression profiling of host responses to
T. cruzi and to critical surface molecules involved in the
initial cellular infection has not been performed in detail.
Only partial genome was used for evaluating gene profiling
of host responses to T. cruzi (Vaena de Avalos et al. 2002;
Garg et al. 2003; Mukherjee et al. 2003, 2008). Is the
molecular signature caused by early infection the same,
similar, or different across various cell types? What are the
molecular signatures induced by trans-sialidases, trans-
sialidase-like molecules, mucins, CKII substrate, and other
molecules involved in the process of infection of cardiac
myocytes and other cells? Since T. cruzi infects all human
cells except red blood cells, it is important to investigate if
the same types of surface receptors are used in all cells or
does the parasite use different classes of receptors depending
on the host cell type? Research in this area is in infancy. We
know very little about the T. cruzi genes that may be
important in the molecular pathogenesis of cardiac and other
cells, contributing to chagasic cardiovascular disease. The
recent completion of the T. cruzi genome project and the
generation of microchip platforms containing the whole T.
cruzi genome may facilitate these studies. No global gene
networking analysis of the parasite and host cells during the
invasion process has been achieved. Functional genomics
and systems biology of early infection of cardiac and other
cells by T. cruzi has not been fully explored. Future progress
in this area will facilitate the full understanding of the
participation of the parasite and the host during early
infection. The structural and atomic analysis of validated T.
cruzi surface ligands and the co-crystallization of these
ligands and their validated host receptors that mediate
trypanosome attachment leading to entry are required to
understand this interaction at the molecular and atomic levels
and to develop small inhibitors to block the first steps of
infection. High-throughput drug screening based on specific
trypanosome target molecules is not fully developed.

The nature of the host–parasite interaction continues to
be an area of great interest not only in Chagas disease but in
other types of infection. Understanding these interactions
may provide novel targets for therapy.
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