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Trypanosomes are the causative agents of Chagas’ disease in Central and
South America and sleeping sickness in sub-Saharan Africa. The current
chemotherapy of the human trypanosomiases relies on only six drugs, five of
which were developed > 30 years ago. In addition, these drugs display
undesirable toxic side effects and the emergence of drug-resistant trypano-
somes has been reported. Therefore, the development of new drugs in the
treatment of Chagas’ disease and sleeping sickness is urgently required. This
article summarises the recent progress in identifying novel lead compounds
for antitrypanosomal chemotherapy. Particular emphasis is placed on those
agents showing promising, selective antitrypanosomal activity.
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1. Introduction

Trypanosomes are parasitic protozoa that cause morbidity and mortality in millions
of people in Africa and America [1]. In sub-Saharan Africa, Trypanosoma brucei gam-
biense and T. b. rhodesiense are the aetiological agents of sleeping sickness in humans.
Over 60 million people living in 36 countries are threatened with sleeping sickness
and the estimated number of cases is thought to be between 300,000 and 500,000
[1,2]. African trypanosomes live and multiply extracellularly in the blood and tissue
fluids of humans and are transmitted by the bite of infected tsetse flies
(Glossina spp.). In Latin America, infection with T. cruzi is responsible for Chagas’
disease, which is the leading cause of heart disease [3]. Nearly 90 million people in
19 endemic countries are at risk of contracting Chagas’ disease and ∼ 16 million
people are already infected [1,4]. American trypanosomes are found both extra-
cellularly and intracellularly in the blood, lymph and tissue of the human host and
are normally transmitted by contamination of mucosal membranes or bite wounds
with excretions from infected reduviid bugs (Triatoma spp., Rhodnius spp.,
Panstrongylus spp.).

Chemotherapy of both African and American trypanosomiasis is unsatisfactory
[1,5,6]. For the treatment of sleeping sickness only four drugs, of which three were
developed > 50 years ago, are available (Figure 1). Suramin, a polyanionic sulfated
naphthylamine introduced in 1922, and pentamidine, an aromatic diamidine first
used in 1937, are effective against the early stage of T. b. rhodesiense and T. b. gambi-
ense infections, respectively. The early stage of African trypanosome infection is
defined by the restriction of the parasites to the blood and lymph system. Melarso-
prol is a trivalent arsenical and was introduced in 1949 for the treatment of late-
stage sleeping sickness caused by T. brucei spp. The late stage of sleeping sickness is
characterised by the presence of the parasite in the cerebrospinal fluid. Eflornithine
(DL-α-difluoromethylornithine, DFMO), a selective inhibitor of ornithine
decarboxylase, is the only new drug for chemotherapy of sleeping sickness. It was
first used in 1990 and is only effective against T. b. gambiense. Only two drugs are
available for the treatment of Chagas’ disease, which were developed in the 1970s:
nifurtimox, a nitrofuran, and benznidazole, a nitroimidazole (Figure 1). They are
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most active against the extracellular forms of T. cruzi during
the acute phase of the infection. Both drugs seem to be inef-
fective against the intracellular forms of the parasite that cause
chronic disease [7]. All drugs currently used to treat human
trypanosomaises have significant side effects ranging from
nausea to life-threatening complications.

With the exception of the prodrug DB-289 (Figure 2), an
orally bioavailable diamidine for the treatment of early-stage
sleeping sickness that has recently entered Phase IIb clinical trials
[8], and the antifungal drug posaconazole (Figure 2), a triazole
derivative for the treatment of Chagas’ disease and about to be
evaluated in early clinical trials [6], no other compounds are in
clinical development. In addition, the production of the cur-
rently available drugs for therapy of human trypanosomiasis was
recently under threat [9]. Thus, new drugs for chemotherapy of
sleeping sickness and Chagas’ disease are required. This article

focuses on recent progress in the identification of promising
agents with selective, trypanocidal activity that can serve as lead
compounds for future antitrypanosomal drug development.

2. Cysteine protease inhibitors

T. brucei spp. and T. cruzi contain a cathepsin L-like cysteine
protease termed brucipain (trypanopain-Tb) and cruzipain
(cruzain), respectively. These enzymes are responsible for the
major proteolytic activity of all life-cycle stages of these para-
sites [10]. Cruzipain is found on the cell surface of intracellular
amastigotes and in the endosomal/lysosomal system of insect
epimastigotes of T. cruzi [11,12], whereas brucipain is localised
in lysosomes of bloodstream forms of T. brucei [13,14].
Research over the past few years with cultured parasites and
experimentally infected mice has shown that trypanosome

Figure 1. Structures of current antitrypanosomal drugs.

S

S

N
H

S

O

NH O

N
H

N
H

O

O NH

N
H

O
S

SS O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

O O

NH2

NH NH

NH2

As

S

N N

N N
H

NH2

NH2

OH

S NH2

O OH

NH2

F

F

O N S
O

O
N

N

O

O N N

N

O

N
H

OO

Suramin

Pentamidine

Melarsoprol Eflornithine

Nifurtimox Benznidazole

Na
+

Na
+

Na
+

Na
+

Na
+

Na
+



Steverding & Tyler

Expert Opin. Investig. Drugs (2005) 14(8) 941

cysteine proteases are valid targets for the development of new
drugs. In particular, peptidyl and peptidomimetic compounds
have proved trypanocidal.

2.1 Peptidyl inhibitors
Dipeptidyl substrate analogues linked to the reactive fluor-
omethylketone (CH2F) were the first cysteine protease inhibi-
tors reported to lyse trypanosomes, albeit at high
concentrations (> 100 µM) [15]. Halomethylketones are irre-
versible inhibitors and react covalently with the active site
cysteinyl-SH group of cysteine proteases [16]. Later, a number
of carbobenzoxy (Cbz) fluoromethylketones, chloromethyl-
ketones (CH2Cl) and diazomethylketones (CHN2) were
tested for in vitro killing of T. brucei bloodstream forms, and
it was shown that Cbz-Phe-Ala-CHN2 (Figure 3) was one of
the most potent inhibitors with a 50% growth inhibition
(GI50) value in the low micromolar range [17,18]. Moreover, it
was also demonstrated that Cbz-Phe-Ala-CHN2 had an effect
on the growth of T. brucei in vivo [18]. Parasitaemia of mice
infected with T. brucei decreased to undetectable levels for
3 days following Cbz-Phe-Ala-CHN2 250 mg/kg i.p. on
days 3 – 6 after infection. Although, after discontinuation of
treatment, parasitaemias returned to similar levels as those in
control animals, the average survival time of mice was dou-
bled. This probably indicates that parasites that had evaded
killing by the inhibitor activated an immune response capable
of controlling the infection.

To decrease toxicity in vivo, new generation inhibitors with
a peptidomimetic, rather than a peptidyl, backbone coupled
to the reactive phenyl vinyl sulfone (VSΦ) group have been
developed. The vinyl sulfone moiety is less reactive towards
nucleophiles than halo- and diazomethylketones and thus suf-
ficiently inert in the absence of the target [19]. Like the halo-
and diazomethylketones, vinyl sulfones are irreversible inhibi-
tors that covalently react with the functional cysteinyl-SH
group of cysteine proteases [19]. To increase in vivo activity
and bioavailability, morpholinyl urea (Mu) and N-methyl-
piperazinyl urea (MePip) residues were incorporated at the
terminal P3-position of VSΦ peptides. On incubation with
Mu-Phe-hPhe-VSΦ (Figure 3) at concentrations > 10 µM,
T. cruzi epimastigotes stopped dividing and died after 5 days
[20]. The peptide also inhibited the growth of bloodstream
forms of T. brucei with a GI50 value of 5.6 µM [17]. The most

potent vinyl sulfone inhibitor, however, was MePip-Phe-
hPhe-VSΦ (Figure 3), which was reported to kill bloodstream
forms of T. brucei in vitro with a GI50 value of 0.1 – 0.4 µM
[10,17]. The compound also inhibited the growth of T. brucei
and T. cruzi in vivo. Treatment of T. brucei-infected mice with
MePip-Phe-hPhe-VSΦ 50 mg/kg i.p. b.i.d. from days 3 to 7
post-infection reduced parasitaemia to undetectable levels for
the following 3 days [10]. As for Cbz-Phe-Ala-CHN2, the
effect was not permanent on cessation of treatment and para-
sitaemia soon reached control levels [10]. More encouraging
were the results of experimental infections of mice with
T. cruzi. Mice were rescued from lethal infection with T. cruzi
if treated three times-daily with MePip-Phe-hPhe-VSΦ
35 mg/kg i.p. for 24 days [21]. Furthermore, using the same
dosing regimen over 21 days cured mice that were chronically
infected with T. cruzi for 3 months [21].

The latest development of dipeptidyl inhibitors of cysteine
proteases is the synthesis of vinyl sulfonamide compounds
[22]. Whereas VSΦ have second inactivation constants of
181,000 – 420,000 s-1 M-1 against cruzipain [19,22], vinyl sul-
fonamides exhibit values of 1,260,000 – 6,480,000 s-1 M-1

[22]. Although very potent cruzipain inhibitors, only the vinyl
N-sulfonyl hydroxylamine (VSNHOΦ) derivatives Mu-Phe-
hPhe-VSNHOΦ and MePip-Phe-hPhe-VSNHOΦ (Figure 3)
exhibited significant activity in cell culture assays. Like their
parent VSΦ, they inhibited the growth of T. cruzi in macro-
phages at a concentration of 10 µM [22]. However, in contrast
to the parent compounds, parasites reappeared in the macro-
phage cultures 4 days after treatment with Mu-Phe-hPhe-
VSNHOΦ, and MePip-Phe-hPhe-VSNHOΦ was
terminated [22].

2.2 Non-peptidyl inhibitors
Recently, new lead scaffolds for inhibitors of trypanosome
cysteine proteases with potent trypanocidal activities against
cultured parasites have been identified. These include acyl
hydrazides, ureas, aryl thioureas and thiosemicarbazones, all
of which are non-peptidyl reversible inhibitors [23-27]. Many
of these compounds were active in the low to submicromo-
lar concentration range against pure brucipain and cruzi-
pain [23-27]. Interestingly, structure–activity relationship
studies for these compounds revealed that the most
trypanocidal inhibitors have recurring patterns. For
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Figure 2. Structures of antitrypanosomal drugs in development.
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instance, acyl hydrazides with GI50 values < 2 µM for
in vitro growth inhibition of T. brucei have on their R2 side
an unsubstituted or substituted naphthyl group [23,24]. One
of the compounds, ZLIII43A (Figure 4), was shown to com-
bat an experimental acute infection of T. brucei in mice, if
given at the time of infection [23]. However, if the adminis-
tration of the inhibitor was delayed, the treatment was inef-
fective [23]. Another example is the urea compound D16
(Figure 4), which has been shown to prolong the survival of
T. cruzi-infected macrophages by 22 days [25], that shares
the same substituent (1-methyl-3-trifluoromethylpyrazol-5-
yl) on the R1 side with several acyl hydrazides recently iden-
tified to be active against bloodstream forms of T. brucei [24].
Finally, N-aryl semiarbazones that were effective at protect-
ing macrophages against T. cruzi have trifluoromethyl, bro-
mine or chlorine substituents at the C3-position of their
single phenyl rings (Figure 4) [26]. 

3. Proteasome inhibitors

The eukaryotic proteasome is a multicatalytic protease com-
plex that plays a critical role in intracellular protein degrada-
tion. The 20S core of the proteasome is a barrel-shaped
structure made up of four rings [28]. The two inner rings are
composed of seven distinct β-protein subunits. In each ring,
three of these subunits contain the three major proteolytic
activities of the proteasome [28]. These three catalytic activities
are commonly referred to as the peptidyl-glutamyl peptide
hydrolysing activity, the trypsin-like activity and the chymot-
rypsin-like activity located on the β1, β2 and β5 subunits,
respectively [28]. By using RNA interference to selectively
block the expression of β-subunits, it has been shown that the
catalytic proteins are vital for trypanosomes [29], thus indicat-
ing that the proteasome is a valid target for antitrypanosomal
drug development. In addition, biochemical analysis has
revealed that the trypanosomal proteasome differs in terms of
substrate specificity from the mammalian proteasome; the
trypanosomal proteasome exhibiting high trypsin-like but low
chymotrypsin-like activities, whereas the converse is true for
the mammalian proteasome [30,31].

Proteasome inhibitors are usually short peptidyl substrate
analogues modified at the C terminus by a functional group.
Although the peptide portion directs the association of the

Figure 3. Structures of peptidyl cysteine protease inhibitors
with promising trypanocidal activities.
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inhibitor to the enzyme’s substrate binding site, the functional
group interacts with the catalytic threonine residue to form
reversible or irreversible covalent adducts [32].

Peptide aldehydes were the first proteasome inhibitors to be
developed. They are well-known reversible inhibitors of
cysteine and serine proteases. Recently, it has been shown that
peptide aldehydes inhibit the growth of bloodstream forms of
T. brucei in vitro [33]. The most trypanocidal peptide aldehyde
proteasome inhibitor was PSI (Figure 5), with a GI50 value of
0.086 nM [33]. However, peptide aldehydes are not very spe-
cific and can inhibit other proteases such as lysosomal cathep-
sins and calpains [32,34]. In addition, the highly reactive
aldehyde group can form Schiff ’s bases with circulating free
amines, leading to possible side effects. These drawbacks are
overcome by peptides linked to the vinyl sulfone moiety (see
Section 2.2).

Previous studies have shown that vinyl methyl sulfones
(VSMes) with a trileucine core sequence are very effective
inhibitors of the proteasome [34,35]. Depending on the N-ter-
minal substituent, trileucine VSMes also displayed promising
trypanocidal activity [36]. For instance, adamantanylacetate
(AdaAhx3)-Leu-Leu-Leu-VSMe (Figure 5) [37], which has an
incorporated extended N-terminal substituent of three 6-
aminohexanoyl residues capped with an AdaAhx3 group,
killed bloodstream forms of T. brucei in vitro with a GI50 value
of 0.4 µM [36]. Moreover, it was found that higher trypano-
cidal activity of trileucine VSMes generally correlates to a
higher observed rate constant (kobs)/concentration of the
inhibitor [I] value for the inhibition of the proteasomal
trypsin-like activity but not the inhibition of the proteasomal
chymotrypsin-like activity [36]. These findings indicate that
trypanosomes are particularly sensitive to the inhibition of the
trypsin-like activity.

A similar observation has been recently reported for α′,β′-
epoxyketone proteasome inhibitors [38]. Peptide epoxyketones
are the most selective inhibitors of the proteasome currently
known. The reason for the high specificity of epoxyketones lies
in their unique reaction mechanism by forming a cyclical
morpholino ring with a N-terminal catalytic threonine residue
of the proteasome. With serine or cysteine proteases, epoxy-
ketones cannot form such a ring [39]. The peptide epoxyketone
epoxomicin (Figure 5) has been recently shown to exhibit a
selectivity index (ratio of cytotoxic to trypanocidal activities) of
> 1000 [38]. As this selectivity index approaches those of com-
mercially available drugs used for the treatment of human Afri-
can sleeping sickness [40], epoxomicin is a promising lead
compound for antitrypanosomal drug development.

Boronic acids are a new class of proteasome inhibitors dis-
playing promising antitrypanosomal activity. Peptide boro-
nates are much more potent and selective inhibitors than their
corresponding aldehydes [41]. The boronate analogue of
Cbz-Leu-Leu-Leu-CHO, MG-262 (Figure 5), is 400-fold
more trypanocidal than its aldehyde with an impressive mini-
mum inhibitory concentration (MIC) value of 10 nM [33].
MG-262 has also been shown to have a significant effect on
the growth of T. brucei in vivo [42]. Treatment with MG-262
10 µg/day i.p. from days 4 to 6 after infection markedly slowed
down the growth of the parasites in the blood of infected mice
compared with infected control animals [42]. These results sug-
gest that boronic acid proteasome inhibitors provide novel
leads for the development of antitrypanosomal agents.

4. DNA topoisomerase inhibitors

DNA topoisomerases are essential enzymes that catalyse
topological changes in the DNA molecule. They play a key role
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in DNA metabolism such as replication, transcription, recom-
bination and condensation. Two types of DNA topoisomerases
have been characterised [43]. Topoisomerase I introduces tran-
sient single-strand breaks whereas topoisomerase II initiates
transient double-strand breaks [44,45]. Both topoisomerases I
and II have been purified from trypanosomes and their corre-
sponding genes sequenced [46]. In contrast to other eukaryotic
type I topoisomerases, the trypanosomal enzyme is a hetero-
dimer whose subunits are encoded by different genes [47]. Both
topoisomerases probably have dual localisations in the nucleus
and the mitochondrion of trypanosomes [46]. By using RNA
interference, it was shown that both topoisomerase I and II are
vital for T. brucei [48,49], thus indicating that these enzymes are
valid drug targets for antitrypanosomal chemotherapy. In addi-
tion, topoisomerases have an essential role in the replication of
kinetoplast DNA in trypanosomes [46].

DNA topoisomerase inhibitors represent a major group of
anticancer drugs [50]. Based on the mechanisms of action, DNA
topoisomerase drugs can be divided into two classes. Class I
drugs act by stabilising covalent topoisomerase–DNA complexes
and are referred to as topoisomerase poisons [50]. The main class
I drugs are camptothecins, anthracyclines, epipodophyllotoxins
and quinolones. Class II drugs interfere with the catalytic func-
tions of the enzyme, are referred to as topoisomerase inhibitors
and include couramin antibiotics and fostriecin analogues [50].

4.1 Camptothecins
Camptothecin is a topoisomerase I inhibitor with powerful
antitumour properties. A series of camptothecin derivatives
have been shown to display trypanocidal activities with GI50

values in the submicromolar range [51]. Meanwhile, two camp-
tothecin analogues, irinotecan and topotecan, have been devel-
oped into drugs for cancer chemotherapy. The trypanocidal
activities of these two drugs have been recently investigated but
neither drug was found to be very active against bloodstream
forms of T. brucei [52]. However, irinotecan is a prodrug that has
to be converted into its active metabolite 7-ethyl-10-hydroxy-
camptothecin (Figure 6) by a carboxylesterase [53]. As the active
metabolite exhibited substantial trypanocidal activity with a
GI50 value of 0.12 µM [52], the low efficacy of irinotecan may
be attributed to a lack of carboxylesterase in bloodstream forms
of T. brucei. Therefore, it may be that irinotecan will display
antitrypanosomal activity in vivo, the host carboxylesterases
acting to convert the prodrug to its active form.

4.2 Anthracyclines and mitoxantrone
Anthracyclines and mitoxantrone are topoisomerase II inhibi-
tors that are currently used in cancer chemotherapy. Dauno-
mycin and its hydroxyl derivative doxorubicin have long been
known to be active on bloodstream forms of T. rhodesiense
affecting parasite motility and infectivity to mice [54].

Figure 6. Structures of DNA topoisomerase inhibitors with encouraging trypanocidal activities.
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Recently, it was shown that doxorubicin and aclarubicin and
the related anthracenedione mitoxantrone exhibited promis-
ing activities against in vitro-cultured bloodstream forms of
T. brucei with GI50 values in the low nanomolar range [52].
Based on the MIC values, aclarubicin (Figure 6) exhibited a
selectivity index of 1000 [52]. If these compounds and other
members of the anthracycline family prove to be active against
trypanosomes in vivo, licensing and time-consuming drug
development could be avoided. In addition, as the in vivo tox-
icities of these compounds are well described, a more rapid
application for the treatment of human trypanosomiasis with
less extensive clinical trials might be possible.

4.3 Fluoroquinolones
Fluoroquinolones are specific inhibitors of prokaryotic topoi-
somerase II, some of which are important drugs in antibacterial
chemotherapy. In a number of recent studies,
∼ 190 fluoroquinolones and their derivatives were tested for
activity against bloodstream-form trypanosomes [55-57]. The
most potent compounds exhibited GI50 values in the low
micromolar range. However, selectivity indices were modest for
most quinolones [55-57]. The most promising fluoroquinolone
was DW-271 (Figure 6) with a selectivity index of 428 [56]. In
contrast to its in vitro activity, DW-271 and the other fluoro-
quinolones tested showed no curative effect in vivo in dose-
escalation experiments with a maximum dose of 100 mg/kg
b.i.d. and failed to affect the murine parasitaemias [56]. Never-
theless, fluoroquinolones remain of interest as they display low
toxicity [56] and can cross the blood–brain barrier [58].

5. Tubulin directed drugs

Tubulin is a molecule that is highly conserved among eukary-
otes and is essential for cellular replication. Chemicals
directed against tubulins are widely used for applications as
diverse as cancer chemotherapy, gout treatment, weedkillers
and antihelminthics. Trypanosomes are heavily dependent on
microtubules for most of the aspects of cellular morphology,
motility and intracellular transport [59]. Trypanosome

tubulins display particular diversity in biochemistry and may
be modified post-translationally by acylation, tyrosination
and polyglutamylation. In addition to a tandem array of
paired α- and β-tubulin genes, trypanosomes are unusual in
possessing four other tubulin genes; -γ, -δ, -ε and -ζ [60,61].
The novel aspects of the trypanosome microtubule cytoskele-
ton, tubulin repertoire and biochemistry make it an attractive
target for therapeutics. In addition, trypanosome tubulins dif-
fer markedly from mammalian tubulins with respect to their
drug sensitivities. They are relatively insensitive to colchicine
for which they have reduced affinity and to the vinca alkaloids
vinblastine and vincristine [62]. However, trypanosomes are
sensitive to some antitubulin compounds such as taxol [63]

and benzimidazoles [64]. In particular, rhizoxin induces growth
defects in trypanosomes at concentrations as low as 5 nM in
culture [65].

The dinitroanilines chloralin and trifluralin (Figure 7) are
microtubule-disrupting herbicides that have shown activity
against trypanosomes in culture [66]. Chloralin in particular
was active against T. cruzi epimastigotes with GI50 values of 6.8
– 17.6 µM [66]. In a mouse model of Chagas’ disease, triflura-
lin-treated animals survived significantly longer than untreated
controls [67]. However, the trypanocidal activity of trifluralin is
thought to be due to the presence of the contaminant chlora-
lin. From studies with analogues of the herbicide oryzalin, N1-
phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5;
Figure 7) has emerged as the most active antimitotic agent [68].
This compound has GI50 values of 0.41 and 0.73 µM in vitro
against two strains of T. brucei with a selectivity index of 40 –
80 and is, therefore, a promising lead. However, initial results
in animal models were disappointing [69].

6. Inhibition of lipid synthesis

The composition of the membrane systems of trypanosomes
is distinct from those of the host cell. In common with fungi,
trypanosomes synthesise ergosterol (provitamin D2) but not
cholesterol [70,71] and synthesis of phosphitidylcholine
appears to be via the Greenberg (transmethylation) pathway

Figure 7. Structures of dinitroaniline compounds with trypanocidal activities.
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[72]. In bloodstream forms of T. brucei that contain choles-
terol but not ergosterol, cholesterol is scavenged from lipo-
protein complexes of the blood utilising an LDL receptor
[73,74]. However, T. cruzi appears to maintain a requirement
for ergosterol [6]. One existing drug, amphotericin B, which
has an increased affinity for ergosterol over cholesterol [75], is
a drug of choice against the related disease leishmaniasis and
has shown good efficacy against T. cruzi [76]. Similarly, milte-
fosine, a lysophospholipid inhibitor now in widespread use
against leishmaniasis that is active against T. cruzi [77], is
believed to selectively inhibit phosphatidylcholine synthesis
via the Greenberg pathway [72]. These findings provide proof-
of-principle for targeting the lipid biosynthesis pathway
in trypanosomes.

6.1 Inhibition of sterol synthesis
Ergosterol synthesis (Figure 8) is an obvious target for the
chemotherapy of T. cruzi, an essential metabolic pathway in
this parasite in which the latter reaction steps are divergent
from cholesterol synthesis in mammals. In fact, even those
enzymes shared with sterol synthesis in mammals represent
valid targets as the inhibition of cholesterol synthesis is well
tolerated in humans. This is because the dietary intake of cho-
lesterol is normally sufficient to maintain adequate lipo-
protein levels and inhibition of endogenous sterol synthesis
may even be desirable in its own right for many [78].

6.1.1 Hydroxymethylglutaryl coenzyme A reductase 
inhibitors
Hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase
(EC 1.1.1.34) catalyses the rate-limiting reaction in sterol bio-
synthesis (Figure 8), the NADPH-dependent reduction of
HMG-CoA to mevalonate. Statins, which are some of the
best-selling drugs in the world (e.g., mevastatin, lovastatin,
simvastatin, pravastatin and fluvastatin), target this enzyme in
order to lower low-denisty lipoprotein cholesterol levels. It has
been clear for some time that lovastatin is trypanocidal against
T. cruzi in vitro [79] and when supplied as part of a cocktail of
other sterol synthesis inhibitors in vivo, but is much less effec-
tive when adminsitered alone [80]. More recently, fluvastatin
and cerivastatin were shown to have good activity against the
T. cruzi enzyme [81], which appears to localise to the
mitochondrion in the parasite unlike host cells [82].

6.1.2 Farnesyl pyrophosphate synthase inhibitors
The nitrogen-containing drugs etidronate, pamidronate,
alendronat, and risedronate are metabolically inert inorganic
pyrophosphate analogues and potent inhibitors of bone
resorption. Ergosterol deficiency is associated with defects in
calcium resorption in humans and the inhibition of ergo-
sterol synthesis in trypanosomes may be linked to poor cal-
cium resorption from the parasite’s intracellular store of
pyrophosphate, the acidocalcisomes.

Farnesyl pyrophosphate synthase (EC 2.5.1.10) is the
branching point for the synthesis of polyisoprenoids and sterols
(Figure 8). The recombinant enzyme of T. cruzi was shown to
be inhibited by bisphosphonates [83]. In trypanosomes, these
inhibitors block sterol synthesis at a presqualene level [84]. In
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+ Isopentenyl-PP

Geranyl-PP

+ Isopentenyl-PP
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2,3-Oxidosqualene

Squalene

Farnesyl-PP

+ Farnesyl-PP

Isoprenoid metabolism
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Figure 8. Simplified scheme of ergosterol biosynthesis.
Target enzymes for chemotherapy of Trypanosoma cruzi are (1)
hydroxymethylglutaryl-CoA reductase (EC 1.1.1.34), (2) farnesyl
pyrophosphate synthase (EC 2.5.1.10), (3) squalene synthase
(EC 2.5.1.21), (4) squalene epoxidase (EC 1.14.99.7), (5)
lanosterol synthase (EC 2.4.99.7), (6) C14α sterol demethylase
(EC 1.14.13.70), and (7) sterol 24-C-methyltransferase
(EC 2.1.1.41). Branched pathways for isoprenoid and cholesterol
metabolism are indicated by dashed arrows.
CoA: Coenzyme A; PP: Pyrophosphate.

Figure 9. Structures of bisphosphonates with promising
anti-Trypanosoma cruzi activities.
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addition, bisphosphonates have been shown to be active against
T. cruzi without apparent toxicity to the host cells. Pamidronate
and alendronate (Figure 9) were selectively active against amas-
tigotes in culture [84] and pamidronate was also effective in
ameliorating parasitaemia in mouse models [85]. Recently, rise-
dronate (Figure 9) was shown to be able to cure cultures of vero
cells infected with T. cruzi amastigotes and prevent infestation
of the heart by the parasite in acute-phase animal models [86,87].
The selective activity that was observed may be explained by the
preferential accumulation of these inhibitors in the calcium-
and pyrophosphate-rich acidocalcisome, which could be con-
sidered as being compositionally analogous to hydroxyapatite in
bone with which bisphosphonates are known to bind with high
affinity [88].

6.1.3 Squalene synthase inhibitors
Squalene synthase (EC 2.5.1.21) catalyses a head-to-head reduc-
tive dimerisation of two molecules of farnesyl pyrophosphate in
a two-step reaction to form squalene. It is the first committed
step in sterol biosynthesis (Figure 8). 3-(Biphenyl-4-yl)-3-
hydroxyquinuclidine (BPQ-OH; Figure 10), a quinuclidine-
based inhibitor of this enzyme, was shown to have activity
against the T. cruzi enzyme and has selective antitrypanosomal
activity in vitro [89,90]. E5700 and ER-119884 (Figure 10), two
other quinuclidine-based inhibitors of mammalian squalene
synthase that are currently in development as cholesterol- and
triglyceride-lowering agents in humans and orally available, are
an order of magnitude more effective as inhibitors of the T. cruzi
squalene synthase [91]. Moreover, the GI50 values of both inhibi-
tors against different life-cycle stages of T. cruzi were in the
nanomolar to subnanomolar range [91]. In animal models,
E5700 was clearly more potent than ER-119884, preventing
mortality at 50 mg/kg/day but not resulting in a complete cure
[91]. Non-quinuclidine, aryloxyethyl thiocyanate derivatives
have also yielded a potent lead directed against this enzyme.
4-Phenoxyphenoxyethyl thiocyanate (WC-9) has been reported
to be selectively trypanocidal but tests in animal models have
not yet been published [92].

6.1.4 Squalene epoxidase inhibitors
Squalene epoxidase (EC 1.14.99.7) catalyses the second com-
mitted step in sterol biosynthesis (Figure 8), thus making it an
attractive target for antitrypanosomal chemotherapy. The

alkylamine terbinafine, a potent inhibitor of fungal squalene
epoxidase, has been reported to possess activity against epi-
mastigotes and amastigotes of T. cruzi [93]. A series of N,N-
dimethyl-2-propen-1-amine derivatives has been shown to be
trypanocidal against T. cruzi in vitro [94-96] and a recent report
describes 3-(4′-bromo-[1,1′-biphenyl]-yl)-3-(4-bromo-phe-
nyl)-N,N-dimethyl-2-propen-1-amine as being more effective
than benznidazole in treating a murine model of acute Cha-
gas’ disease [97]. The report suggests that the mode of action of
this class of compounds is the inhibition of squalene epoxi-
dase as the treatment of trypanosomes leads to reduced levels
of ergosterol but raised levels of squalene [97].

6.1.5 Lanosterol synthase inhibitors
Lanosterol synthase (EC 5.4.99.7) is a key enzyme in sterol
biosynthesis as it catalyses the cyclisation of 2,3-oxidosqualene
to lanosterol (Figure 8), the initial precursor for sterols. A
series of electron-poor aromatic mimics of a monocyclised
transition state or high-energy intermediate formed from 2,3-
oxidosqualene has been reported to show strong in vitro activ-
ities against several T. cruzi strains of which 12 compounds
had GI50 values of ≤ 25 nM (Figure 11) [98].

6.1.6 C14α sterol demethylase inhibitors
Ketoconazole was the first orally available antifungal. Sub-
sequently, a variety of new azole drugs (imidazoles and tria-
zoles) have been introduced for the treatment of fungal
infections. All of these target the cytochrome P450-dependent
C14α sterol demethylase (EC1.14.13.70) leading to the accu-
mulation of lanosterol and other sterol intermediates
(Figure 8), which adversely affects normal membrane function
[99]. These drugs have been used to treat Chagas’ disease with
mixed results. In animal models, ketoconazole treatment
alone was able to cure some animals in acute (but not chronic)
phase models [100,101]. Usage seems to be most effective when
used in combination with other sterol synthesis inhibitors or
with benznidazole [80,102]. Published reports that utilised keto-
conazole or itraconazole to treat chagasic patients record a
mixture of outcomes, with improvement for some but not all
of those who were treated [103,104]. The induction of resistance
to azoles in T. cruzi and cross-resistance to other azoles
observed in in vitro experiments point to difficulties in the use
of these compounds as chemotherapeutic agents [105].

Figure 10. Structures of quinuclidines with encouraging anti-Trypanosoma cruzi activities.

N

OH
N N

OHOH

O

O O N

OH

BPQ-OH E5700 ER-119884



Novel antitrypanosomal agents

948 Expert Opin. Investig. Drugs (2005) 14(8)

In the past decade, new triazole derivatives with potent
in vitro and in vivo activities have been synthesised. D0870
(Figure 12) shows efficacy in both acute and chronic mice
models, with 30 – 50 times higher activity than ketoconazole
and leading to 60 – 70% of parasitological cure [106]. Although
very promising for the treatment of Chagas’ disease,
AstraZeneca terminated the development of D0870 in 1995
due to an adverse event in a patient receiving the drug and
some unpredictable pharmacokinetic properties in humans
[107]. Posaconazole (SCH-56592; Figure 2) inhibits epimastig-
ote proliferation and ergosterol synthesis much more effec-
tively than ketoconazole and D0870, and produces an
apparent cure rate of 50% in animals infected with strains
resistant to nifurtimox, benznidazole and ketoconazole [108].
Posaconazole is currently in Phase III clinical trials as a sys-
temic antifungal and is about to be evaluated in clinical trials
in chagasic patients [6]. Albaconazole (UR-9825; Figure 12) is
very active in vitro [109] and was shown to be effective in the
treatment of T. cruzi of dogs although a significant emergence
of resistance was observed during the course of treatment [110].
TAK-187 (Figure 12) is an experimental antifugal triazole with
potent trypanocidal activity. It has a MIC value of 1 nM
against clinically relevant intracellular amastigotes of T. cruzi
and  induces complete protection against lethal infection and
high levels of parasitological cures at a dose of 20 mg/kg p.o.
[111]. Ravuconazole (BSM-207147; Figure 12) is an investiga-
tional triazole derivative currently in development as a systemic
antifungal that shows very potent in vitro activity against
T. cruzi amastigotes with a MIC value of 1 nM [112]. However,
ravuconazole treatment did not lead to a parasitological cure in
a chronic mouse model of Chagas’ disease [112]. A new class of
C14α sterol demethylase inhibitors, disubstituted imidazoles,
with potent anti-T. cruzi activity was recently identified [113].
The compounds have GI50 values in the mid-nanomolar
range, caused a dramatic decrease in parasitaemia when admin-
istered orally and led to 100% survival in mice with acute
T. cruzi infection [113].

6.1.7 Sterol 24-C-methyltransferase inhibitors
Sterol 24-C-methyltransferase (EC 2.1.1.41) is an enzyme
that methenylates a range of sterols with a double bond in the
side chain although zymosterol is the preferred substrate
(Figure 8). As there is no equivalent enzyme in the bio-
synthesis of cholesterol, this enzyme should be a selective tar-
get for anti-T. cruzi chemotherapy. A series of azasterols have
been reported to exhibit activity at micro- to nanomolar con-
centrations against T. cruzi (Figure 13) [114,115]. The com-
pounds were also active against bloodstream forms of
T. b. rhodesiense [115] and, therefore, represent interesting lead
compounds for antitrypanosomal chemotherapy.

6.2 Lysophospholipid analogues
The archetypal examples of lysophospholipid analogues were
originally derived for cancer chemotherapy and include the
alkylglycerophosphocholine edelfosine, the thioether
substituted phosphatidylcholine ilmofosine and the alkyl-
phosphocholine miltefosine (hexadecylphosphocholine).
Miltefosine has recently emerged from clinical trials as the
treatment of choice for several forms of leishmaniasis [116].
Some of the lysophospholipid analogues that have been tested
so far have been found to be active against epimastigotes,
intracellular amastigotes and trypomastigotes of T. cruzi by
damaging the surface membranes and inhibiting metacyclo-
genesis, and were shown to reduce the parasitaemia in
T. cruzi-infected mice [72,77,117,118]. Although none of the lyso-
phospholipid analogues have yet been reported to achieve
cure, they appear to be more effective in combination with
sterol synthesis inhibitors such as ketoconazole [72,119].

7. Lipoylation inhibitors

Trypanosome membranes are rich in peripheral membrane
proteins, in particular on the external face where glycosyl-
phosphatidylinositol (GPI)-anchored proteins, such as the
variable-surface glycoprotein (VSG) in T. brucei and trans-
sialidases in T. cruzi, are abundant. Intracellular proteins are
frequently prenylated or acylated. These modifications are
often a key to the localisation and function of the lipo-
protein; thus, the disruption of lipoylation can give dramatic
and terminal phenotypes. Agents have not yet emerged that
specifically disrupt the acylation and GPI anchor modifica-
tion of proteins in trypanosomes. In contrast, the protein far-
nesyltransferase inhibitors used in cancer therapy have been
shown to express trypanocidal activity [120]. In particular, a
series of isothiazole dioxides and imidazole-containing pepti-
domimetic compounds have shown good activity against the
purified trypanosome enzyme and trypanocidal activity in
culture [121,122].

8. Other compounds

Several other compounds have been identified as potential
leads for the development of antitrypanosomal agents. By using

N
+

N
+

Compound 5 Compound 20

Figure 11. Structures of lanostrol synthase inhibitors
mimicking the monocyclised cationic intermediate formed
in the cyclisation of oxidosqualene to lanosterol.
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structure–activity relationships to identify inhibitors of the
trypanothione cycle, a biochemical pathway unique to
trypanosomatids, quinoxaline N,N′-dioxide derivatives and
diesters based on Cbz-S-2,4-dinitrophenylgluthathione have
been reported to be active against trypanosomes in vitro
[123,124]. As trypanothione is a spermidine-bridged bis-gluta-
thione, polyamine analogues have been synthesised and evalu-
ated for their trypanocidal activities, some of which display
GI50 values in the nanomolar range [125-127]. The inhibition of
S-adenosylmethionine decarboxylase, another key enzyme
involved in the biosynthesis of polyamines, has led to the devel-
opment of the agent cis-5′-deoxy-5′-(4-amino-2-butenyl)meth-
ylaminoadenosine (MDL-73811). This compound possesses
both antitumour and antiparasitic activity and was recently
shown to inhibit the growth of T. b. rhodesiense and T. b. gam-
biense both in vitro and in vivo [128]. Other agents with promis-
ing antitrypanosomal activity include benzo-δ-carbolines and
cryptolepines [129], aminoadamatane and aminoalkylcyclohex-
ane derivatives [130], benzo[1,2-c]1,2,5-oxadiazole N-oxide
derivatives [131], prolylisoxazoles [132] and bicycle[2.2.2]octan

derivatives [133,134]. In addition to the development of new
agents for the chemotherapy of human trypanosomiases, the
derivatives and analogues of existing antitrypanosomal drugs
have been synthesised and tested for their biological activities.
In particular, derivatives of the anti-chagasic drug nifurtimox
[135-140] and analogues of the anti-sleeping sickness drug
pentamidine [127,141-144] have been investigated.

9. Natural products

Many of the drugs that are used today are natural products or
natural product-derived compounds. Hence, it is not surpris-
ing that some natural substances display trypanocidal activi-
ties. Several natural compounds including alkaloids, phenolic
derivatives, quinones and terpenes have been shown to inhibit
the growth of trypanosomes in vitro with GI50 values in the
submicromolar range [145]. One interesting lead compound is
ascofuranone, a prenylated phenol antibiotic produced by the
phytopathogenic fungus Ascochyta visiae. Ascofuranone is an
inhibitor of the trypanosome alternative oxidase, a unique

Figure 12. Structures of triazoles with potent and selective anti-Trypanosoma cruzi activities.
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mitochondrial electron transport system in these parasites. A
recent study has shown that ascufuranone can cure T. brucei-
infected mice if the compound is administered intra-
peritoneally for four consecutive days at 100 mg/kg or orally
for eight consecutive days at 400 mg/kg [146]. For information
about other natural substances with antitrypanosomal activi-
ties, the interested reader is referred to the recent review by
Hoet et al. [145].

10. Expert opinion and conclusion

The combination of undesirable toxicity and poor efficacy of
the current drugs result in an urgent and unmet need to
develop novel, cheap and effective chemotherapies for the
treatment of Chagas’ disease and African sleeping sickness.
Unfortunately, pharmaceutical companies have drastically
reduced their investment in drug development for tropical
diseases, and the rational design of new antitrypanosomal
agents is primarily undertaken from within academic

research. Over the last decade, several new lead compounds
for the treatment of human trypanosomiases have been iden-
tified. Inhibitors of ergosterol synthesis are encouraging anti-
T. cruzi compounds as they target an essential metabolic
pathway of this parasite. Peptidyl and non-peptidyl cysteine
protease inhibitors are very promising antitrypanosomal
agents as these compounds are small in size and inexpensive
to produce. Other promising compounds are the DNA
topoisomerase and proteasome inhibitors currently used in
cancer chemotherapy. If these anticancer drugs prove to be
useful against trypanosomes, a more rapid application for the
treatment of Chagas’ disease and sleeping sickness with less
extensive clinical trials might be possible as their in vivo tox-
icities are already well established. As the drug discovery and
development process is expensive in terms of both time
(∼ 10 – 12 years) and money (∼ US $400 million), the cross-
application of existing drugs with selective trypanocidal
activity may be the best prospect to new antitrypanosomal
drugs in the short term.
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