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SPECTRAL THEORY OF NON-SELF-ADJOINT TWO-POINT
DIFFERENTIAL OPERATORS

(Mathematical Surveys and Monographs 73)

By John Locker 252 pp., US$65.00, isbn 0-8218-2049-4
(American Mathematical Society, Providence, RI, 2000).

There are, of course, many books on the subject of linear differential equations,
including those by Titchmarsh, Coddington and Levinson, Hellwig, Dumford and
Schwartz, Naimark, Edmunds and Evans, to mention only a few. Some of these
authors restrict themselves to classical analytic methods, while others use methods of
functional analysis which in many cases they combine with a classical approach to
achieve their end. The book under review is in the latter class, and is an up-to-date
account of the spectral theory of non-self-adjoint ordinary differential equations on
a compact interval of the real line.

The early work in functional analysis, by Fredholm, Hilbert and Von Neumann,
for example, was driven by problems in integral and differential equations, and
a rich theory of self-adjoint operators was developed. This led to many elegant
results in the spectral theory of self-adjoint differential equations, which included
a study of the essential spectrum and eigenfunction expansion. However, when
self-adjointness is removed, substantial difficulties appear: the eigenvalues may no
longer be real, the essential spectrum need no longer be confined to the real line,
and the question of an eigenfunction expansion is much more complex, depending
on the notion of root subspace, and may even fail to exist. Thus the well-known
self-adjoint operator theoretic approach becomes much more complex. This book
contains a clear exposition of this theory and its application to two-point boundary
value problems; it is divided into two sections.

First, the author collects relevant results from the spectral theory of operators
in a Hilbert space setting. As a lot of this material is well known, proofs are
often omitted, but references are provided. Basic notions of operator calculus are
introduced, and the spectral theory of bounded linear operators is reviewed. The
ascent and descent of an operator is defined, and the eigenvalues, generalized
eigenfunctions and resolvents of such operators are introduced. The connection
between the ascent and the descent of an operator and the order of a pole of
the resolvent is established. Operators defined from ordinary differential equations
are used to illustrate many of these topics. These illustrations provide examples
of operators whose spectrum consists of a countable set, the empty set, or all of
the complex plane, which, as the author remarks, are common occurrences in the
spectral theory both of nth-order ordinary differential equations and of Fredholm
operators in general. Chapter 2 deals with Fredholm theory, with special emphasis
on the Hilbert–Schmidt operators and discrete Hilbert–Schmidt operators. The
basic notions of Fredholm operators are introduced, and the spectral theory for
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these operators is developed. The expansion problem for a vector in terms of the
generalized eigenfunctions is introduced.

In the second part of the book, the spectral theory of two-point boundary value
problems is discussed in relation to the concepts introduced in Chapters 1 and 2.
Chapter 3 introduces the spectral theory of linear two-point nth-order differential
operators in a Sobolev space. Appropriate boundary conditions are defined, and the
adjoint operator is calculated. This leads to the notion of maximal and minimal
operators. The Fredholm theory introduced in Chapter 2 then leads to a definition
of the resolvent set and spectrum of the differential equation. The characteristic
determinant of an nth-order ordinary differential equation is constructed by Taylor
expansion of the resolvent, and it is used to determine the eigenvalues of the
operator. Of critical importance to the approach taken in this book is the idea of
writing the nth-order differential operator L as

L = T + S,

where T is the principal part of L, that is, the nth-order differential operator
(1/in)(d/dt)n. Chapters 4–5 are devoted to the study of the spectral theory of T .
The topics discussed include asymptotic formulae for the characteristic determinant
of T and for its Green’s function. The boundary values of T as an operator in some
Sobolev space are characterized as being regular, irregular or degenerate, this being
determined by differing behaviour of the characteristic determinant. The eigenvalues
are calculated as the zeros of the characteristic determinant, and asymptotic formulae
for them are derived. The family of spectral projections is calculated, and the decay
rate of the resolvent is estimated. Finally, it is shown that when the boundary
values are regular, each function in the Hilbert space can be expanded in a series
of generalized eigenfunctions of T . By viewing S as a perturbation of T , Chapter 7
establishes similar results for L.

This book is well written and is accessible to all who have a rudimentary
knowledge of functional analysis. It is well suited both to graduate students work-
ing in two-point boundary value problems and to other scientists seeking further
information concerning them.

University of Wales, Cardiff Malcolm Brown

CHARACTERS OF CONNECTED LIE GROUPS
(Mathematical Surveys and Monographs 71)

By Lajos Pukánszky 128 pp., US$59.00, isbn 0-8218-1088-X
(American Mathematical Society, Providence, RI, 1999).

Lajos Pukánszky [3] devoted most of his life to the study of a single subject: the
unitary representation theory of solvable, or even completely arbitrary, connected
Lie groups. (Any connected Lie group is, at least locally, a semidirect product of a
semisimple group and a solvable group.)

A locally compact group G is said to be ‘type I’ if each of its unitary represen-
tations generates a von Neumann algebra of type I. This condition is implied by
the stronger condition of being ‘CCR’ (‘liminaire’ in French), or having the property
that for each irreducible representation π, π(Cc(G)) is contained in the compact
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operators. Back in the 1950s, Harish-Chandra proved that semisimple Lie groups
are CCR, and Dixmier proved that nilpotent groups are CCR. But even the simplest
solvable Lie group, the ‘ax + b group’, or the two-dimensional affine group of the
line, is not CCR, and starting in dimension 5, there are solvable Lie groups that
are not type I. Pukánszky set himself the task of understanding why and how this
is the case, and of trying to make order out of the seemingly ‘wild’ aspects of Lie
group representation theory. This (posthumous) book is a summary of his main
accomplishments, originally published in a long series of papers, of which the most
notable are [8], [9] and [10].

Chapter I of this book, based largely on the technical results in [9], is devoted first
to proving that locally algebraic connected Lie groups are type I. This class includes
the nilpotent Lie groups, the semisimple Lie groups, and a few of the most familiar
solvable groups, such as the ‘ax+b group’ and the ‘diamond group’. Then Pukánszky
goes on to prove a theorem of Dixmier, that the regular representation of a connected
Lie group always generates a semifinite von Neumann algebra. (In other words, it
has a central direct integral decomposition into irreducible representations and
type II factor representations. Pukánszky eventually showed that the representations
occurring in the central decomposition of the regular representation are among the
normal representations studied in Chapter III.)

In contrast to semisimple Lie groups, which have a rigid structure theory, solvable
Lie groups are quite ‘flexible’, and there is no good classification of them. Thus it is
not possible to study their representation theory ‘case by case’, as is sometimes done
with semisimple Lie groups. Nevertheless, Pukánszky discovered (though he never
stated things in these terms) that the phenomenon of ‘non-type-I-ness’ in solvable
Lie groups can arise for exactly two different reasons, which are typified by two
basic examples:

(1) the Mautner group of dimension 5, the semidirect product R n C2, where R
acts on C2 by t · (z, w) = (eitz, eiλtw), where λ is irrational;

(2) the Dixmier group of dimension 7, the simply connected Lie group with Lie
algebra spanned by e1, . . . , e7, satisfying the bracket relations

[e1, e2] = e7, [e1, e3] = e4, [e1, e4] = −e3,

[e2, e5] = e6, [e2, e6] = −e5, [ei, ej] = 0 for i, j > 3.

In both of these cases, it is natural to try to analyse the representation theory of the
solvable Lie group G by applying the ‘Mackey method’ to the action of G on the
Pontryagin dual N̂ of the (abelian) commutator subgroup N. (Since N acts trivially
on N̂, the action factors through G/N.) In the case of the Mautner group, N = C2

and the action of G/N ∼= R on N̂ ∼= C2 is given by t · (z, w) = (e−itz, e−iλtw). The key
feature here is that each torus |z| = c1, |w| = c2 (c1, c2 > 0) is invariant, and on it R
acts ergodically. Or, in Mackey’s terminology, there are ‘non-transitive quasi-orbits’
giving rise to non-type-I behaviour. In Dixmier’s example, something rather different
happens. The action of G/N ∼= R2 on N̂ ∼= R5 has nice orbits, but for generic points

in N̂, the stabilizer is disconnected, and the character χ of N does not extend to a
character of its stabilizer Gχ in G. The non-type-I-ness in this case arises from the
fact that Gχ is a non-type-I central extension of a discrete abelian group.

Pukánszky showed that the Dixmier example typifies a feature of the general case:
that the failure of Lie groups to be type I can always be traced to the representation
theory of central extensions of abelian groups, the subject of Chapter II. From this
analysis, Pukánszky arrives at the main results of the book, which are in Chapter III.
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The basic result can be summarized by saying that connected Lie groups have a
good representation theory, provided that one is willing to view the basic objects of
this theory as being quasi-equivalence classes of normal representations rather than
unitary equivalence classes of irreducible representations. A normal representation
is a factor representation of type I or II, for which the image of the group C∗-
algebra has non-trivial intersection with the trace-class operators in the sense of von
Neumann algebras. The trace on such a representation makes possible a character
formula of Kirillov type, which Pukánszky proved but does not discuss in detail
in this book. However, he does show in Chapter IV how, in the solvable case, to
parametrize the normal representations via generalized coadjoint orbits.

Unfortunately, Pukánszky did not live to finish and fully polish this book, so
certain important parts of his theory are missing. Also, the book does everything
from Pukánszky’s own, rather idiosyncratic, point of view. Thus the author does not
mention the general theory of multiplier representations of abelian groups, due to
Baggett and Kleppner [1], from which the results of Chapter II follow easily, nor
does he mention the alternative proof by Green [4] of the main results of Chapter III.
The important results of Charbonnel [2] and Poguntke [6], which amplify many of
Pukánszky’s results, are mentioned only in passing.

Nevertheless, the book is a useful reference for Pukánszky’s theory, and is some-
what more convenient than reading [8], [9] and [10], since some of the duplication
between papers has been eliminated. The reader should be warned about two things,
however. First, the style of this book is totally different from that of Pukánszky’s
earlier book [7] on nilpotent groups. Whereas that book was intended for beginners,
this book is intended only for those who already know quite a bit about Lie group
representations. Unlike Kirillov’s text [5], which is rather informal and tries to avoid
technicalities, this book almost relishes them. Secondly, Pukánszky’s notation takes

some getting used to. The notation
∧−Gg of [8] has here been typeset as

AGg . And the
notation G = (I) is supposed to mean not that G is equal to anything, but that it is
a type I group.
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Lie groups’, Ann. Sci. École Norm. Sup. (4) 16 (1983) 151–172.
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PARTIALLY ORDERED GROUPS
(Series in Algebra 7)

By A. M. W. Glass 307 pp., £26.00, isbn 981-02-3493-7
(World Scientific, Singapore, 1999).

This is the latest addition to the series of books on partially ordered algebraic
structures, an area which has been enriched by a number of prominent mathema-
ticians such as Holder, Hahn, G. Birkoff, P. Hall, H. Wielandt, G. Higman, B. H.
Neumann, P. F. Conrad, W. C. Holland and many others, since the beginning of
20th century. The author’s style of writing is very lucid, and the material presented
is self-contained. It is an excellent reference text for a graduate course in this area,
as well as a source of material for individual reading. References are given but the
list is not complete, and there are no exercises; there is a long discussion of open
problems in the last chapter of the book.

The first chapter is devoted to the mandatory definitions followed by a number
of generic examples forming a basis for the type of results which can be expected
to hold. The second chapter deals with basic group theoretical properties of groups
that satisfy various orderability conditions such as partial orders, lattice orders
and total orders. This is followed by the reverse, where orderability properties are
investigated for groups possessing various group theoretic properties. In the third
chapter we are introduced to the convex subgroups of partially ordered groups,
and basic results are discussed. Chapter 4 deals with Abelian ordered and lattice
ordered groups: Holder’s characterization of Archimedean ordered groups as well
as Hahn’s Theorem are established, together with their generalization to lattice
ordered groups. These topics are discussed in greater depth in the following chapter.
Chapter 6 is devoted to the structure of orderable groups which are soluble or satisfy
the n-Engel law. Various recent results have been collected together, with proofs, for
the first time. Chapter 7 is about order-preserving permutation groups. Notations
and basic results are presented here, and Chapter 8 continues with applications
to lattice ordered groups satisfying various conditions. Complete partially ordered
groups are discussed in the following chapter. Varieties of lattice ordered groups
and their structure, together with applications to the variety of residually ordered
groups, form the content of Chapter 10. The last chapter is devoted to the discussion
of fourteen open problems.

Compared to the the book by V. M. Kopytov and N. Ya. Medvedev [2], which
contains a rather large number of errors including several places where the reader
has to refer to the original papers, I found this book to be remarkably well written.
Errors can be expected in research-level textbooks, which are often written at a raw
stage of the subject when polished proofs are not yet available. The only error I
could find in this book was in the proof of Theorem 6.J: the result is true, and a
proof may be found in [1].
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CLASSIFICATION AND ORBIT EQUIVALENCE RELATIONS
(Mathematical Surveys and Monographs 75)

By Greg Hjorth 195 pp., US$55.00, isbn 0-8218-2002-8
(American Mathematical Society, Providence, RI, 2000).

The book under review presents a beautiful example of a theory whose creation
and consequences, in one way or another, involve most fields of mathematics. To
mention the ones involved most directly, we may single out set theory, model theory,
ergodic theory, topology and group theory. The point of the study is to classify the
equivalence relations on a Polish (that is, separable complete metric) space, with a
particular emphasis on the equivalence relations arising as orbit equivalence relations
given by an action of a Polish group on a Polish space. As a standard of classification,
the author takes what is termed classification by countable models. An equivalence
relation E defined on a Polish space X is said to admit such a classification if for
some countable language L there is a Borel function which to each E-equivalence
class assigns a countable L-structure considered up to isomorphism. There is much
evidence presented to confirm that this notion, which is less stringent than the
previously considered notion of smoothness, isolates ‘nice’ equivalence relations
appearing in various contexts.

One of the main achievements of the theory, due to Hjorth, is that in the
realm of equivalence relations induced by a continuous action of a Polish group
on a Polish space, the notion of classification by countable models is shown to
have an internally recognizable nemesis, that is, a dynamical property of the action
itself which guarantees that the classification by countable models is not possible.
The property in question is called turbulence. (In fact, a deeper connection between
turbulence and non-classification is established using the notion of ergodic genericity;
see Theorem 3.21.)

In the world of classification theories, one often looks for dichotomy theorems.
These are theorems which isolate a specific ‘minimal’ reason for non-classifiability, so
that every object under consideration is either classifiable or has the minimal reason
neatly embedded into itself. A specific example is the Harrington–Kechris–Louveau
dichotomy theorem which isolates such a minimal example among the non-smooth
Borel equivalence relations. It was at first hoped that the notion of turbulence
would give rise to such dichotomy theorems, but this is not the case. The notion
of turbulence combined with Borel reducibility gives rise to a rather complicated
partial order among equivalence relations, as can be seen from the results of Farah
quoted in the book; see, for example, Theorem 3.36. Although this shows that the
most optimistic scenario for classification using turbulence is not correct, this does
not lessen the importance of the classification scheme that turbulence gives rise
to, much as the fact that there are more than two Turing degrees does not mean
that one should not consider Turing reducibility as a viable classification. There are
many other ways of looking at this, of course, such as relaxing the idea of Borel
reducibility or restricting the kinds of spaces and actions under consideration, and
for many of these it is shown here that the notion of turbulence indeed gives rise to
a dichotomy theorem. In fact, the author says on page 177 that ‘the main results of
(the) manuscript could be considered as a reaction to the failure to find an analogue
of Harrington–Kechris–Louveau for the notion of turbulence’.
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While the first part of the book has the pleasing feature that it could be read
by an enthusiastic reader with a minimal background, this is nicely complemented
by the fine analysis of the failure of the Harrington–Kechris–Louveau dichotomy,
which comprises the second part of the book. In particular, Chapter IX provides
an application of modern set theory to the problem of classification when a more
general reduction than the Borel reduction is allowed. This can be used to put the
whole programme of the book into a context of much concern to set theorists, that
of calculating effective cardinalities. The idea behind this is that when verifying that
certain objects have the same size, one exhibits a bijection between the two sets, but
often such bijections are not effective or explicit, as they rely on an application of
the axiom of choice. One may ask when two objects can be effectively shown to
have the same cardinality, where the notion of effectiveness can be precisely defined.

Space does not allow us to give a detailed description of the way that the
material is presented in the book, but the reader can find such a presentation in
Chapter II, which also gives a path diagram through the book. With the exception of
Chapter IX, which requires some background in modern set theory, a mathematician
with a postgraduate education will find the book to be self-contained.

To return to Chapter IX, although the book makes an interesting read even
when one forgets about this chapter, it is exactly this part of the book that gives the
real sense of completeness to the programme. In this chapter it is shown that if one
gives up the requirement that reductions are Borel, and replaces it with a notion
which is more complicated, but very effective, then the notions of classifiability and
turbulence become the exact antipodes of each other. Even those who do not have a
background required for reading this chapter can appreciate the interaction that the
results here show between the seemingly abstract notions of infinitary mathematics
and the notions present in everyday mathematical life, namely equivalence relations
and group actions.

The book provides a good bibliography, and includes a chapter which gives a list
of open problems, conjectures and directions. Although the problems presented in
this chapter, Chapter X, might be the ones most central to the book, there are open
problems scattered throughout the book; for example, one asks if the GE groups
are the only ones with the strong Glimm–Effros property (page 125). It is worth
mentioning that other connections between descriptive set theory and ergodic theory
have been studied in addition to the ones offered by turbulence, and that a good
reference is the recently published volume 277 of the LMS Lecture Note Series,
Descriptive set theory and dynamical systems, edited by M. Foreman, A. S. Kechris,
A. Louveau and B. Weiss.

University of East Anglia Mirna Džamonja

RANDOM WALKS ON INFINITE GRAPHS AND GROUPS
(Cambridge Tracts in Mathematics 138)

By Wolfgang Woess 334 pp., £40.00 (US$64.95), isbn 0-521-55292-3
(Cambridge University Press, 2000).

The simple random walk on the integers is one of the simplest random processes
that one can imagine. It generalizes to any finitely generated group Γ equipped
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with a finite set S of generators. If Xn ∈ Γ denotes the position at time n, then
Xn+1 = Xnξn+1, where ξn is chosen uniformly at random in S . More generally, ξn can
be picked according to a given probability measure µ. Then the probability that the
walk started at the neutral element X0 = e reaches x at time n is Pe(Xn = x) = µ(n)(x),
where µ(n) denotes the nth convolution power of µ. We always assume below that
the generating set S is symmetric, that is, S = S−1.

Will a random walk return infinitely many times to its starting point? This is the
question discussed in Pólya’s seminal article [6], in the case of integer lattices. If the
answer is yes, then the walk is called recurrent; otherwise, it is called transient. Pólya’s
well-known finding is that the simple random walk on the integer lattice in Euclidean
space is recurrent in one or two dimensions, and transient in dimension three or
higher. Indeed, transience/recurrence is equivalent to the convergence/divergence of
the series

∑
Pe(Xn = e) and, in dimension d,

Pe(X2n = e) ∼ cdn−d/2 as n tends to infinity. (1)

(For parity reasons, one cannot return to the starting point at odd time.) Spitzer’s
famous book [7] gives a thorough and beautiful treatment of random walks on
integer lattices.

For general groups, one of the most basic and natural questions about random
walks concerns the asymptotic behaviour of the probability of return to the starting
point. How does (1) generalize to non-Abelian groups? For instance, can one char-
acterize those groups which carry a recurrent simple random walk? The first work
on random walks on general finitely generated groups is Kesten’s thesis [4]. In the
sequel [5], he proves the fundamental result that Pe(Xn = e) decays exponentially
fast if and only if the group is non-amenable. The next crucial development con-
cerning the behaviour of Pe(Xn = e) came more than twenty years later. To describe
this, let V (n) be the number of elements in the group that can be written as words
of length at most n in the generators s ∈ S . Write f(n) ≈ g(n) if there are constants
such that c1f(c2n) 6 g(n) 6 c3f(c4n) for all n. During the 1980s, Varopoulos [8]
proved that if V (n) > cnd, then Pe(Xn = e) 6 Cn−d/2. This is remarkable because
no further assumption on the group Γ is made. One celebrated consequence is
that the only recurrent groups are the finite extensions of {0}, Z and Z2. Together
with deep theorems concerning the algebraic structure of groups (theorems due to
Malcev, Gromov, Tits, Wolf, and others), this leads to the following result. For a
simple random walk on a discrete subgroup Γ of a connected Lie group, three
and only three behaviours may occur: (i) Pe(X2n = e) ≈ n−d/2 for some integer d;
(ii) Pe(X2n = e) ≈ exp−n1/3; (iii) Pe(X2n = e) ≈ exp(−n). Moreover: case (i) happens
if and only if Γ is virtually nilpotent and V (n) ≈ nd; case (ii) happens if and only
if Γ is virtually polycyclic and V (n) ≈ exp(n); case (iii) happens if and only if Γ is
non-amenable. Still, today, there are many finitely generated groups for which the
behaviour of Pe(Xn = e) is not well understood, for instance, metabelian (that is,
two-steps solvable) non-polycyclic groups.

Another fundamental aspect of the theory of random walks concerns the
existence and behaviour of harmonic functions and the related boundary theories.
(A function u is (µ)-harmonic if it satisfies the convolution equation u ∗ µ = u.)
Indeed, this aspect played an important role at an early stage of the development of
the theory, and is still an active area of study. A celebrated problem in this direction
concerns the existence of bounded or positive harmonic functions: a measure µ has
the Liouville property (respectively, the strong Liouville property) if any bounded
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(respectively, positive) harmonic function is constant. It is still an open problem
today whether or not these Liouville properties for simple random walks on a group
are, in general, independent of the generating set.

Woess’ book gives a well-documented, informative and personal treatment of
the theory of random walks as it has evolved since Spitzer’s book [7]. Although
it is not meant to be self-contained, it gives careful proofs of most of the results
that are discussed. The book actually treats the more general theory of random
walks on graphs, but manages always to stay close to the heart of the matter.
It includes some beautiful results on random walks on planar graphs. Random
walks on Cayley graphs (that is, simple random walks on groups) are treated as
a special case of random walks on graphs having a vertex-transitive group of
automorphisms. The first chapter studies the ‘type problem’, that is, whether or not
a given walk is recurrent. It gives a thorough and detailed treatment, including
many interesting specific examples of recurrent graphs. The second chapter concerns
the amenable/non-amenable dichotomy, and the problem of computing the so-

called spectral radius ρ = lim supn→∞ n
√

Pe(Xn = e) of some walks. The third chapter
treats the asymptotic behaviour of Pe(Xn = e). Although many satisfactory results
concerning the rough asymptotic behaviour of Pe(Xn = e) (in the sense of the
relation ≈) are known, obtaining precise asymptotic results such as (1) is, in many
cases, an open problem. In this direction, Woess describes a rich collection of results
concerning specific groups. A recent development in this direction that is not included
in the book is [1]. The fourth and last chapter gives a nice treatment of certain
aspects of boundary theory. (I was surprised not to find [2] in the bibliography,
and I wish that the results of [3] had been included, at least in the further results
section.) The book focuses chiefly on positive harmonic functions, leaving the task
of giving a complete treatment of Poisson boundary theory to another author.

Random walk theory is connected with many other areas of mathematics. With-
out distracting the author from its main theme, these links appear all through the
text. Some readers will find that certain connections (for example, to volume growth,
isoperimetry, geometric group theory, algebraic structure, covering of compact mani-
folds) could have been developed more, but this would have led to a voluminous
and very different book.

This is an excellent book, where beginners and specialists alike will find useful
information. It will become one of the major references for all those interested
directly or indirectly in random walks. I highly recommend it.
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COHOMOLOGY OF NUMBER FIELDS
(Grundlehren der Mathematischen Wissenschaften 323)

By Jürgen Neukirch, Alexander Schmidt and Kay Wingberg 699 pp., £61.50,
isbn 3-540-66671-0 (Springer, Berlin, 2000).

The book under review is a sequel to Jürgen Neukirch’s Algebraische Zahlen-
theorie (1992), recently translated into English [2]. This text takes the reader through
many of the summits of classical algebraic number theory, including class field theory
and functional equations of Artin L-functions, with a minimal use of homological
techniques. However, to get deeper into the modern theory, one requires such
techniques, and Neukirch therefore began to write a sequel. He prepared the first 150
pages for publication before his untimely death in 1997. His beautiful introduction
to the cohomology of profinite groups forms the basis for the first three chapters
of the book under review. After Neukirch’s death, Alexander Schmidt and Kay
Wingberg set themselves the task of completing the volume.

The quest for higher-dimensional reciprocity laws, following Gauss’s proof of
the quadratic reciprocity theorem, led to the study of class field theory at the end
of the nineteenth century, and the work of Kronecker, Weber, Hilbert, Furtwängler
and others. These reciprocity laws were completed with the work of Artin (1927),
who realised that they arose from an explicit isomorphism of the class group with a
Galois group. The notes [1] of the Artin–Tate seminar in 1951–52 interpreted class
field theory from a cohomological viewpoint, and this has proved to be the most
fruitful way of considering the theory. Many classical results in number theory may
be recast as statements involving Galois theory, cohomology or both.

For example, Dirichlet’s theorem on primes in arithmetic progression may be
viewed as a special case of the Čebotarev density theorem for the Galois groups of
cyclotomic extensions, and one sometimes forgets the original arithmetic formulation
of Hilbert’s Theorem 90, now that it is almost always stated in its cohomological
form.

Nowadays, algebraic number theory has developed into arithmetic algebraic
geometry. The scheme theoretic point of view has allowed us to re-interpret algebraic
number theory as the 1-dimensional case of a more general geometric setting, and
consequently much current research involves the study of arithmetic properties of
schemes over number fields, local fields, or their rings of integers, and related
subjects. While the authors restrict themselves to this 1-dimensional case, largely
for convenience and brevity—a full treatment of the higher-dimensional case would
occupy several volumes—it seems to me that this book is written with the higher-
dimensional geometric situation in mind. The abstract theory of Galois cohomology
has already been developed by Serre [3]. However, Serre seems interested more
in the algebraic properties of the theory, and gives few explicit number theoretic
applications. The current book is thus the first to really treat the theory from the
point of view of arithmetic algebraic geometry. As such, it contains many proofs
which have not previously appeared in book form, as well as several original
results.

But this is not to say that the book is just for specialists in arithmetic algebraic
geometry. Indeed, the book is divided into two sections: the first presents the abstract
algebraic theory of the cohomology of profinite groups, and the second provides the
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applications to arithmetic. I would certainly recommend the first part of the book
to any graduate student in algebra wishing to learn about cohomology. The first
chapter gives a lovely introduction to group cohomology, with particular reference to
profinite groups, and the subsequent two chapters, on homological algebra (including
spectral sequences and derived functors) and duality (also discussing cohomological
dimension) are also likely to be of interest more generally. Perhaps the rest of the
first part of the book is more likely to be useful only to number theorists: it is here
that the algebraic foundations of Iwasawa theory (completed group rings, and so
on) are laid.

The second half of the book is devoted to the arithmetic applications. But here
also there are results of interest to researchers outside number theory. This part
starts with a chapter on Galois cohomology, and involves some discussion of Brauer
groups and Milnor K-theory in which topologists have also been very interested,
following work of Voevodsky and others on motivic homotopy categories and the
Milnor conjecture. Later, in Chapter 9, a proof is given of Shafarevich’s theorem
on the positive solution to the inverse Galois problem for finite soluble groups, and
Chapter 10 contains a proof of the Golod–Shafarevich theorem.

Of course, much of the second half of the book is aimed largely at specialists. The
heart of the book lies in Chapters 7 and 8, when the abstract results from the first
part are applied to the arithmetic situation, and results such as Tate local duality,
the Poitou–Tate 9-term exact sequence and the global Euler–Poincaré formula are
proven. Iwasawa theory (as far as the statement of the Main Conjecture) is also
treated. In the final chapter, one finds an introduction to Grothendieck’s anabelian
geometry. Its inclusion in the text is justified by the Neukirch–Uchida theorem
which states that a global field is characterised up to isomorphism by its absolute
Galois group. For once, the treatment here is slightly sketchy; anabelian geometry
is still in its infancy, and will, in time, no doubt give rise to textbooks of its
own.

The fact that the authors have tried (successfully) to make the book self-contained
has the usual disadvantages: the book is lengthy, and the quantity of necessary detail
occasionally threatens to become too much. But there are easily enough highlights
in the book to compensate, and one rarely feels the need to look at any of the
sources given in the excellent bibliography.

In summary, the book successfully attempts to survey the current state of
knowledge regarding the cohomology of number fields. It is rather more specialised
than the first volume [2], and is thus likely to have a smaller readership. On the
other hand, it is a marvellous compendium of results in the cohomology theory of
number fields.
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FRACTAL GEOMETRY AND NUMBER THEORY:
COMPLEX DIMENSIONS OF FRACTAL STRINGS AND ZEROS OF
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This monograph presents the work on zeta functions and complex dimensions of
so-called fractal strings developed by the first author and various co-authors over
the past decade; compare [1, 2, 3] and the references therein. The authors’ main
philosophy is that the notion of complex dimensions describes the oscillations in
the fractal geometry of the string and the spectrum of the string.

A fractal string L is an open bounded subset Ω of the real line R. Such a set
is the disjoint union of open intervals with lengths L = (l1, l2, l3, . . .). The authors
define the geometric zeta function ζL of L by

ζL(s) =
∑
j

lsj ,

for s in a suitable region of the complex plane. The complex dimensions of L are
by definition the poles of the meromorphic extension of ζL.

Let us illustrate how the complex dimensions describe the oscillatory behaviour
in the geometry of L. The fractal geometry of L is described by the Minkowski
dimension and the Minkowski content of the boundary ∂Ω of Ω. For ε > 0, let

V (ε) = vol1{x ∈ R | dist(x, ∂Ω) < ε}
denote the (1-dimensional) volume of the ε neighbourhood of ∂Ω. The Minkowski
dimension, D, of ∂Ω is defined by

D = 1− lim inf
ε↘0

logV (ε)

log ε
,

and the lower and upper Minkowski contents of ∂Ω are defined by

M∗ = lim inf
ε↘0

ε−(1−D)V (ε), M∗ = lim sup
ε↘0

ε−(1−D)V (ε).

One of the key results in the book states that (under suitable conditions on the
string L) we have the following explicit formula for V (ε):

V (ε) =
∑
ω

cω
(2ε)1−ω

ω(1− ω)
+ R(ε), (0.1)

where the sum is over all the complex dimensions ω ofL, cω is a constant, and R(ε) is
an error term of lower order. It follows from (1) that ε−(1−D)V (ε) = g(ε)+ε−(1−D)R(ε),
where g(ε) is a function defined explicitly in terms of the complex dimensions and
whose oscillatory behaviour determines the values of the Minkowski contents M∗
and M∗ of L, and hence the Minkowski measurability of L. (A set is called
Minkowski measurable if its lower and upper Minkowski contents coincide.)

The second main topic in the book is spectral analysis of the string. Spectral
analysis refers to the study of the asymptotic behaviour of the eigenvalues of the
Laplacian ∆ on Ω, and one of the main goals is to give accurate estimates of the so-
called counting function N(x) = #{λ 6 x | λ is an eigenvalue of ∆} for large values
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of x. This is a classical problem. Indeed, the detailed study of the counting function
of a linear differential operator on a connected open subset of Euclidean space with
piecewise smooth boundary was initiated by Weyl [4] at the beginning of the last
century, and is still flourishing. Using the framework of complex dimensions, the
authors obtain explicit formulas for the counting function in terms of the complex
dimensions of L, thus relating the geometric and spectral properties of the string.

Of course, the book treats classes of strings and zeta functions that are more
general than those described above, and explores various connections and analogies
with number theory, including connections with Dedekind and Epstein zeta functions
and a geometric reformulation of the Riemann Hypothesis: the Hypothesis holds
if and only if for every fractal string with Minkowski dimension D ∈ (0, 1) \ {1/2},
the absence of oscillations of order D in its spectrum implies that it is Minkowski
measurable.

It is the reviewer’s opinion that the authors have succeeded in showing that
complex dimensions provide a very natural and unifying mathematical framework
for investigating the oscillations in the geometry and the spectrum of a fractal
string. The book is well-written. The exposition is self-contained, intelligent and
well-paced. The book will appeal to people working in fractal geometry as well as
people working in number theory.

References

1. C. He and M. Lapidus, ‘Generalized Minkowski content, spectrum of fractal drums, fractal strings
and the Riemann zeta function’, Mem. Amer. Math. Soc. 127 (1997).

2. M. Lapidus and M. van Frankenhuysen, ‘Complex dimensions of fractal strings and oscillatory
phenomena in fractal geometry and arithmetic’, Spectral problems in geometry and arithmetic,
Contemp. Math. 237 (ed. T. Branson, Amer. Math. Soc., Providence, RI, 1999) 87–105.

3. M. Lapidus and H. Maier, ‘The Riemann hypothesis and inverse spectral problems for fractal strings’,
J. London Math. Soc. 52 (1995) 15–34.

4. H. Weyl, ‘Das asymptotische Veteilungsgesetz der Eigenwerte linearer partieller Diffentialgleichungen’,
Math. Ann. 71 (1912) 441–479.

University of St. Andrews L. Olsen

INDEX OF BOOK REVIEWS

John Locker, Spectral theory of non-self-adjoint two-point differential operators
[reviewed by Malcolm Brown] 243
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