
FORCING �ω1
WITH FINITE CONDITIONS

GREGOR DOLINAR AND MIRNA DŽAMONJA

Abstract. We give a construction of the square principle �ω1 by means of

forcing with finite conditions.

1. Introduction

The square principle on a cardinal κ states that there is a sequence 〈Cα〉α indexed
by the limit ordinals in [κ, κ+) such that each Cα is a club subset of α of order
type ≤ κ and the sequence is coherent in the sense that if β is a limit point of α
then Cβ = Cα ∩β. This principle is a feature of the constructible universe L which
was discovered by Jensen and used by him to show the existence of an ω2-Souslin
tree in L [7]. The related principle ♦, which was used to construct an ω1-Souslin
tree in L by Jensen, may be added or destroyed by forcing as wished (see [10] for
examples and discussion). Also, by recent work of Shelah ([12]), at κ ≥ ω2 which are
successor cardinals of the form κ = θ+ = 2θ, ♦κ simply holds, i.e. it is equivalent
to the cardinal arithmetic assumption θ+ = 2θ. However, � is connected to large
cardinals. For example, by a well known result of Solovay [13], square cannot hold
above a supercompact cardinal, and on smaller cardinals, it cannot hold in the
presence of forcing axioms, e.g. Todorčević [14] proved that PFA implies that for
all κ ≥ ω2, �κ fails. Therefore � can be seen as a reflection principle inimical to
large cardinals, and in fact by varying the definition of square by allowing a cardinal
parameter which measures how many guesses to Cα we are allowed at each α, we
obtain a hierarchy of principles of decreasing strength which can be used to test
consistency strength of various principles (see more on this in [3]). In the light of
these facts it is natural that the question of how to add or destroy a square principle
by forcing has been a central theme. See [3] for a description of some of the many
known results including versions of an older result of Jensen and Magidor in which
a square sequence is added by forcing.

One way to add a square, due to Jensen, is to force by initial segments along a
closed unbounded subset of the domain, and to use the existence of the “top” point
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in the domain of a forcing condition to show that the forcing is strategically closed.
Note that the principle �ω is trivially true, by taking Cα to be any club of α of order
type ω, so the first non-trivial instance of square is �ω1 . The method of forcing
by initial segments means that to get �ω1

we need to force with conditions whose
domain has size ω1. The referee has kindly informed us that in an unpublished work
Foreman and Magidor added square by a countably closed forcing using countable
conditions. A condition p in their forcing prescribes Cα for α of countable cofinality
in dom(p), and for α ∈ dom(p) of uncountable cofinality, p prescribes an initial
segment of Cα which goes past sup(dom(p)∩ α). Assuming CH this poset has the
ω2-c.c. In this work we have been interested in another way of adding a square,
using conditions whose domain is a finite set. The interest in doing this stems from
a need to understand how one can control a one cardinal gap in forcing notions,
which is a subject that has been of interest for various combinatorial issues for a long
time. A glaring example of the need to develop this subject is the combinatorics of
the structure (ωω1

1 ,≤Fin), which in contrast with the vast body of knowledge about
(ωω,≤Fin), remains a mysterious object. An important development on the subject
of (ωω1

1 ,≤Fin) is Koszmider’s paper [9] in which he shows that it is consistent to
have an increasing chain of length ω2 in this structure. Koszmider’s paper also
gives an overview of the difficulties that there are in forcing one gap results.

Koszmider’s method is to force with conditions where a morass is used as a
side condition. Our method is more directly connected to a different approach,
which was used to force a club on ω2 using finite conditions. This was done in two
different but similar ways by Friedman in [5] and Mitchell in [11]. Both approaches
are built upon a version of adding a club subset of ω1 using finite conditions, as
discovered by Baumgartner [2] and modified by Abraham in [1]. The main idea in
Baumgartner’s approach is that to force a club in ω1 and avoid problems at the
limit stages, one needs to specify by each condition not only what will go in the
club, but also whole intervals that need to stay out of it. At ω2 one can do the
same, but now one needs to add side conditions in the form of coherent systems
of models in order to make sure that cardinals are preserved, as was first done by
Todorčević in [15]. This already is technically rather involved. What we have done
is add to this the coherent partial square sequence. Namely, we actually force a
square indexed by a club set. The existence of such a square implies the existence
of an actual square sequence. This club set is like the one added by Friedman and
Mitchell. The actual forcing notion needs to take into account the coherence of the
square sequence, and this is reflected in the complexity of the coherence conditions
between the models which form part of the forcing conditions. An advantage of
this type of approach over the morass-based approach is that it requires less from
the ground model—for example Friedman’s forcing only needs a weakening of CH
in the ground model. We use the full CH together with 2ω1 = ω2. The main
difficulties of both approaches of course are the same, and they stem from the fact
that combinatorics at ω2 is much less prone to independence than the combinatorics
at ω1, as exemplified by the above mentioned result of Shelah on ♦ ([12]). It is
both in developing combinatorics and fine forcing techniques that we can better
understand the truth about ω2. An interesting unified approach to adding objects
to ω2 is being developed by Neeman as well as Veličković and Venturi, in works in
progress.
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We thank Boban Veličković for interesting discussions of Mitchell’s paper and an
inspiration to consider forcing a square with finite conditions, and the referee for a
very careful reading of the submitted version and many helpful remarks, some of
which we mention specifically below.

2. Preliminaries

Most of the notation is standard. The relation A ⊂ B means that A is either
a proper subset of B or equal to B. |X| is the cardinality of the set X. For a set
of ordinals X, a limit point of X is an ordinal α such that α = sup(Y ) for some
Y ⊂ X or, equivalently, if α = sup(X ∩ α). Lim(X) is the set of limit points of X.
For a function f , Df denotes the domain of f , and f � A denotes the restriction of
f to the set A∩Df . If α and β are ordinals then the interval (α, β) denotes the set
{µ | µ is an ordinal, α < µ < β} = β \ (α + 1). Closed and half open intervals are
defined similarly. [A]κ is the set of all subsets of A of cardinality κ. The set [A]≤κ

is defined analogously.
For a regular cardinal θ, Hθ is the set of all sets x with hereditary cardinality less

than θ (i.e. the transitive closure of x has cardinality less than θ). For θ > ω2 we
consider Hθ to be a model with the standard relation ∈ and a fixed well-ordering
≤∗ and we write Hθ for the structure (Hθ,∈,≤∗). We will primarily work with Hω2

which we view as a model with ∈ and ≤∗� Hω2 . A cardinal θ is said to be large
enough if every set in consideration is an element of Hθ.

Definition 2.1. Suppose κ is a regular cardinal. A set C ⊂ κ is called a closed
unbounded set or a club in κ if:

(1) for every λ < κ and an increasing sequence 〈αi | i < λ〉 of elements from C,
we have that

⋃
i<λ αi ∈ C (closed);

(2) for every α < κ there exists some β ∈ C such that β > α (unbounded).

The assumption that κ is a regular cardinal can be replaced by a singular cardinal
or even an ordinal, which to avoid trivialities we usually take to be of uncountable
cofinality. In that case, λ from clause (1) has to be below cf(κ). In fact, clause (1)
can be replaced by an equivalent notion, that Lim(C) ∩ κ ⊂ C.

Definition 2.2. Suppose that κ is a regular cardinal. A square sequence on κ is a
sequence of the form 〈Cα | α is a limit ordinal in κ+〉 such that:

(1) Cα is a club in α for every α;
(2) if α ∈ Lim(Cβ) then Cα = Cβ ∩ α (coherence);
(3) if cf(α) < κ then |Cα| < κ (nontriviality).

�κ (square kappa) is the statement that there is a square sequence on κ. In
the case κ = ω1, the nontriviality clause simply stipulates that if cf(α) = ω then
|Cα| = ω.

3. Background on elementary submodels

A model M is an elementary submodel of a model N , M ≺ N , if for every formula
ϕ with parameters a1, . . . , an ∈M , ϕ is true in M if and only if it is true in N . If
M is a countable elementary submodel of Hθ for θ ≥ ω1 then M ∩ ω1 is an ordinal
denoted by δM . Also, if |x| ≤ ω and x ∈M then x ⊂M .

We begin by listing a few lemmas about elementary submodels which will be
useful later. We add proofs for completeness. A useful tool when dealing with
elementary submodels is the Tarski-Vaught test [8]:
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Theorem 3.1 (Tarski-Vaught test). Let M be a submodel of N . Then M is an
elementary submodel of N if and only if for every formula φ(x, a1, . . . , an) and
a1 . . . , an ∈ M , if N |= ∃xφ(x, a1, . . . , an) then there exists b ∈ M such that N |=
φ(b, a1, . . . , an).

Lemma 3.2. Suppose N ≺ Hθ for some large enough θ. Then N ∩Hω2
≺ Hω2

.

Proof. Let a1, . . . , an ∈ N ∩ Hω2
and suppose that Hω2

|= ψ(a1, . . . , an) where ψ
is the formula ∃xφ(x, a1, . . . , an). Then ψHω2 —the relativization of ψ to Hω2—is
true. Formula ψHω2 is equivalent to the formula ψ∗ obtained by replacing every
occurrence of ∃y ∈ Hω2

χ(y, . . . ) with ∃y(χ(y, . . . ) ∧ | tr cl(y)| ≤ ω1), and similarly
for the universal quantifier. We get φ∗ from φ in the same way. Now, Hθ |=
ψ∗(a1, . . . , an), or in other words, Hθ |= ∃x(φ∗(x, a1, . . . , an) ∧ | tr cl(x)| ≤ ω1).

Since ω1 ∈ N , by Tarski-Vaught test there exists some b ∈ N such that Hθ |=
φ∗(b, a1, . . . , an) ∧ | tr cl(b)| ≤ ω1. Hence, there exists b ∈ N ∩ Hω2 such that
Hθ |= φHω2 (b, a1, . . . , an), and as a consequence, Hω2

|= φ(b, a1 . . . , an), which by
Tarski-Vaught test means that N ∩Hω2

≺ Hω2
.

√

Lemma 3.3. Suppose N,M ≺ Hω2
. Then N ∩M ≺ Hω2

.

Proof. Let a1, . . . , an ∈ N ∩M and suppose that Hω2 |= ∃xφ(x, a1, . . . , an). Let
ψ(x, a1, . . . , , an) be the formula φ(x, a1, . . . , an) ∧ ∀y(φ(y, a1, . . . , an) → x ≤∗ y).
Then Hω2

|= ∃xψ(x, a1, . . . , an). By the Tarski-Vaught test there exist x1 ∈M and
x2 ∈ N such that Hω2

|= ψ(x1, a1, . . . , an) and Hω2
|= ψ(x2, a1, . . . , an). But then

x1 = x2 =: x∗ ∈ M ∩N , and Hω2
|= φ(x∗, a1, . . . , an). By the Tarski-Vaught test,

M ∩N ≺ Hω2 .
√

Lemma 3.4. If M ≺ Hκ for some κ > ω1, and sup(M ∩ α) < α for some ordinal
α ∈M , then cf(α) > ω.

Proof. If cf(α) = ω then there is a cofinal function f : ω → α in M , hence
sup(M ∩ α) = α, a contradiction.

√

Lemma 3.5. Let M,N ≺ Hκ be countable for some κ > ω1 and suppose that
M ∈ N . If α 6∈ N then sup(M ∩ α) ∈ N and sup(M ∩ α) < sup(N ∩ α).

Proof. If α ≥ sup(N∩κ) then sup(M∩α) = sup(M∩κ) < sup(N∩κ) = sup(N∩α).
Suppose now that α < sup(N ∩ κ) and let β := sup(M ∩ α) and β′ := min((N ∩
κ) \ α) ∈ N . Since M ⊂ N , β = sup(M ∩ β′). Hence, by elementarity, β ∈ N , and
therefore β < sup(N ∩ α).

√

The standard reference for basic set-theoretic notions and facts is [6]. Additional
source for results on elementary models in a very concise form is [4], as well as [8].

In our application of elementary submodels we will basically only be interested
in the ordinals that lie inside them. To simplify the notation we will write M for a
model and M for its set of ordinals M ∩Ord. In addition, we shall be making the
assumption that 2ω1 = ω2. Therefore |Hω2

| = ω2 and we may assume that the well
ordering ≤∗� Hω2 actually well orders Hω2 in order type ω2. As the referee points
out, this is useful because of the following:

Lemma 3.6. Suppose that ≤∗ is a well ordering of Hω2
in order type ω2 and

M ≺ (Hω2
,∈,≤∗). Then M is uniquely determined by M = M ∩Ord.

Proof. For α < ω2 let xα be the object in Hω2
enumerated at place α. Then

xα ∈M iff α ∈M .
√
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This justifies the notation M [M ] for the unique model M ≺ (Hω2
,∈,≤∗), if

there is such a model for a given M ⊂ ω2. If M [M ] is well defined we shall say
that M is the trace of a model.

4. Forcing a square

Let V be some countable transitive model of (a sufficiently large finite fragment
of) ZFC together with CH and the assumption that the well ordering ≤∗� Hω2

well
orders Hω2 in the order type ω2 (so in particular 2ω1 = ω2 holds in V ). Throughout
the rest of the paper everything is carried out inside V .

Since we want to force the existence of a square sequence, the working part
of forcing notion P will consist of finite partial square sequences. We will add
safeguards which will help us separate clubs from a condition q and clubs from a
restriction p ≤ q. This will be instrumental in the proof of properness.

It should be noted once again that we do not have to build a square sequence on
the whole Lim(ω2). Instead, it is enough for the domain of the built sequence to be
a club in ω2, because we can always extend a square sequence from a club to the
full Lim(ω2) (see Lemma 5.13). This is the reason why we add intervals as a part of
conditions. These intervals will serve as gaps in what will ultimately be the desired
club in Lim(ω2). This way of forcing a club was introduced by Baumgartner in [2]
in the context of ω1.

Before we are ready to present the definition of forcing we have to define a few
auxiliary notions. For α < ω2, cf(α) = ω1, let Eα denote some fixed club in α of
order type ω1, and let E := 〈Eα | α < ω2〉. Define M0 := {M ≺ Hω2

| M is
countable and E ∈M }. The set M0 will act as a pool of possible side conditions.

For a large enough cardinal θ let M1 := {M ≺ Hθ |M is countable, E ∈M }.
Then M1 is a club set in [Hθ]

ω. Also, if N ∈ M1 and α ∈ N has cofinality ω1,
then, by elementarity, Eα ∈ N . Also note that N ∩Hω2

∈M0, by Lemma 3.2.

Definition 4.1. Suppose that M1,M2 ≺ Hω2
are countable and let δ := sup(M1 ∩

M2). Then:
(1) the set {min(M1 \ λ) | λ ∈M2, δ < λ < sup(M1)} ∪ {min(M1 \ δ)} is called the
set of M1-fences for M2;
(2) we say that M1 and M2 are compatible if the following two clauses hold as
stated and with M1 and M2 switched:

(a) either δ ∈M1 and M1 ∩M2 ∈M1, or δ 6∈M1 and M1 ∩M2 = M1 ∩ δ, and
(b) the set of M1-fences for M2 is finite.

The most trivial case of two compatible models is if M1 ∈ M2. Then δ =
sup(M1) ∈ M2, M1 ∩M2 = M1 ∈ M2, and M1 ∩M2 = M1 ∩ δ = M1. The set of
M1-fences for M2 is the empty set and the set of M2-fences for M1 is the set {δ}.

We are particularly interested in the following consequence of compatibility and
the assumption 2ω1 = ω2.

Lemma 4.2. Suppose that M1 and M1 are models compatible in the sense of
Definition 4.1 and let δ be as defined there. Then if δ 6∈M1, then [δ]≤ω∩M1 ⊂M2.

Proof. Assume δ 6∈M1 and consider the two possible cases:
(a) δ ∈M2. In this case M1 ∩M2 = M1 ∩ δ (M2 ∩ δ,
(b) δ /∈M1 ∪M2. In this case M1 ∩M2 = M1 ∩ δ = M2 ∩ δ.
In any case we have M1 ∩ δ ⊂ M2 ∩ δ. Let x ∈M1 be a countable subset of δ,

so that if γ := sup(x) then γ ∈ M1 and hence γ < δ and γ ∈ M2. Let η be the
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least ordinal such that every countable subset of γ appears before stage η in the
well-ordering ≤∗� Hω2 . Then η is definable from γ so that η ∈M1 ∩M2 and hence
η < δ. Let x appear at stage ζ in the well-ordering; then ζ ∈M1 because x ∈M1,
so ζ ∈M1 ∩ η ⊂M1 ∩ δ ⊂M2 ∩ δ and hence x ∈M2.

√

We thank the referee for noticing Lemma 4.2 and providing us with its proof.
In its absence, the previous version of this paper used the conclusion of Lemma 4.2
as part of the definition of compatibility, in place of Mitchell’s condition in (b) of
that definition. Together with the following simple lemma, Lemma 4.2 shows that
under our assumptions the two definitions of compatibility are actually equivalent.

Lemma 4.3. With the notation of Definition 4.1, if [δ]≤ω ∩M1 ⊂M2 then M1 ∩
M2 = M1 ∩ δ.

Proof. Consider α ∈ M1 ∩ δ. Then {α} ∈ [δ]≤ω ∩M1, hence {α} ∈ M2 and
α = max({α}) ∈M2.

√

We include another comment by the referee, which sheds more light on the
advantages of working with compatible models.

Lemma 4.4. Suppose that M1 and M2 are compatible models in the sense of
Definition 4.1 and let δ be as defined there. Then M1 ∩ δ = M2 ∩ δ iff M1 ∩ ω1 =
M2 ∩ ω1, and M1 ∩ δ (M2 ∩ δ iff M1 ∩ ω1 < M2 ∩ ω1.

Proof. Let γ ∈ M1, so γ < ω2. If f is the ≤∗-least injection from γ to ω1 then
M1∩γ = f−1[M1∩ω1], and so if M2∩ω1 ≥M1∩ω1 then also M2∩γ ⊃M1∩γ.

√

Lemma 4.5. Suppose that M1 and M2 are compatible models in the sense of
Definition 4.1 and let δ be as defined there. Further suppose that for some γ > δ
we have that δ < sup(M1 ∩ γ) = α /∈M1. Then sup(M2 ∩ α) < α.

Proof. Suppose otherwise. Since α /∈ M1, certainly α is a limit ordinal. Since
sup(M2∩α) = α, we can find β0 ∈ (δ, α) with β0 ∈M2. Hence α0 := min(M1\β0) ∈
M1 ∩ α, and so β1 := min(M2 \ α0) ∈ M2 ∩ α, etc., continuing for ω steps. But
each βn is in the M2-fence for M1, and there are only finitely many ordinals in that
fence, by compatibility, a contradiction.

√

We are now ready to define the forcing notion we shall use. To motivate it, let
us recall Baumgartner’s idea of adding a club of ω1 using finite conditions. Each
condition p gives finitely many elements Ip of the future club. However, since we
know that the added set is a club, we know that some points should be forced to
be in implicitly, that is the ones that are limit points of the explicitly added ones.
As we only have finite conditions at our disposal, our control of this requirement
must come not from what we put in but from what we leave out. So each condition
specifies also some points to leave out, and once we have decided to leave a point
out of the future club, we have to make sure that it does not get in accidentally.
This is achieved by having the condition specify a half-open interval of points below
the given one, which will also be excluded. Hence each condition comes with finitely
many intervals Op of that form. This works well at ω1 and it preserves cardinals,
but at ω2 it would collapse cardinals if we do not do anything else to prevent
that. That is where the models as side conditions come in, used by both Friedman
and Mitchell. Hence each condition has finitely many models (Mp) and it is their
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interaction with the club added that is used to preserve ω1. Here, a Friedman-
Mitchell club is added as the domain of the square sequence (using Dp), so we have
to have similar concerns about preserving ω1.

The interaction between the models and the club is achieved through the notion
of safeguards Sp and fences, as in both Friedman’s and Mitchell’s work (although
our notation and presentation corresponds more to Mitchell’s). Clause (6b) below
tells us that a gap in a model M has to be closed from above by a safeguard if there
is something (i.e. an ordinal α ∈ Dp) inside that gap. This safeguard is an echo of
α resonating in M , warning everybody in M to stay away from that gap. Fences
from clause (9) serve exactly the same purpose.

Definition 4.6. The forcing notion P is the set of conditions of the form p :=
(Fp, Sp, Op, Mp), where

(1) Fp : Lim(ω2) → P(ω2), |Fp| < ω and for all α ∈ Dp := dom(Fp), Fp(α)
is a club Cα ⊂ α whose order type is < ω1 if cf(α) = ω and which satisfies Cα ∈
{Eα \ β | β ∈ Dp ∩ α} if cf(α) = ω1;

(2) Sp ⊂ Dp and α ∈ Sp for every α ∈ Dp with cf(α) = ω1;
(3) Mp is a finite set of countable traces of models from M0 and sup(M) ∈ Sp

for every M ∈Mp;
(4) for every α 6= β ∈ Dp, if µ ∈ Lim(Cα) ∩ Lim(Cβ) then Cα ∩ µ = Cβ ∩ µ;
(5) if α ∈ Dp and σ ∈ Sp ∩ α, then Cα ∩ σ is a finite set;
(6) for all α ∈ Dp and M ∈Mp:
(a) if α ∈M then Cα ∈M [M ],
(b) if α 6∈M is such that α < sup(M), or if α ∈M is such that sup(M ∩α) < α,

then min(M \ α) ∈ Sp and sup(M ∩ α) ∈ Dp1,
(c) if α 6∈M , sup(M ∩ α) < α < sup(M) and there is no β ∈ Dp \ (α+ 1), such

that α ∈ Lim(Cβ), then Cα ∩ sup(M ∩ α) is a finite set,
(d) if α 6∈ M , sup(M ∩ α) = α and there is no β ∈ Dp \ (α + 1), such that

α ∈ Lim(Cβ), then Cα is some cofinal sequence in α of length ω;
(7) Op is a finite set of half open nonempty intervals (β′, β] ⊂ ω2 such that

Dp ∩
⋃
Op = ∅;

(8) if (β′, β] ∈ Op and M ∈Mp then either (β′, β] ∈M or (β′, β] ∩M = ∅;
(9) if M1,M2 ∈ Mp then they are compatible, and the M1-fence for M2 is a

subset of Sp.

For p, q ∈ P define p ≤ q def⇐⇒ Fp ⊂ Fq, Sp ⊂ Sq, Op ⊂ Oq,Mp ⊂Mq.

Notice that in clause (8), the interval (β′, β] is an element of the model M if
and only if both β′ and β are in M .

We will occasionally have to work with quadruples p = (Fp, Sp, Op, Mp) which
do not satisfy all of the clauses of Definition 4.6.

Definition 4.7. Let p = (Fp, Sp, Op, Mp) be a quadruple with the sets Fp, Sp,
Op and Mp defined as in Definition 4.6.

(1) Define sets

Ap := {(N, γ) | N ∈Mp and γ ∈ Dp ∩N such that sup(N ∩ γ) 6∈ Dp},
Bp := {α ∈ Dp | cf(α) = ω and there exists (N, γ) ∈ Ap such that α 6∈ N,

sup(N ∩ α) < α and γ = min(N \ α)},

1Note that if α ∈M then sup(M ∩ α) < α iff cf(α) = ω1.
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Jp := {δ′ ∈ Dp \ Sp | there exist M,M ′ ∈Mp and δ ∈ Sp ∩M such that

δ′ = sup(M ∩M ′) ∈M and δ′ < δ < min(M ′ \ δ′)}.
(2) We call p a semi-condition if it satisfies all of the clauses of Definition 4.6

except clauses (6b) and (9), and it violates clause (6b) only in such a way that
Ap 6= ∅ or Bp 6= ∅, while violating clause (9) only in such a way that Jp 6= ∅.

(3) Quadruple p is a precondition if it is a semi-condition satisfying clause (9).

Remark 4.8. (1) Instead of clause (6b) a precondition (or a semi-condition) sati-
sfies the following weaker version:

(6b*) if α 6∈ M is such that α < sup(M) and cf(α) = ω1, then min(M \ α) ∈ Sp
and sup(M ∩ α) ∈ Dp.

(2) δ′ ∈ Jp means that δ′ should be in the M -fence for M ′ (hence in Sp) but is
not, which is the reason why clause (9) fails.

Lemma 4.9. (P,≤) is a non-trivial forcing notion.

Proof. Transitivity is trivial. The minimal element is (∅, ∅, ∅, ∅). For non-triviality,
consider an arbitrary condition p ∈ P : we will find two incompatible extensions of
p. Let α := sup(Dp ∪

⋃
Op ∪

⋃
Mp), and β := α + ω < ω2. Define Cβ := [α, β)

and C ′β := (α, β). It is easy to check that q := (Fp ∪ {(β,Cβ)}, Sp, Op,Mp) and

q′ := (Fp ∪ {(β,C ′β)}, Sp, Op,Mp) are both conditions extending p, and that they

are incompatible. Notice, that since cf(β) = ω, Cβ and C ′β need not interact with

E .
√

We now prove several lemmas that show us a little bit more about the structure
of the conditions in P , and will be helpful in further proofs. Most notably, they will
shed some light on the correspondence between models and clubs, and thus clarify
clause (6).

Lemma 4.10. Let p be a precondition, and suppose that α, γ ∈ Dp and M ∈ Mp

are such that α < sup(M), α 6∈M , and α ∈ Lim(Cγ). Then γ ≤ min(M \ α).

Proof. Since α 6∈ M , we have that (M,α) 6∈ Ap. Therefore we can use clause (6b)
to conclude that σ := min(M \ α) ∈ Sp. Hence, if γ > σ then, by (5), Cγ has no
limit points below σ, a contradiction.

√

Notice that if α ∈ Lim(Cγ) then cf(α) = ω, otherwise Cγ would have order type
larger than ω1.

Lemma 4.11. Let p be a precondition, α ∈ Dp and M ∈Mp be such that α /∈M .
Suppose that either {γ ∈ Dp \ (α + 1) | α ∈ Lim(Cγ)} 6= ∅ and η := max{γ ∈ Dp |
α ∈ Lim(Cγ)} < min(M \α), or α > sup(M). Then Cα∩ sup(M ∩α) is finite (and
therefore sup(M ∩ α) < α).

Proof. If α > sup(M) then the conclusion follows from clauses (3) and (5), as
sup(M) ∈ Sp by (3). If α = sup(M) then α ∈ Sp hence it cannot be a limit point
of any Cγ for γ ∈ Dp \ (α + 1). So assume that α < sup(M) and α ∈ Lim(Cη).
If η is not a limit point of any Cη′ for η′ ∈ Dp then, by (6c), Cη ∩ sup(M ∩ η) is
finite. Here we use the fact that η 6∈ M and sup(M ∩ η) < η. Since Cα ⊂ Cη and
sup(M ∩α) = sup(M ∩ η), Cα ∩ sup(M ∩α) is also finite. If η ∈ Lim(Cη′) for some
η′ ∈ Dp \ (η+ 1) then α ∈ Lim(Cη′) which contradicts the assumption that η is the
largest such ordinal.

√
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Lemma 4.12. Let p be a precondition, α /∈ Dp and M ∈Mp be such that α /∈M ,
α < sup(M) and α = sup(M ∩ α). If there exists some ε ∈ Dp, ε ≤ min(M \ α),
such that α ∈ Lim(Cε) then max{ε′ ∈ Dp | α ∈ Lim(Cε′)} = min(M \ α).

Proof. Let γ := max{ε′ ∈ Dp | α ∈ Lim(Cε′)} > α. By the definition of precondi-
tion, only sup(M∩ε) may be missing from Dp, hence min(M \α) = min(M \ε) ∈ Sp
by clause (6b) for ε and M . Therefore γ ≤ min(M \α) by clause (5). Suppose that
γ < min(M \α). Since there is no β ∈ Dp \ (γ+ 1) such that γ ∈ Lim(Cβ), because
otherwise α ∈ Lim(Cγ) ⊂ Lim(Cβ), we can apply clause (6c) for γ and M and we
get that Cγ ∩ sup(M ∩ γ) = Cγ ∩ sup(M ∩ α) is finite and therefore α cannot be a
limit point of Cγ , a contradiction. Therefore, γ = min(M \ α).

√

Lemma 4.13. Let p be a precondition. If M ∈Mp then Csup(M) is an ω-sequence.

Proof. By clauses (2) and (3), sup(M) ∈ Sp ⊂ Dp. By (5), sup(M) cannot be a
limit point of any Cγ for γ ∈ Dp. Since M is countable, sup(M) has countable
cofinality, so Csup(M) is an ω-sequence by clause (6d).

√

Recall the definitions of M0 and M1 from the beginning of this section.

Lemma 4.14. Let N ′ ∈ M1. If p is a condition in P ∩N ′ then there exists an
extension q ≥ p such that N ′ ∩Hω2 ∈Mq.

Proof. Let p be of the form (Fp, Sp, Op,Mp) and let N := N ′ ∩Hω2 ∈M0. By
Lemma 3.2, N ≺ Hω2

. Note also that p ∈ N .
We are now going to extend p by adding clubs Cα for certain α. The point is

that we want our q to satisfy N ′ ∩Hω2
∈ Mq, so in order to also satisfy (6b) we

shall have to add various other things to q.
Suppose that α 6∈ N is such that α = sup(N ∩ γ) for some γ ∈ Dp. Notice that

then γ > α and sup(N ∩ α) = α, since p ∈ N implies that Dp ∈ N and so γ ∈ N
and hence γ = min(N \ α). By Lemma 3.4, cf(γ) = ω1, therefore γ ∈ Sp by clause
(2) in p. It is worth mentioning that cf(α) = ω, hence Cα—once it is defined—is
not required to interact with E . In the case of α ∈ Lim(Cβ) for some β ∈ Dp let
Cα = Cβ ∩ α. The choice for Cα is well-defined by clause (4) in p. If there is no
such β then let Cα be the ≤∗-first ω-sequence cofinal in α. We will also have to add
sup(N) to the set of safeguards. For the corresponding club Csup(N) we pick the
≤∗-first cofinal ω-sequence in sup(N). Again, cf(sup(N)) = ω, therefore Csup(N)

does not have to interact with E .
Define q := (Fp ∪ {(α,Cα) | α 6∈ N, α = sup(N ∩ γ) for some γ ∈ Dp} ∪

{(sup(N), Csup(N))}, Sp ∪ {sup(N)}, Op,Mp ∪ {N}). Clauses (1)-(4) of Defini-
tion 4.6 are trivially true. For clause (5), suppose that α ∈ Dq and σ ∈ Sq ∩ α. If
both α ∈ Dp and σ ∈ Sp then clause (5) holds by the fact that p ∈ P . Suppose
α /∈ Dp. The first case is that α /∈ N and α = sup(N ∩ γ) for some γ ∈ Dp. As
mentioned above, in this case cf(α) = ω, so if Cα has order type ω then certainly
Cα ∩ σ is finite. If not, then Cα = Cβ ∩ α for some β ∈ Dp. On the other hand,
σ < sup(N) and so σ ∈ Sp. Hence Cβ ∩ σ is finite and so Cα ∩ σ is also finite.
Now suppose α ∈ Dp but σ /∈ Sp. Hence σ = sup(N), but α ∈ N and α > σ, a
contradiction.

Clause (6a) is vacuous for every α ∈ Dq \Dp and M ∈Mq because M ⊂ N and
α 6∈ N , and trivial for every α ∈ Dp and N .

For clause (6b) first consider some α ∈ Dq \ Dp and M ∈ Mp such that α <
sup(M). Then α = sup(N∩γ) for some γ ∈ Dp, and either γ 6∈M with γ < sup(M)
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or γ ∈M with sup(M ∩γ) < γ. In both cases, by (6b) in p, sup(M ∩α) = sup(M ∩
γ) ∈ Dp ⊂ Dq and min(M \ α) = min(M \ γ) ∈ Sp ⊂ Sq. Similarly, if α ∈ Dq \ Dp,
α 6= sup(N), and we consider the model N , then α = sup(N ∩ α) ∈ Dq and
min(N \α) = γ ∈ Sp ⊂ Sq. Now consider some η ∈ Dp and the model N such that
sup(N ∩ η) < η. Then cf(η) = ω1 by Lemma 3.4 hence min(N \ η) = η ∈ Sp ⊂ Sq
by clause (2) in p. On the other hand, sup(N ∩ η) ∈ Dq by definition of q. Finally,
if α ∈ Dp and M ∈Mp then (6b) in q follows from (6b) in p.

For (6c) first assume that α ∈ Dq \Dp and M ∈Mp are such that sup(M ∩α) <
α < sup(M) and there is no β ∈ Dq \ (α + 1) such that α ∈ Lim(Cβ). Then Cα is
an ω-sequence and (6c) is trivially true. If α ∈ Dp and M ∈ Mp then (6c) is true
in q because it is true in p. The case of α ∈ Dq \ Dp and N is irrelevant for (6c)
because sup(N ∩ α) = α, as is the case of α ∈ Dp and N since α ∈ N . Clause (6d)
is proved similarly.

As for clause (7), suppose that some newly added α < sup(N) falls into some
interval (β′, β]. Then its corresponding γ ∈ Dp was already in this interval, since
{β′, β} ⊂ N . But that is in a contradiction with clause (7) in p. Condition (8) is
easily seen to hold. Finally, for (9), notice, that for M ∈Mp the M -fence for N is
the empty set, while the N -fence for M is {sup(M ∩ N)} = {sup(M)} which is a
subset of Sp ⊂ Sq by clause (3).

Hence q is a condition extending p and having the desired property.
√

Imitating the above proof gives us the following result.

Lemma 4.15. The set of conditions p ∈ P such that Mp 6= ∅ is open and dense.

Proof. Clearly, the set is open. Let us show that it is dense. Let p ∈ P and assume
Mp = ∅. Let N ∈M0 be such that p ∈ N . Define q as in the proof of Lemma 4.14.
Then Mq 6= ∅ and q ≥ p.

√

Lemma 4.16. Suppose p = (Fp, Sp, Op,Mp) is a semi-condition. Then q :=
(Fp, Sp ∪ Jp, Op,Mp) is a precondition.

Proof. Recall that Jp = {δ′ ∈ Dp \ Sp | there exist M,M ′ ∈ Mp and δ ∈ Sp ∩M
such that δ′ = sup(M ∩M ′) ∈ M and δ′ < δ < min(M ′ \ δ′)}. Pick some δ′ ∈ Jp.
We have to show that clause (5) is true for δ′ and every α ∈ Dp \ (δ′+1). The other
clauses follow trivially from the respective clauses for p. Clause (9) is also true for
q because the M -fence for M ′ is now a subset of Sq. Hence Jq = ∅, while Aq = Ap
and Bq = Bp.

Let µ := min(M ′ \ δ) = min(M ′ \ δ′). First assume that α > δ. Since δ ∈ Sp,
we can use (5) in p to deduce that Cα ∩ δ′ ⊂ Cα ∩ δ is finite. Suppose now that
α ≤ δ. Then sup(M ′ ∩ α) = δ′ < α < sup(M ′). Now we use (6c) in p. If there
is no β ∈ Dp \ (α + 1) such that α ∈ Lim(Cβ) then Cα ∩ δ′ is finite. However, if
α ∈ Lim(Cβ) for some β ∈ Dp \ (α+ 1) then we can invoke Lemma 4.10 to see that
the maximal such β is ≤ µ. If it is < µ then, by Lemma 4.11, Cα ∩ δ′ is finite.
On the other hand, α cannot be a limit point of Cµ, since α < δ ∈ Sp, hence the
maximal β cannot be equal to µ.

√

Lemma 4.17. Suppose p0 = (Fp0 , Sp0 , Op0 ,Mp0) is a precondition. Then there
exists a precondition p1 = (Fp1 , Sp0 , Op0 ,Mp0) such that Fp0 ( Fp1 and Ap1 (
Ap0 .

Proof. Pick a pair N ∈ Mp0 and γ ∈ Dp0 ∩ N such that α := sup(N ∩ γ) 6∈ Dp0 .
Note that in this case sup(N ∩ γ) < γ, hence cf(γ) = ω1 and γ ∈ Sp0 . Also, α 6∈ N
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and α = sup(N ∩α). Let Cα be as in the proof of Lemma 4.14. This is to say that
if α ∈ Lim(Cβ) for some β ∈ Dp0 \ (α + 1) then Cα := Cβ ∩ α. By clause (5) we
have that β ≤ γ, since γ ∈ Sp0 . Applying Lemma 4.12 to α and N , we see that we
can assume without loss of generality that β = γ. This choice of Cα is well-defined
because by clause (4) it does not depend on β anyway. If there is no such β then
let Cα be the ≤∗-first ω-sequence cofinal in α, so it will end up being an element
of all M relevant to (6a). Define p1 := (Fp0 ∪ {(α,Cα)}, Sp0 , Op0 ,Mp0). We will
prove that p1 is a precondition and that Ap1 is a proper subset of Ap0 . We will do
that by checking that α satisfies all the relevant clauses of Definition 4.6.

Clause (1) is trivial, while clauses (2) and (3) are irrelevant for α.
For clause (4), consider some β ∈ Dp0 . Suppose first that β > α. If β > γ then

by (5) Cα and Cβ cannot have any common limit points, since γ ∈ Sp0 . Assume
now that β ≤ γ and there exists some µ ∈ Lim(Cα) ∩ Lim(Cβ). If Cα = Cγ ∩ α
then µ ∈ Lim(Cγ) ∩ Lim(Cβ), hence by (4) in p0, Cα ∩ µ = Cγ ∩ µ = Cβ ∩ µ. If
Cα is an ω-sequence then µ = α, hence α ∈ Lim(Cβ) for some β ∈ Dp0 \ (α + 1),
therefore Cα = Cγ ∩ α and Cα ∩ µ = Cβ ∩ µ was already shown.

Suppose now that β < α. If α is an ω-sequence then Cα and Cβ have no
common limit points. If Cα = Cγ ∩ α and there is some µ ∈ Lim(Cα) ∩ Lim(Cβ)
then µ ∈ Lim(Cγ) ∩ Lim(Cβ), hence by (4) in p0, Cα ∩ µ = Cγ ∩ µ = Cβ ∩ µ.

For clause (5), consider some σ ∈ Sp0 , σ < α. If α is an ω-sequence then Cα ∩ σ
is finite. If Cα = Cγ ∩ α then Cα ∩ σ = Cγ ∩ σ, which is finite by (5) in p0.

For clause (6), let M ∈Mp0 \{N}. Note that all the instances of clause (6) for α
and N are fulfilled by construction. Clause (6a) holds because of the way we defined
Cα. Namely, Cα ∈M [M ] for all models M ∈ Mp0 such that α ∈ M , because Cα
is either the ≤∗-first relevant ω-sequence or Cα = Cγ ∩ α, and the latter is an
intersection of two objects already in M . To see that, we must prove that γ ∈ M
if α ∈ M . Then by (6a) in p0, Cγ ∈ M . So assume that α ∈ M . First suppose
that α < sup(M ∩N) =: δ. Since α ∈M \N , we know that M ∩N 6∈ N , because
otherwise α = sup((M ∩N) ∩ γ) ∈ N by elementarity. Hence, by compatibility of
M and N , M ∩ N = N ∩ δ. But then γ ∈ M , as γ < δ. If δ = α ∈ M then α is
in the M -fence for N , hence it is in Sp0 ⊂ Dp0 by (9), a contradiction. Suppose
now that α > δ. Then, by Lemma 4.5, sup(M ∩ α) < α and since α ∈ M , we can
conclude by applying Lemma 3.4 that cf(α) = ω1, which is in a contradiction with
the fact that α = sup(N ∩ γ).

For (6b) assume that α < sup(M) and α 6∈ M . The situation α ∈ M and
sup(M ∩ α) < α cannot occur because that would mean that cf(α) = ω1. Suppose
first that α ≥ sup(M ∩N) =: δ. If γ′ := min(M \ α) < γ then γ′ is in the M -fence
for N , hence it is in Sp0 . The pair (N, γ′) is not in Ap0 since γ′ /∈ N . Also, γ′ 6∈ Bp0
since cf(γ′) = ω1. But then by the part of (6b) that holds for p0, we have that
α = sup(N ∩ γ′) ∈ Dp0 , a contradiction. Since α ≥ δ, we know that γ′ 6= γ. So
suppose now that γ′ > γ. In this case, (M,γ) /∈ Ap0 since γ /∈ M , and γ 6∈ Bp0
since cf(γ) = ω1. Again we can use the part of (6b) that is true for p0 and conclude
that min(M \ α) = γ′ = min(M \ γ) ∈ Sp0 and sup(M ∩ α) = sup(M ∩ γ) ∈ Dp0 .

Suppose now that α < δ. We consider two cases. If α = sup(M ∩α) then M ∩N
cannot be an element of either M or N . We see that by applying Lemma 3.5 to the
pair M ∩N , M or to the pair M ∩N , N , taking into account that sup(M ∩ α) =
sup((M ∩N) ∩ α) = sup(N ∩ α). Hence M ∩ δ = M ∩N = N ∩ δ. Consequently
min(M \ α) = min(N \ α) = γ ∈ Sp0 , and sup(M ∩ α) = α was just added to Dp0 .
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This means that (M,γ) is in Ap0 but it is not in Ap1 , and the reason for the latter
is α. If sup(M ∩ α) < α then M ∩ N 6= N ∩ δ hence M ∩ N = M ∩ δ. Since
γ < δ it follows that γ ≤ min(M \ α). If γ < min(M \ α) then (M,γ) /∈ Ap0 and
since γ 6∈ Bp0 we can use (6b) to get that min(M \ α) = min(M \ γ) ∈ Sp0 and
sup(M ∩ α) = sup(M ∩ γ) ∈ Dp0 . However, if γ = min(M \ α) then min(M \ α) =
γ ∈ Sp0 . On the other hand, if sup(M ∩ α) = sup(M ∩ γ) does not happen to be
in Dp0 then α is in Bp1 and it corresponds to the pair (M,γ) which is in Ap0 and
remains in Ap1 .

It is important to notice that whenever we used (6b) in p0, we never called upon
the (incorrect) assumption that it holds for some M and α such that (M,α) ∈ Ap0
or for some γ ∈ Bp0 .

For (6c) assume that α 6∈M , sup(M ∩α) < α < sup(M) and there is no β ∈ Dp0
such that α ∈ Lim(Cβ). Then Cα is an ω-sequence, hence Cα∩sup(M ∩α) is finite.
Similarly, for (6d) assume that α 6∈ M , sup(M ∩ α) = α and there is no β ∈ Dp0
such that α ∈ Lim(Cβ). Then Cα is again an ω-sequence, hence (6d) for M and α
holds automatically.

For clause (7) let (β′, β] ∈ Op0 , and suppose for contradiction that α ∈ (β′, β].
Then (β′, β] ∩ N 6= ∅, hence by (8) in p0, (β′, β] ∈ N . Therefore β ≥ γ and
γ ∈ (β′, β], which contradicts (7) in p0. Finally, clauses (8) and (9) are irrelevant
for α.

When we added α to Dp0 we did not produce any new pair to be added to
Ap0 . Hence Ap1 ⊂ Ap0 \ {(N, γ)}, since one α may actually cause several pairs to
disappear from Ap0 , as seen in the proof of (6b).

√

Lemma 4.18. Suppose p0 = (Fp0 , Sp0 , Op0 ,Mp0) is a precondition. Then there
exists a condition p∗ = (Fp∗ , Sp0 , Op0 ,Mp0) ∈ P such that Fp0 ( Fp∗ .
Proof. Let p1 be the precondition given by Lemma 4.17. Then Ap1 ( Ap0 . It is
true that Bp1 may be larger than Bp0 , as seen at the end of proof of (6b), but that
is of no consequence. Now we apply Lemma 4.17 to p1 and repeat the procedure
at most |Ap0 | many times. Ultimately we get Fp∗ = Fp0 ∪ {(α,Cα) | (N, γ) ∈
Ap0 , α = sup(N ∩ γ)}. Notice that if there are (N, γ) and (N ′, γ′) in Ap0 such
that α = sup(N ∩ γ) = sup(N ′ ∩ γ′) then α makes these both pairs satisfy clause
(6b), and that happens at the same step of the procedure. Hence Cα is uniquely
determined. Since Ap∗ = ∅, we have that Bp∗ = ∅, hence p∗ ∈ P .

√

Lemma 4.19. Let N ∈ M0 and suppose that r ∈ P is such that N ∈ Mr.
Then rN := (Fr ∩N , Sr ∩N , Or ∩N , (Mr ∩N ) ∪ {M ∩ N | M ∈ Mr, M 6∈
N , M ∩N ∈ N }) is a condition in P ∩N .

Proof. Note that since N ∈ Mr we have r /∈ N , as otherwise N ∈ N . Clearly
rN ∈ N . Let us prove that rN ∈ P . First note that by (6a), FrN = Fr � N
hence DrN = Dr ∩N . Also, by Lemma 3.3, M ∩N ≺ Hω2 for every M ∈ Mr

and clearly M ∩N ∈M0, hence M ∩N can be added toMrN for the relevant M .
Notice that for such M since M ∩ N ∈ N then δM,N := sup(M ∩ N) ∈ Sr ∩N
because it is in the N -fence for M , hence clause (3) is satisfied. Also note that then
it follows that M ∩N /∈M 2 as otherwise M ∩N ∈M ∩N . By the compatibility
of M and N in r, it must be the case that δM,N ∈ N and M ∩N = M ∩ δM,N . To
continue now with checking that rN ∈ P , clauses (4) and (5) follow from the same
clauses for r as does (6a).

2Here we use that any model M ′ ∈Mr uniquely determines M [M ′].
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For clause (6b) consider α ∈ DrN and M∩N ∈MrN \Mr such that α 6∈M∩N .
That means that α 6∈ M . Since M ∩ N ∈ N , M ∩ N is an initial segment of M .
If α < δM,N then min((M ∩N) \ α) = min(M \ α) ∈ Sr ∩N by clause (6b) in r,
hence min((M ∩N) \α) ∈ SrN . By the same argument, sup((M ∩N)∩α) ∈ DrN .
Now suppose that α ∈M ∩N is such that sup((M ∩N)∩α) < α. Then cf(α) = ω1

and sup(M ∩ α) < α. Now, as above, use (6b) in r for α and M to get that
sup((M∩N)∩α) = sup(M∩α) ∈ Dr∩N = DrN and min((M∩N)\α) = α ∈ SrN .

For clause (6c) suppose that α 6∈M∩N is such that sup((M∩N)∩α) < α < δM,N

and there is no β ∈ DrN \(α+1) such that α ∈ Lim(Cβ). We again use the fact that
M∩N is an initial segment ofM . Then α 6∈M and sup(M∩α) < α < sup(M), since
α < δM,N ≤ sup(M). If there is no β ∈ Dr \ (α+1) such that α ∈ Lim(Cβ) then we
can use (6c) in r for M and α to get that Cα∩sup((M∩N)∩α) = Cα∩sup(M∩α) is
finite. By assumption, there is no such β ∈ Dr∩N . If there exists such β in Dr\N
then β < min(M \α), because min(M \α) ∈ Sr∩N by (6b) in r. Then we can apply
Lemma 4.11 and again conclude that Cα ∩ sup((M ∩N) ∩ α) = Cα ∩ sup(M ∩ α)
is finite.

For clause (6d) suppose that α 6∈M ∩N is such that sup((M ∩N)∩α) = α and
there is no β ∈ DrN \(α+1) such that α ∈ Lim(Cβ). Hence α ≤ δM,N . If α = δM,N

then, as noted above, by (9) in r, δM,N ∈ Sr hence by (5) cannot be a limit point of
any Cβ in r so certainly not in rN . If α < δM,N then α = sup(M ∩α), and if there
is no β ∈ Dr \ (α + 1) such that α ∈ Lim(Cβ) then we can use the compatibility
between α and M in r. Therefore by (6d) in r we have that (6d) is also satisfied
in rN . Again we have to consider the possibility that such β exists in Dr \N . A
similar argument as with (6c) shows that Lemma 4.11 prohibits such β to exist.

Clauses (7) and (8) are clear.
To check (9) consider the compatibility between two models of the form M∩N ∈

MrN \Mr. Suppose that Mi ∈ Mr \N for i = 1, 2 are such that M ′i := Mi ∩N
satisfy that M ′i ∈ N . Let x1 be the M1-fence for M2. Then x1∩N = x1∩sup(M1∩
N) is the M ′1-fence for M ′2, so certainly finite and included in Sr ∩N . Here we
have used the fact that M1 ∩N is an initial segment of M1.

Now note that M ′1 ∩M ′2 = M1 ∩M2 ∩ N = (M1 ∩ N) ∩ (M2 ∩ N). We shall
consider two cases, denoting by δM ′1∩M ′2 the ordinal sup(M ′1 ∩M ′2):

Case 1: δM1,N ≤ δM2,N .
Hence δM ′1∩M ′2 = δM1,N /∈M ′1 and M ′1 ∩M ′2 = M ′1 ∩ δM ′1∩M ′2 .
Case 2: δM1,N > δM2,N .
Hence δM ′1∩M ′2 = δM2,N ∈M ′1 and M ′1 ∩M ′2 ∈M ′

1.
√

We are now ready to prove the most important facet of forcing P , namely the
fact that it preserves ω1. We do that by proving that P is proper. There are several
equivalent definitions of properness. We shall use the following one.

Definition 4.20. Let Q be a forcing notion and θ a large enough cardinal.
(1) Suppose that N ≺ Hθ. A condition q ∈ Q is N -generic if for every extension

r ≥ q in Q, and every dense set D ⊂ Q with D ∈ N , there exists a condition
s ∈ D ∩N which is compatible with r.

(2) Q is proper if there is a club N of [Hθ]
ω consisting of countable elementary

submodels of Hθ such that for every N ∈ N with Q ∈ N , every condition in Q∩N
has an N -generic extension.

Proposition 4.21. The forcing P is proper.
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Proof. Let θ be a large enough cardinal. The club witnessing the properness of P
will be the collection M1 defined at the beginning of this section. Fix an N ′ ∈M1,
such that P ∈ N ′, and consider an arbitrary p = (Fp, Sp, Op, Mp) ∈ P ∩N ′.
Define N := N ′∩Hω2

∈M0 and let q be the extension of p given by Lemma 4.14.
We will prove that q is an N ′-generic extension of p.

Suppose r ∈ P is an arbitrary extension of q. Let rN be the condition given by
Lemma 4.19. Proceed by fixing a dense open subset D ⊂ P , D ∈ N ′, and extend
rN to s ∈ D ∩N ′. Since we can find such s ∈ Hω2 , by elementarity we can assume
that s ∈ N . Let t := (Fr ∪Fs, Sr ∪Ss, Or ∪Os,Mr ∪Ms). We shall prove that t
is a semi-condition. In particular, following Remark 4.8 we prove that clause (6b*)
holds for t instead of clause (6b). We then use Lemmas 4.16 and 4.18 to extend
t to a condition t∗ ∈ P . Since then clearly t∗ extends both r and s, we will have
proved that r and s are compatible.

Clauses (1), (2) and (3) are obviously true.
Clause (4): take arbitrary α 6= β ∈ Dt. We can assume without loss of generality

that α ∈ Dr \ Ds and β ∈ Ds \ Dr. In particular, β ∈ N . We shall use (6) for r to
discuss the possibilities for α and β.

If β > α there are two possibilities. If β = min(N \ α) then α /∈ N and
α < sup(N), hence by (6b) in r we have β = min(N \ α) ∈ Sr ⊂ Dr, which we
assumed was not the case. If β > min(N \ α) then Cβ ∩ Cα ⊂ Cβ ∩ min(N \ α)
which is finite by (5) in s, because min(N \α) ∈ Sr ∩N ⊂ Ss by (6b) in r. Hence,
Lim(Cβ) ∩ Lim(Cα) = ∅.

If β < sup(N) = α then Cα is an ω-sequence by Lemma 4.13, so Cα ∩β is finite.
If β < sup(N) < α then since sup(N) ∈ Sr we can apply clause (5) in r to get that
Cα∩β is finite. Hence in either of these two cases we have Lim(Cα)∩Lim(Cβ) = ∅.
Finally consider the case β < α < sup(N). If there is no γ ∈ Dr \ (α+ 1) such that
α ∈ Lim(Cγ) then one of the cases (6c) or (6d) in r applies to α and N . Either
Cα is an ω-sequence or Cα ∩ sup(N ∩ α) is finite. In any case Cα ∩ Cβ is finite so
Lim(Cα)∩Lim(Cβ) = ∅. So suppose that there is such γ and let η be the maximal
such. By Lemma 4.10, η ≤ min(N \ α). If η < min(N \ α) then Cα ∩ β is finite by
Lemma 4.11, because β < sup(N ∩ α). If η = min(N \ α) then η ∈ N and hence
η ∈ DrN ⊂ Ds. Suppose that Cα and Cβ have a common limit point µ. Then
µ ∈ Lim(Cη) since α ∈ Lim(Cη) and so by (4) in r we have Cα = Cη ∩ α. Hence
Cη ∩µ = Cα∩µ by (4) in r and Cβ ∩µ = Cη ∩µ by (4) in s and hence we are done.

Clause (5): first consider the case of α ∈ Dr \ Ds and σ ∈ Ss \ Sr, σ < α. In
particular α /∈ N and σ ∈ N . Suppose first α < sup(N). We can apply (6c) or (6d)
in r to α and N . The first possibility is that Cα is an ω-sequence or Cα∩sup(N ∩α)
is finite, in which case we are done. The second possibility is that there is β′ ∈
Dr \ (α + 1) with α ∈ Lim(Cβ′). Let β be the largest such β′. In particular
Cα = Cβ ∩α by (4) in r. By Lemma 4.10, β ≤ min(N \α). If β < min(N \α) then
by Lemma 4.11 we have that Cβ ∩ sup(N ∩ β) is finite, and hence Cα ∩ σ is finite,
since σ < sup(N ∩ β). If, on the other hand, β = min(N \ α) ∈ Sr ∩N = Ss then
by (5) in s we have that Cβ ∩ σ is finite, and hence Cα ∩ σ is finite.

Suppose α = sup(N). Then by Lemma 4.13, Cα is an ω-sequence, hence Cα ∩ σ
is certainly finite.

If α > sup(N) then Cα ∩ sup(N) is finite since sup(N) ∈ Sr, so Cα ∩ σ is finite.
Now consider the case α ∈ Ds \ Dr and σ ∈ Sr \ Ss, σ < α. Then min(N \ σ) ∈

Sr ∩N ⊂ Ss. Also, α ≥ min(N \ σ), but α 6= min(N \ σ), otherwise α ∈ Sr ⊂ Dr.
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Hence α > min(N \ σ) ∈ Ss and therefore Cα ∩ σ ⊂ Cα ∩ min(N \ σ) which is a
finite set by (5) in s.

Clause (6): first consider an arbitrary α ∈ Dr \ Ds and M ∈ Ms \Mr. Then
α 6∈ N ⊃ M and sup(M ∩ α) < α by Lemma 3.5. Clause (6a) does not apply. For
(6b) since α /∈ M , the only relevant situation could be that α < sup(M). Then
α < sup(N) and so by (6b) applied to r we have that β := min(N \ α) ∈ Sr ∩N =
SrN ⊂ Ss. Note that min(M \ α) ≥ β. If min(M \ α) = β then min(M \ α) ∈
Ss ⊂ St. If β < min(M \ α) then M \ α = M \ β, β /∈ M and β < sup(M), hence
min(M \ β) ∈ Ss by (6b) in s. Also note that sup(M ∩ α) = sup(M ∩ β) so by the
same clause, sup(M ∩ α) ∈ Ds.

For (6c), suppose that α < sup(M) and there is no β ∈ Dt \ (α + 1) such that
α ∈ Lim(Cβ). Then in the case that sup(N ∩ α) < α, we can apply (6c) from r
to conclude that Cα ∩ sup(N ∩ α) is finite, so certainly Cα ∩ sup(M ∩ α) is finite.
If sup(N ∩ α) = α we can apply clause (6d) from r to conclude that Cα is an
ω-sequence cofinal in α and hence Cα ∩ sup(M ∩ α) is finite, since by Lemma 3.5,
sup(M ∩ α) < sup(N ∩ α).

Since sup(M ∩ α) < α was shown above, case (6d) is irrelevant.
Now consider an arbitrary α ∈ Ds \ Dr and M ∈ Mr \Ms. For (6a), if α ∈M

then note that then α ∈M ∩N . Note also that M and N are compatible, as they
are both from Mr. Let δ := sup(M ∩N), hence α < δ. Suppose first that δ /∈ N .
Because s ∈ N we have that Cα ∈ N . Hence if cf(α) = ω, Cα is countable (by
(1) for s) and we have that Cα ∈ [δ]≤ω ∩ N . By Lemma 4.2, we conclude that
Cα ∈M . If cf(α) = ω1 we have that Cα = Eα \ β for some β ∈ Ds ∩ α, by clause
(1) for s. Since α ∈ M and M ∈ M0, we have that Eα ∈ M . Then β < α < δ
and β ∈ N , since β ∈ Ds. Since δ /∈ N then by compatibility in r, M ∩N = N ∩ δ
and so β ∈M and hence Cα ∈M . If δ ∈ N then M ∩N ∈ N by compatibility in
r, and hence M ∩N ∈ DrN ⊂ Ds. Hence by (6a) in s we have Cα ∈M ∩N , so
Cα ∈M .

For (6b*), suppose that α /∈ M and α < sup(M). This will be enough since by
Remark 4.8, the case α ∈M and sup(M ∩ α) < α is irrelevant for (6b*). We know
that α ∈ N . If δ < α we have that α′ := min(M \ α) is in the M -fence for N , and
hence a member of Sr ⊂ St, by (9) in r. We have that sup(M ∩ α) = sup(M ∩ α′)
and the latter is in Dr ⊂ Dt by the second clause of (6b) applied to α′ and M
in r. In the case δ = α we conclude similarly that min(M \ α) ∈ St. In this
case we have sup(M ∩ α) = sup((M ∩ N) ∩ α). We also know that δ = α ∈ N
and so M ∩ N ∈ MrN ⊂ Ms. Hence we have that sup((M ∩ N) ∩ α) is in
DrN ⊂ Dt. Suppose then that α < δ. Hence α ∈ (N ∩ δ) \ M and therefore
M ∩N 6= N ∩ δ. By the compatibility between M and N we conclude that it must
the case that δ ∈ N and M ∩ N ∈ N . Then δ /∈ M , so M ∩ N = M ∩ δ, and
hence min(M \ α) = min((M ∩ N) \ α). But M ∩ N ∈ MrN ⊂ Ms and hence
min(M \ α) ∈ Ss ⊂ St. Also sup(M ∩ α) = sup((M ∩N) ∩ α) ∈ Ds ⊂ Dt.

For (6c), suppose that α /∈ M and sup(M ∩ α) < α < sup(M), while there is
no β ∈ Dt \ (α + 1) with α ∈ Lim(Cβ). If α < δ then M ∩ N 6= N ∩ δ, hence
M ∩N ∈ N and M ∩N ∈MrN ⊂Ms. Also M ∩N 6∈M , hence M ∩N = M ∩ δ.
Since sup((M ∩N) ∩ α) < α < sup(M ∩N), we can use (6c) for M ∩N and α in
s to deduce that Cα ∩ sup(M ∩ α) = Cα ∩ sup((M ∩ N) ∩ α) is finite. If α > δ
then there exists some σ in the N -fence for M such that sup(M ∩ α) ≤ σ ≤ α.
Then σ ∈ Sr ∩ N ⊂ Ss. In fact, σ < α, because otherwise α ∈ Dr which we
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assumed is not the case. But then, by (5) in s, we have that Cα ∩ σ is finite, hence
Cα ∩ sup(M ∩α) is finite as well. The option that α = δ is not possible because we
assumed that α > sup(M ∩ α).

For (6d) assume that α /∈M and sup(M∩α) = α, while there is no β ∈ Dt\(α+1)
with α ∈ Lim(Cβ). Since α ∈ Ds we have α ∈ N . Suppose first α ≤ δ.

If δ ∈ N then M ∩ N ∈ Ms and M ∩ δ = M ∩ N . So sup((M ∩ N) ∩ α) = α
and by (6d) in s we conclude that Cα is a cofinal ω-sequence in α. Suppose that
δ /∈ N . In particular then α < δ. By compatibility of M and N in r we have that
N ∩ δ = M ∩N . If α < δ then α ∈ (N ∩ δ) \M , a contradiction.

Now suppose that δ < α. By Lemma 4.5 applied to M and α (so γ = α) we
have that sup(N ∩ α) < α, hence cf(α) = ω1 by Lemma 3.4. On the other hand,
cf(α) = ω since sup(M ∩ α) = α, and we have a contradiction.

Clause (7): clearly, Ot is a finite set of intervals of the form (β′, β] ⊂ ω2. Consider
an arbitrary (β′, β] ∈ Or \Os and α ∈ Ds \Dr. Use (8) in r. If (β′, β]∩N = ∅ then
since α ∈ N , we have that α 6∈ (β′, β]. If (β′, β] ∈ N then (β′, β] ∈ OrN ⊂ Os, a
contradiction.

Suppose now that α ∈ Dr \ Ds and (β′, β] ∈ Os \ Or. In particular (β′, β] ∈ N
and α /∈ N . By (6b) in r we have that min(N \ α) ∈ Sr ∩N ⊂ Ss. If α ∈ (β′, β]
then min(N \ α) ∈ (β′, β], in contradiction with (7) in s.

Clause (8): suppose that (β′, β] ∈ Or \ Os and M ∈ Ms \Mr. If (β′, β] ∈ N
then (β′, β] ∈ OrN ⊂ Os, a contradiction. Hence the interval is disjoint from N by
(8) in r, so it is disjoint from M ⊂ N .

Now consider an arbitrary M ∈ Mr \Ms and (β′, β] ∈ Os \ Or. In particular
(β′, β] ∈ N . Suppose for a contradiction that (β′, β]∩M 6= ∅ but (β′, β] /∈M . Let
δ := sup(M ∩ N). If β′ ≥ δ then, by (9) in r, there is some γ from the N -fence
for M in the interval (β′, β]. But γ ∈ Sr ∩ N ⊂ Ss, a contradiction with (7)
in s. On the other hand, if β′ < δ and β ≥ δ, then min(N \ δ) ∈ (β′, β]. But
min(N \ δ) ∈ Sr ∩N ⊂ Ss since it is in the N -fence for M , and again we are in
contradiction with (7) in s. Finally, suppose that β < δ. Then {β′, β} ⊂ N ∩ δ but
{β′, β} 6⊂M , hence M∩N 6= N∩δ. But then M∩N ∈ N , so M∩N ∈MrN ⊂Ms.
Since (β′, β] ∩ (M ∩N) 6= ∅ but (β′, β] /∈M ∩N , we get a contradiction with (8)
in s.

Clause (9): consider arbitrary models M ∈ Mr \ Ms and M ′ ∈ Ms \ Mr.
Notice that M ′ ∈ N and so M ′ ⊂ N as M ′ is countable. Let δ := sup(N ∩M) and
δ′ := sup(M ′ ∩M) = sup(M ′ ∩ N ∩M) ≤ δ. Let us consider the correspondence
between δ′ and M and M ′.

Suppose first that δ ∈ M , and hence δ /∈ N . In this case N ∩ δ = N ∩M . By
Lemma 4.2 we know that [δ]≤ω ∩N ⊂M . We have that M ′ ∩ δ′ ∈ [δ]≤ω ∩N , so
M ′ ∩ δ′ ∈ M and hence M ′ ∩ δ′ ⊂ M and M ∩M ′ = M ′ ∩ δ′. We also conclude
that δ′ = sup(M ′ ∩ δ′) ∈ M , and hence δ′ /∈ M ′. This establishes (a) from the
definition of compatibility for M and M ′. Now assume that δ /∈ M . Therefore
M ∩ δ = M ∩ N ∈ N and so M ∩ δ′ = M ∩ N ∩ δ′. Also M ∩ δ = M ∩ N ∈ N
and hence M ∩ N ∈ MrN ⊂ Ms. In particular, M ′ and M ∩ N are compatible.
If δ′ ∈ M ′ then M ′ ∩ M ∩ N ∈ M ′ and so M ′ ∩ M ∈ M ′. If δ′ /∈ M ′ then
M ′ ∩ δ′ = M ′ ∩M ∩ N = M ′ ∩M . If δ′ ∈ M and δ′ ∈ N then δ′ ∈ M ∩ N and
so M ′ ∩M ∩N ∈M ∩N and in particular M ′ ∩M ∈M . Finally suppose that
δ′ ∈ M but δ′ /∈ N . Hence δ′ /∈ M ′ and the conclusion follows as before. This
finishes the proof of the condition (a) from the compatibility.
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Let us now establish the finiteness of fences. Consider the M ′-fence for M . To
see that it is a subset of St, we need to establish that the set T := {min(M ′ \ λ) |
λ ∈M, δ′ < λ < sup(M ′)} ∪ {min(M ′ \ δ′)} is a subset of St. As T \ δ is a subset
of the N -fence for M , which is a subset of Sr ⊂ St by the compatibility of M and
N in r, it suffices to show that T ∩ δ ⊂ St. If M ∩ N /∈ N then δ /∈ N and
N ∩ δ = N ∩M , so M ′ ∩ δ ⊂ N ∩ δ and hence M ′ ∩ δ ⊂M . Let ε := min(M ′ \ δ′).
Then ε /∈ M so ε > δ and hence T ∩ δ = ∅. If M ∩ N ∈ N then M ∩ N ∈ Ms.
Also δ ∈ N , so δ /∈ M and hence M ∩ δ = M ∩N and so T ∩ δ is a subset of the
M ′-fence for M ∩N , which is a subset of Ss ⊂ St by their compatibility in s.

For the M -fence for M ′, we need to see that the set S := {min(M \ λ) | λ ∈
M ′, δ′ < λ < sup(M)}∪{min(M \ δ′)} is a subset of St. As S \ δ is a subset of the
M -fence for N , which is a subset of Sr ⊂ St by the compatibility of M and N in r,
it suffices to show that S ∩ δ ⊂ St. If δ /∈M then as above M ∩ δ = M ∩N ∈Ms

and hence S ∩ δ is a subset of the M ∩N -fence for M ′, which is a subset of Ss ⊂ St
by their compatibility in s. If δ ∈M then as above N∩δ = M∩N and in particular
M ′ ∩ δ ⊂ M and hence S ∩ δ is at most a singleton, namely {δ′}. If δ′ = sup(M ′)
then δ′ ∈ Ss by (3) in s. Otherwise let µ := min(N \ δ). Since δ is in the M -fence
for N , we have that µ ∈ Sr ∩N ⊂ Ss. But then δ′ = sup(M ′ ∩ µ) ∈ Ds by (6b) in
s. However, we have no reason to believe that δ′ ∈ Ss. If δ′ 6∈ Ss ∪ Sr then δ′ ∈ Jt,
hence δ′ need not be in St for t to be a semi-condition.

√

5. Preservation of ω2

We have thus far proved that forcing with P preserves ω1. We also need ω2 to be
preserved. For that purpose we use a weak closure property of the forcing, which
was also used in [11].

Definition 5.1. Assume that the forcing notion P preserves cardinals < κ. P is
said to be κ-presaturated if for every A ⊂ V , A ∈ V [G], with |A|V [G] < κ, there
exists A′ ∈ V such that |A′|V < κ and A′ ⊃ A.

Notice that in the case of a κ-presaturated forcing P , since it preserves cardinals
below κ, |A′|V = |A′|V [G] as soon as |A′|V < κ. Hence we can omit the superscript
when dealing with this situation.

Proposition 5.2. Suppose κ is a regular cardinal in V . If P is κ-presaturated then
P preserves κ.

Proof. Suppose for contradiction that A ∈ V [G] is a cofinal subset of κ of cardinality
< κ. Let A′ ∈ V , A′ ⊃ A, |A′| < κ, be the set guaranteed by κ-presaturatedness.
But A′ ∩ κ ∈ V is a cofinal subset of κ with cardinality < κ, and we get a contra-
diction.

√

Lemma 5.3. Let κ be a regular cardinal in V such that P preserves cardinals below
κ. Suppose that for every collection A of fewer than κ antichains in P there exists
a dense set D ⊂ P such that for every p ∈ D , the set {q ∈

⋃
A | p and q are

compatible} has size less than κ. Then P is κ-presaturated.

Proof. Suppose A ⊂ V and |A|V [G] < κ. Let p ∈ G be a condition such that
p 
“ |A˜ | < κ ”. Therefore p 
“ there exists µ < κ such that |A˜ | = µ ”. Let p0 ≥ p,
g˜ and µ∗ < κ be such that p0 
“ g˜ : µ∗ → A˜ is a bijection ”. For each α < µ∗

let Aα be a maximal antichain of conditions in the set {q | (q ≥ p0 ∧ q decides
g˜(α)) ∨ q⊥p0}. Hence Aα is a maximal antichain.
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Define A := {Aα | α < µ∗}. Let D be a dense set guaranteed by the assumption,
and let p1 ∈ D , p1 ≥ p0. Then the set X := {q ∈

⋃
α<µ∗ Aα | q is compatible

with p1} has size < κ. Let Γ := {β | there exist q ∈ X and α < µ∗ such that
q 
“ g˜(α) = β ”}, so |Γ| < κ by the regularity of κ. Consider an arbitrary α < µ∗.

Since Aα is a maximal antichain there exists some q ∈ Aα, compatible with p1, such
that q decides g˜(α). Hence there exists β such that q 
“ g˜(α) = β ”, and therefore

β ∈ Γ. Let r be a common upper bound for q and p1. Then r 
 “ g˜(α) = β ”,

and since r ≥ p0, p0 
“ there exists β ∈ Γ such that g˜(α) = β ”. It follows that

p0 
“ g˜(α) ∈ Γ ”, so p0 
“ g˜[µ∗] = A˜ ⊂ Γ ”. Therefore p 
“ there exists A′ ∈ V ,

A˜ ⊂ A′ and |A′| < κ ”.
√

The next lemma shows that κ-presaturation is, in fact, a generalization of proper-
ness to cardinals above ω1.

Lemma 5.4. Let κ be a regular cardinal in V and suppose that P preserves car-
dinals below κ. Suppose that θ is a large enough cardinal, and that for stationarily
many models N in [Hθ]

<κ with P ∈ N , and for each p ∈ P ∩N , there exists an
N -generic extension q ≥ p. Then P is κ-presaturated.

Proof. Suppose A ⊂ V and that µ := |A|V [G] < κ. Let f˜ and p ∈ G be such that

p 
“ f˜ : µ→ A˜ is onto ”. Define N := {N ≺ Hθ | |N | < κ, {f,A, p, P}∪µ ⊂ N },
hence N is a club. Therefore we can find N ∈ N such that there is q ≥ p which is
N -generic. Then for every ξ < µ, the set Dξ := {r ∈ N | r decides f(ξ)} ∈ N is
dense above q. Hence q 
“ Dξ ∩ G ∩N 6= ∅ ”. Therefore q forces that there exist
rξ ∈ G∩N and xξ ∈ N such that rξ 
“ f˜(ξ) = xξ ”. It follows that q 
“A˜ ⊂ N ”,

so p 
“ there exists A′ ∈ V , A˜ ⊂ A′ and |A′| < κ ”, A′ being the model N .
√

We shall prove in Proposition 5.7 that our forcing P is ω2-presaturated. Since
presaturation is a generalization of properness, the proof will be very similar to
the proof of properness. Actually, it will be slightly easier, because we will not
work with arbitrary models of size ω1 but only with such models that are in a
way transitive below ω2. We isolate the collection of such models in the following
definition.

Definition 5.5. Let θ > ω2 be a large enough regular cardinal. Define M2 :=
{M ≺ Hθ | |M | = ω1, E ∈M , [M ]ω ⊂M 3}.

Recall that we have assumed CH so the set M2 is club in [Hθ]
<ω2 . If M ∈M2

then M ∩ω2 is some ordinal δM ∈ ω2, since ω1 ⊂M (see [8]). Note that cf(δM ) =
ω1. Additionally, if A ∈M and |A| ≤ ω1 then A ⊂M .

To prove the ω2-presaturation, we first isolate a lemma which is an analogue of
Lemma 4.19. Our notational conventions follow those of Section 4.

Lemma 5.6. Let N ∈ M2, and let r ∈ P be such that δN ∈ Sr. Define Fr∗N :=
Fr ∩ N , Sr∗N := (Sr ∩ N ) ∪ {sup(M ∩ N) | M ∈ Mr \ N }, Or∗N := Or ∩ N
and Mr∗N

:= {M ∩ N | M ∈ Mr}. Then r∗N := (Fr∗N , Sr∗N , Or∗N ,Mr∗N
) is a

condition in P ∩N .

Proof. First notice that r∗N ∈ N since N contains all its countable subsets. Now
we check that r∗N is a condition. Clause (1) is trivial. For clause (2), note that if

3Note that this implies that ω1 ⊂M and that P belongs to every element of M2.
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M /∈ N then by (6b) in r we have that sup(M ∩N) = sup(M ∩ δN ) ∈ Dr ∩N =
Dr∗N . Clause (3) is easily checked, and especially note that M [M∩N ] = M [M ]∩N
for any M ∩N ∈Mr∗N

. Clause (4) follows by (4) in r.
For (5) suppose that α ∈ Dr ∩ N and σ = sup(M ∩ N) for some M ∈ Mr.

If α ≥ sup(M) then the conclusion follows since sup(M) ∈ Sr and (5) holds in r.
Otherwise α < sup(M). Since α ∈ N we must have α /∈M . In particular, α < δN ,
so α ⊂ N . Hence sup(M ∩ α) ≤ sup(M ∩ N) = σ < α and (6c) applies in r to
conclude that Cα ∩ sup(M ∩ α) is finite, and in particular, Cα ∩ σ is finite.

For clause (6a), if α ∈ Dr ∩ (M ∩ N) for some M ∈ Mr, then Cα ∈ M [M ] by
(6a) in r. If Cα is countable then Cα ∈ N by the closure of N under countable
subsets. Otherwise, α ∈ Dr and Cα = Eα \ β for some β ∈ Dr. Since α ∈ N , also
β ∈ N , and hence Cα ∈ N since E ∈ N .

For (6b), suppose α ∈ Dr ∩N , M ∈Mr and α /∈M ∩N while α < sup(M ∩N).
Then α ∈ N , so α /∈ M and α < sup(M). By (6b) in r, min(M \ α) ∈ Sr
and sup(M ∩ α) ∈ Dr. We have that min(M \ α) ≤ min((M ∩ N) \ α) < δN ,
so min((M ∩ N) \ α) = min(M \ α) ∈ Sr ∩ N . Similarly, sup((M ∩ N) ∩ α) ≤
sup(M ∩ α) ≤ α < δN , so sup((M ∩ N) ∩ α) = sup(M ∩ α) ∈ Dr ∩ N . Suppose
on the other hand that α ∈ M ∩N but sup((M ∩N) ∩ α) < α, hence α ∈ M and
sup(M ∩ α) < α and we argue similarly.

For (6c) suppose that for some α ∈ Dr∩N and some M∩N ∈Mr∗N
, α /∈M∩N ,

we have sup((M ∩N) ∩ α) < α < sup(M ∩N), and there is no β ∈ Dr∗N \ (α+ 1)
such that α ∈ Lim(Cβ). Then α ∈ Dr, α /∈ M and sup(M ∩ α) < α < sup(M).
If there is no β ∈ Dr \ (α + 1) such that α ∈ Lim(Cβ) then it follows from (6c)
for r that Cα ∩ sup((M ∩ N) ∩ α) = Cα ∩ sup(M ∩ α) is finite. So suppose there
is β ∈ Dr \ (α + 1) such that α ∈ Lim(Cβ). In particular β ≥ δN > min(M \ α)
and α < δN . But min(M \ α) ∈ Sr by (6b) in r and so by (5) in r we have that
Cβ ∩min(M \ α) is a finite set, a contradiction.

Clause (6d) is proved similarly.
Clause (7) is clear and the clause (8) follows because it is true in r and N ∩ ω2

is an ordinal. For Clause (9) notice that in fact for every relevant M we have that
M ∩N = M ∩ δN and so (9) follows from (9) in r.

√

Proposition 5.7. P is ω2-presaturated.

Proof. Suppose that N ∈ M2 and p ∈ P ∩N . We extend p to q by putting δN
into both Dp and Sp. For the corresponding club CδN we take EδN \max(Dp). It
is easy to check that q ∈ P and that q ≥ p. We will prove that q is N -generic.

Suppose that r is an arbitrary extension of q, so in particular δN ∈ Sr. Hence
r∗N as given by Lemma 5.6 is well-defined. For a fixed dense set D ⊂ P , D ∈ N ,
extend r∗N to s ∈ D . Then s ∈ N . As with properness, we will prove clause
by clause of Definition 4.6 that t := (Fr ∪ Fs, Sr ∪ Ss, Or ∪ Os,Mr ∪Ms) is a
condition.

Clause (1): notice that Ds ∩ Dr ⊂ Dr∗N , so that Fr ∪ Fs is indeed a function.
The rest of the clause follows easily.

Clauses (2) and (3) need no comments.
Clause (4): suppose that α ∈ Dr \ Ds and β ∈ Ds \ Dr, so β < δN and α ≥

δN . Then Cα ∩ N is a finite set because δN ∈ Sr. Also, Cβ ⊂ N . Hence
Lim(Cα) ∩ Lim(Cβ) = ∅.
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Clause (5): if α ∈ Dr \ Ds and σ ∈ Ss \ Sr then Cα ∩ σ ⊂ Cα ∩ δN , which is a
finite set as in (4). If α ∈ Ds \ Dr and σ ∈ Sr \ Ss then α < δN ≤ σ so clause (5)
does not apply.

Clause (6): First suppose that α ∈ Dr\Ds and M ∈Ms\Mr. Then α > sup(M)
since α ≥ δN and M ⊂ δN , so no parts of (6) can apply.

Suppose then that α ∈ Ds \ Dr and M ∈ Mr \Ms. Then M ∩ N ∈ Ms. For
(6a) if α ∈ M , then α ∈ M ∩ N , so Cα ∈ M ∩ N ⊂ N , by (6a) for s. For (6b),
if α /∈ M and α < sup(M) then suppose first α < sup(M ∩ N), in which case
min(M \α) = min((M ∩N)\α) ∈ Ss and sup(M ∩α) = sup((M ∩N)∩α) ∈ Ds. If
α ≥ sup(M ∩N) then sup(M ∩ α) = sup(M ∩N) ∈ Ss ⊂ Ds. Also, min(M \ α) =
min(M \ δN ) ∈ Sr by (6b) in r. Suppose now that α ∈ M and sup(M ∩ α) < α,
hence α ∈M ∩N and sup((M ∩N)∩α) < α. Also, sup(M ∩α) = sup((M ∩N)∩α)
and min(M \α) = α = min((M ∩N) \α). The former is in Ds and the latter in Ss
by (6b) for s.

For (6c) suppose that α /∈M is such that sup(M ∩ α) < α < sup(M) and there
is no β ∈ Dt \ (α + 1) such that α ∈ Lim(Cβ). Then we have sup(M ∩ α) =
sup((M ∩N)∩α), so if α < sup(M ∩N) then Cα∩ sup(M ∩α) is a finite set by (6c)
in s. If sup(M ∩N) < α then sup(M ∩ α) = sup(M ∩N) ∈ Ss and the conclusion
follows by (5) in s.

For (6d), if the assumptions of (6d) apply, note that sup((M ∩N) ∩ α) = α, so
the conclusion follows by (6d) in s.

Clause (7): clearly Ot is a finite set of half open nonempty intervals. If α ∈
Dr \ Ds and (β′, β] ∈ Os \ Or then (β′, β] ⊂ N , hence α 6∈ (β′, β]. Suppose now
that α ∈ Ds \ Dr and (β′, β] ∈ Or \ Os. Since δN ∈ Dr, we have (β′, β] ∩N = ∅,
hence α 6∈ (β′, β].

Clause (8): if M ∈Ms \Mr and (β′, β] ∈ Or \Os then (β′, β]∩M = ∅ because
δN ∈ Dr. Consider an M ∈Mr \Ms and (β′, β] ∈ Os\Or. Then (β′, β] and M∩N
satisfy (8) in s. If (β′, β] ∈ M ∩N then (β′, β] ∈ M . If (β′, β] ∩ (M ∩N ) = ∅
then (β′, β] ∩M = ((β′, β] ∩N )) ∩M = ∅.

Clause (9): consider two models M ∈ Mr \ Ms and M ′ ∈ Ms \ Mr. Then
M ∩N and M ′ are compatible in s. Notice that M ∩M ′ = (M ∩N) ∩M ′ and let
δ := sup(M∩M ′) = sup((M∩N)∩M ′). If δ ∈M then (M∩N)∩M ′ ∈M ∩N and
so M∩M ′ = M∩(M ′∩N) ∈M . Now suppose that δ /∈M so M∩δ = (M∩N)∩δ =
(M ∩N)∩M ′ = M ∩M ′. If δ ∈M ′ then M ∩M ′ = (M ∩N)∩M ′ ∈M ′. If δ /∈M ′
then M ∩M ′ = (M ∩N) ∩M ′ = M ′ ∩ δ. This establishes the compatibility.

For the fences, the M -fence for M ′ is contained in δN and so is the same set as
the M ∩N -fence for M ′, which is finite and contained in Ss. The M ′-fence for M
is the same as the M ′-fence for M ∩N , and so finite and contained in Ss.

√

Corollary 5.8. Forcing with P preserves cardinals.

Proof. P has the ω3-c.c. because, assuming 2ω1 = ω2, |P | = ω2. Hence it preserves
cardinals ≥ ω3. It it preserves ω1 because it is proper and preserves ω2 because it
is ω2-presaturated.

√

Definition 5.9. Let G ⊂ P be a generic set. Define F :=
⋃
p∈G Fp, and C :=

dom(F).

Proposition 5.10. C is unbounded in ω2.

Proof. Define Dα := {p ∈ P | max(Dp) > α} for α < ω2. Consider an arbitrary
p ∈ P and assume that p 6∈ Dα. Now let α′ := sup(Dp∪

⋃
Op∪

⋃
Mp) < ω2 and let
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q := (Fp ∪{(α′+ω, (α′, α′+ω))}, Sp, Op,Mp). Clearly, q ∈ P , q ≥ p and q ∈ Dα,
hence Dα is dense in P for every α < ω2. It follows that C is unbounded in ω2.

√

To prove that C is closed, we need the following lemma, which shows the role of
the part Op of the conditions in P .

Lemma 5.11. Suppose that α < ω2 is a nonzero limit ordinal. Then the set
D∗α := {p ∈ P | α ∈ Dp ∪

⋃
Op} is open dense in P .

Proof. It is clear that the set is open, let us show that it is dense. Given p ∈ P and
suppose that p /∈ D∗α. We shall consider several cases.

Case 1. There is no M ∈Mp such that α = sup(M ∩ α).
Subcase (a). α 6∈

⋃
Mp.

4

Let β′ := sup((Dp ∪
⋃
Mp) ∩ α), hence β′ < α, as α is a limit. In particular,

(β′, α] ∩M = ∅ for every M ∈Mp. Let q := (Fp, Sp, Op ∪ {(β′, α]},Mp).
It is easy to check that q is a condition and that q ≥ p, as the only part of the

definition of the condition requiring comment is part (8), which we have specifically
addressed by the choice of β′. Clearly q ∈ D∗α.

Subcase (b). There is M ∈Mp with α ∈M .
In particular, cf(α) = ω1 by Lemma 3.4. Suppose that M,M ′ ∈ Mp are such

that α ∈M \M ′. We shall prove that sup(M ′ ∩ α) < sup(M ∩ α).
If α > sup(M ∩M ′) then sup(M ′ ∩ α) ≤ sup(M ∩ α), otherwise α is in the

M -fence for M ′, hence α ∈ Sp by (9) in p, a contradiction with α 6∈ Dp. In fact
sup(M ′∩α) = sup(M ∩α) can also not happen, because in this case sup(M ′∩α) =
sup(M ∩ α) = sup(M ∩M ′) and α is again in the M -fence for M ′. The situation
α = sup(M ∩M ′) cannot happen because then cf(α) = ω, a contradiction. So
assume now that α < sup(M∩M ′). Since α ∈M \M ′, we see that by compatibility
of M and M ′ in p, M ∩M ′ ∈ M and M ∩M ′ = M ′ ∩ sup(M ∩M ′). But then
sup(M ′ ∩ α) = sup((M ′ ∩M) ∩ α) and the latter is in M by elementarity. Hence
sup(M ′ ∩ α) < sup(M ∩ α).

LetM∗ ∈Mp be such that β∗ := sup(M∗∩α) = min{sup(M∩α) |M ∈Mp, α ∈
M}. Then β∗ < α and cf(β∗) = ω. There is no γ ∈ Dp such that β∗ ≤ γ ≤ α, since
otherwise α = min(M∗ \ γ) ∈ Sp by clause (6b) for γ and M∗ in p. Let M ∈ Mp

be such that β∗ < sup(M ∩α). Then there exists some α′ ∈ (β∗, sup(M ∩α)) such
that α′ ∈ M \M∗. Just as above we prove that β∗ = sup(M∗ ∩ α) ∈ M . Hence,
if M ∈ Mp is such that α ∈ M then either β∗ ∈ M or at least β∗ = sup(M ∩ β∗).
Therefore there exists some β′ ≥ sup[

⋃
{M ′ ∩ α | M ′ ∈ Mp | α 6∈ M ′} ∪ (Dp ∩ α)]

such that β′ < β∗. Then (β′, α] ∈ M for every M ∈ Mp such that α ∈ M , while
(β′, α] ∩M ′ = ∅ for every M ′ ∈Mp such that α 6∈M ′.

Define q := (Fp, Sp, Op ∪ {(β′, α]},Mp). It is easily seen that q is a condition.
Clauses (7) and (8) are taken care of by the choice of β′, and the other clauses are
irrelevant for (β′, α]. Clearly q ≥ p and q ∈ D∗α.

Case 2. There is M ∈Mp with α = sup(M∩α), and α ∈M ′ for every M ′ ∈Mp

such that sup(M ′ ∩ α) = α.
Let β∗ := sup[

⋃
{M ′′ ∩ α | sup(M ′′ ∩ α) < α, M ′′ ∈ Mp} ∪ (Dp ∩ α)]. Hence

β∗ < α. There is β′ ∈ [β∗, α) such that (β′, α] ∈ M ′ for every M ′ ∈ Mp with
α = sup(M ′ ∩ α). Now let q := (Fp, Sp, Op ∪ {(β′, α]},Mp). Like in Case 1, it is
easy to check that q ∈ D∗α is a condition and that q ≥ p. We have chosen β′ so that
both (7) and (8) hold.

4Also if Mp = ∅.
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Case 3. There is M ∈Mp with α = sup(M ∩ α) and α 6∈M .
We partition Mp into three disjoint sets: M1 := {M ∈Mp | sup(M ∩ α) < α},

M2 := {M ∈Mp | sup(M∩α) = α, α ∈M} andM3 := {M ∈Mp | sup(M∩α) =
α, α 6∈M}. Case 3 means that M3 6= ∅ while M1 and M2 might be empty.

Fix some M ∈ M3. Then α < sup(M), otherwise α = sup(M) ∈ Sp, a contra-
diction with α /∈ Dp. We shall first investigate how elements from M1, M2 and
M3 compare to M .

First pick some M ′ ∈M3, M ′ 6= M . If sup(M ∩M ′) < α then by compatibility
of M and M ′ we cannot have that both α = sup(M ∩α) and α = sup(M ′ ∩α) (see
Lemma 4.5 with α = γ), so we conclude that sup(M∩M ′) ≥ α. If sup(M∩M ′) = α
then min(M \α) is in the M -fence for M ′, hence min(M \α) ∈ Sp by (9) in p, and
therefore α ∈ Dp by (6b), a contradiction. Hence sup(M ∩M ′) > α.

It follows from Lemma 3.5 that M ∩M ′ 6∈ M and M ∩M ′ 6∈ M ′. Hence, by
compatibility of M and M ′, M ∩ sup(M ∩M ′) = M ∩M ′ = M ′ ∩ sup(M ∩M ′).
But then min(M \ α) = min(M ′ \ α).

Now pick some M ′ ∈M2. If sup(M∩M ′) < α then min(M \α) is in the M -fence
for M ′, hence min(M \ α) ∈ Sp and α ∈ Dp, a contradiction. If sup(M ∩M ′) = α
then α is in the M -fence for M ′, hence α ∈ Sp, again a contradiction. Hence
sup(M ∩M ′) > α.

Since α ∈M ′\M , we know that M∩M ′ 6= M ′∩sup(M∩M ′), hence M∩M ′ ∈M ′
and so M ∩M ′ = M ∩ sup(M ∩M ′). Therefore min(M \α) ∈M ′ and consequently
min(M \ α) ≥ min(M ′ \ α).

Finally pick some M ′ ∈ M1 and assume that α < sup(M ′). As we shall see, if
α > sup(M ′) then M ′ is irrelevant for Case 3. We will prove that min(M \ α) <
min(M ′ \ α).

It is entirely possible that α > sup(M ∩M ′). But min(M ′ \α) is in the M ′-fence
for M , hence min(M ′ \α) ∈ Sp. If min(M \α) ≥ min(M ′ \α) then α ∈ Dp by (6b)
applied to min(M ′ \ α) and M . Therefore min(M \ α) < min(M ′ \ α).

It is obvious that α 6= sup(M ∩M ′), since sup(M ′∩α) < α. So assume now that
α < sup(M ∩M ′). Since (sup(M ′ ∩ α), α) 6= ∅, there exists some α′ < α such that
α′ ∈ M \M ′. But then M ∩M ′ = M ′ ∩ sup(M ∩M ′), hence min(M ′ \ α) ∈ M .
Therefore min(M \ α) ≤ min(M ′ \ α).

Subcase (a). min(M \ α) = min(M ′ \ α) for every M ′ ∈M1.
In particular, α < sup(M ∩M ′). If M1 6= ∅ then let M∗ ∈ M1 be such that

β∗ := sup(M∗ ∩ α) = min{sup(M ′ ∩ α) | M ′ ∈ M1} < α. If M1 = ∅ then let
β∗ := α and M∗ := M . In any case, β∗ ≤ α and cf(β) = ω. There is no γ ∈ Dp
such that β∗ ≤ γ ≤ min(M \ α) =: γ′, since otherwise γ′ ∈ Sp by clause (6b) for γ
and M in p. But then α = sup(M ∩ γ′) ∈ Dp by (6b) for γ′ and M .

Let us prove that β∗ ∈ M ′′ for every M ′′ ∈ Mp such that β∗ < sup(M ′′ ∩ α).
Notice that this is automatically true if M1 = ∅ (i.e. β∗ = α). So assume that
M1 6= ∅. If M ′′ ∈ M2 then α ∈ M ′′ \M∗ and α < sup(M ′′ ∩M∗). But then
M ′′ ∩ M∗ 6= M ′′ ∩ sup(M ′′ ∩ M∗), hence M ′′ ∩ M∗ ∈ M ′′ and M ′′ ∩ M∗ =
M∗∩sup(M ′′∩M∗), and therefore β∗ = sup((M ′′∩M∗)∩α) ∈M ′′ by elementarity.
If M ′′ ∈ M3 then we argue in the same way, but instead of α we consider some
α′ ∈ (β∗, α) ∩ M ′′ 6= ∅. If M ′′ ∈ M1 \ {M∗} and β∗ < α then we repeat the
argument with some α′ ∈ (β∗, sup(M ′′ ∩α))∩M ′′. The interval (β∗, sup(M ′′ ∩α))
is nonempty due to the way we defined β∗.
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Since cf(β∗) = ω and β∗ ∈M ′′ for every M ′′ ∈Mp such that β∗ < sup(M ′′∩α),
we know that β∗ = sup(M ′′ ∩ β∗) for every M ′′ ∈ Mp. Hence there exists some
β′ ∈ (

⋂
Mp) ∩ β∗ such that (β′, β∗) ∩ Dp = ∅. Then (β′, γ′] ∈ M ′′ for every

M ′′ ∈Mp, while (β′, γ′] ∩ Dp = ∅.
Define q := (Fp, Sp, Op ∪ {(β′, α]},Mp). It is easily seen that q is a condition.

Clauses (7) and (8) are satisfied by the choice of β′, while the other clauses do not
matter for (β′, α]. Clearly q ≥ p and q ∈ D∗α.

Subcase (b). min(M \ α) < min(M ′ \ α) for every M ′ ∈M1.
We can assume that M1 6= ∅ otherwise Subcase (a) applies. Let M∗ ∈ M1 be

such that β∗ := sup(M∗ ∩ α) = max{sup(M ′ ∩ α) | M ′ ∈ M1} < α. As with
Subcase (a), there is no γ ∈ Dp such that α ≤ γ ≤ min(M \ α). There exists some
β′ ∈ [

⋂
(M2 ∪M3)] \ β∗ such that (β′, α) ∩ Dp = ∅. Then (β′,min(M \ α)] ∈ M ′′

for every M ′′ ∈ M2 ∪M3, while (β′,min(M \ α)] ∩M ′′ = ∅ for every M ′′ ∈ M1.
Also (β′,min(M \ α)] ∩ Dp = ∅.

Define q := (Fp, Sp, Op ∪ {(β′, α]},Mp). We have made sure that clauses (7)
and (8) are satisfied by the choice of β′. The other clauses do not matter. Clearly
q ≥ p and q ∈ D∗α.

Subcase (c). There is some M ′ ∈M1 such that min(M \α) = min(M ′ \α), and
there is some M ′′ ∈M1 such that min(M \ α) < min(M ′′ \ α).

Let M ′,M ′′ ∈ M1 be such that min(M \ α) = min(M ′ \ α) and min(M \ α) <
min(M ′′ \ α). We shall prove that sup(M ′′ ∩ α) < sup(M ′ ∩ α). Suppose first that
α > sup(M ′ ∩M ′′). If sup(M ′′ ∩ α) ≥ sup(M ′ ∩ α) then min(M ′ \ α) is in the
M ′-fence for M ′′, hence min(M \α) = min(M ′ \α) ∈ Sp. But then α ∈ Dp by (6b)
for M and min(M \ α), a contradiction. Suppose now that α < sup(M ′ ∩M ′′).
We know that min(M \ α) ∈M ′ \M ′′. Then, by compatibility of M ′ and M ′′, we
have M ′ ∩M ′′ ∈ M ′ and M ′ ∩M ′′ = M ′′ ∩ sup(M ′ ∩M ′′), hence by Lemma 3.5,
sup(M ′′ ∩ α) = sup((M ′ ∩M ′′) ∩ α) < sup(M ′ ∩ α).

Let β∗ := sup(M∗ ∩α) = min{sup(M ′ ∩α) |M ′ ∈M1, min(M \α) = min(M ′ \
α)} and β∗∗ := sup(M∗ ∩ α) = max{sup(M ′′ ∩ α) | M ′′ ∈ M1, min(M \ α) <
min(M ′′ \α)}. Then β∗∗ < β∗ < α and, just as in Subcase (a), β∗ ∈

⋂
(M2 ∪M3)

as well as β∗ ∈ M ′ for every M ′ ∈ M1 such that min(M \ α) = min(M ′ \ α)
and β∗ < sup(M ′ ∩ α). Subcase (a) also shows that there is no γ ∈ Dp such that
β∗ ≤ γ ≤ min(M \ α) =: γ′.

There exists β′ ∈ [
⋂

(M2 ∪M3 ∪ {M ′ ∈ M1 | min(M \ α) = min(M ′ \ α)})] ∩
[β∗∗, β∗) such that (β′, β∗) ∩Dp = ∅. Then (β′, γ′] ∈M ′ for every M ′ ∈M2 ∪M3,
and (β′, γ′] ∈ M ′ for every M ′ ∈ M1 such that min(M \ α) = min(M ′ \ α), while
(β′, γ′] ∩M ′′ = ∅ for every M ′′ ∈ M1 such that min(M \ α) < min(M ′′ \ α). At
the same time, (β′, γ′] ∩ Dp = ∅.

Define q := (Fp, Sp, Op∪{(β′, α]},Mp). The choice of β′ once again made sure
that clauses (7) and (8) are satisfied. Clearly q ≥ p and q ∈ D∗α.

√

Proposition 5.12. C is closed in ω2.

Proof. Suppose for contradiction that p ∈ G is such that p 
 “α ∈ Lim(C) but
α 6∈ C ” for some α < ω2. Then α 6∈ Dp. Let q be the extension given by previous
lemma. But then q 
“α 6∈ Lim(C) ”, which contradicts the fact that p 
“α ∈
Lim(C) ”.

√
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Sequence F might not be a �ω1
sequence since we have no guarantees that its

domain C is Lim(ω2)∩ω2. But the next proposition shows that we can now extend
our sequence to the whole Lim(ω2) ∩ ω2.

Proposition 5.13. V [G] |= �ω1 .

Proof. The idea is to throw away every ordinal which is not in C, effectively making
C equal to ω2. In fact, keeping only limit points of C will suffice. Thus, let E :=
Lim(C) ∩ ω2. E is still a club of ω2. For every α ∈ Lim(E) of cofinality ω1 define
Dα := Cα ∩ E . Since E ∩ α is a club in α for every α ∈ Lim(E)∩ of cofinality ω1,
Dα is a club in α. Suppose now that α ∈ Lim(E) has cofinality ω. If there is β > α
of uncountable cofinality such that α is a limit point of Dβ , let Dα := Dβ ∩α. This
choice does not depend on β, as clause (4) of Definition 4.6 is valid for Dβ ’s just
as it was for clubs in F . Otherwise, if there is no such β, let Dα be an ω-sequence
cofinal in α and consisting of elements of E .

Now suppose that β ∈ Lim(Dα) for some β < α. Then β is a limit point of both
E and Cα, and Dβ = Cβ ∩ E = Cα ∩ β ∩ E = Dα ∩ β. Also, if cf(α) = ω then
|Dα| = ω. Hence, 〈Dα | α ∈ Lim(E)∩ω2〉 is a nontrivial coherent sequence of clubs.

Let {γi | i < ω2} be an increasing enumeration of E . For i ∈ Lim(ω2) define
Ei := {j < i | γj ∈ Dγi} = γ−1[Dγi ]. It is a club in i because γ is a continuous
function. Let us prove that 〈Ei | i ∈ Lim(ω2)〉 ∈ V [G] is a square sequence. If
i < j and i ∈ Lim(Ej) then γi ∈ Lim(Dγj ). Hence, Dγi = Dγj ∩ γi. Therefore,

Ei = γ−1[Dγi ] = γ−1[Dγj ∩ γi] = γ−1[Dγj ] ∩ i = Ej ∩ i. Also, if cf(i) = ω then
cf(γi) = ω, hence |Ei| = |Dγi | = ω.

√
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Biotehnǐska fakulteta, Oddelek za gozdarstvo, Večna pot 83, SI - 1000 Ljubljana,
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