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Abstract

We introduce the oak property of first order thies, which is a syntactical condition that we
show to be sufficient for a theory not to have universal models in cardinalitigen certain cardinal
arithmetic assumptions aboutmplying the failure ofGCH (and cbse to the failure oSCH) hold.

We give two examples of theories that have the oak property and show that none of these examples
satisfySOR;, not evenSOR;. This is rehted to the question of the connection of the prop&®R,

to non-universality, as was raised by the earlier work of Shelah. One of our examples is the theory
Tf;q for which non-universality results similar tbe ones we obtain are already known; hence we
may view our results as an abstraction of the known results from a concrete theory to a class of
theores.

We show that naheory with the oak property is simple.
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0. Introduction 1

Since he very early days of the mathematics of the infinite, the existence of a universal
object in a category has been the object oftoared interest to specialists in various s
disciplines of mathematics—even Cantor’s work on the uniqueness of the rational numbers
as the countable dense linear order with no endpoints is a result of this type. For some mere
recent examples see for instand¢s]. We approach this problem from the point of view
of model theory, more specifically, classifica theory, and we concentrate on first order -
theories. In 10] the idea was to consider properties that can serve as good dividing lines
between first order theories (id(]; more general theories in other work). This is to be s
taken in the sese that useful information can be obtained both from the assumption that
a theory satisfies the property, and the asstiopthat itdoes not, and in general we may u
expect several equivalent definitions for such properties. Preferably, there is an “outside
property” and a “syntactical property” which end up being equivalent. The special outside
property which was central irL[] was the number of pairwise non-isomorphic models, and.
it led to considering the notions of stability and superstability. It is natural to ask whether
other divisions can be obtained using problems of similar nature. This is a matter of mugh
investigation and some other propestigave leen looked at; see for examplgZ1] and 17
more generallyZ(0]. One such property is universality, which is the main topic of this paperns

In a series of papers, e.g. Kojman—SheBjh($ee there alo forearlier references)9], 19
Kojman [7], Shelah 16,18], DZamonja—Shelah3], the thesis aiming the connection 2
between the complexity of a theory and its amenability to the existence of universal modeis
has been pursued. Further research @nghbject is in prepaiion in Shelah’s 23]. It 2
follows from the classical results in model theory (s2p {hat if GCH holds then every 2
countable first order theory admits a universal model in every uncountable cardinal, so the
question we need to ask is what happens w&& fails. We may define the universality 2
number of a theoryl’ at a given cardinal as the smallest size of the family of models of 2
T of sizeA having the property that every model Bfof sizeA embeds into an element of 2
the family. Hence, iflGCH holds this number for uncountableand countabld is always
at most 1. It is usually “easy” to force a situation in which such a universality number is
as large as possible, namely (by adding Cohen subsets, s&@)]however assuming that =
GCH fails and allowing ourselves ague use of the words “many” and “often” for the mo- =
ment, we can distinguish between those theories which for many cardinals have the largest
passible universality number in that cardinaheneer GCHfails, and hose for whichitis s
possible to construct a model of set theory in wh@BH fails, yet our theory has a small
universality number at the cardinality under ciolesation. This division would suggest s
that the latter theories—let us call them for the sake of this introduction amenable—aresof
lower complexity than the former ones. The definition of amenability can be given in moee
precise terms. In the view of the preceding discussion involving the universality behaviosur
in models of GCH, it is notsurprising that this definition is expressed in terms of forcing. s

Definition 0.1. We say that a theory is amenableiff whenevera is an uncountable 4
cardinal larger than the size f and satisfying.<* = A and 2 = A%, while ¢ satisfies
cf(@) > AT, there is axt-cc (< 1)-closed forcing notion that forces 20 be# and the 4
universality number uniyT, AT) (seeDefinition 0.7) to be smaller thas.
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Localising this definition at a particularwe define vihat is meant by theories that are
amenable at..

Kojmanand Sh&h in [8] proved that he theory of a dense linear order exhibits high
non-universality behaviour, making it a potypical example of a non-amenable theory.
That is, they proved (Section 3, proof of Theorem 3.10) that the theory of a dense linear
order satisfies the property describedDefinition 0.3 which we shall call high non-
amenability. We shall indicate below that this name is well chosen, in the sense that high
non-amenability implies the negation of ambitity as introduced abovén order to define
high non-amenability we shall need a somewhat technical definition of a (gt 1)
club guessing sequence, but as this definition will be needed anyvegction 2 we shall
give the exact definition now tiaer than glancing over it for the sake of the introduction.

Definition 0.2. (1) Suppose that < A are regular cardinals and that< u < A while S
is a stationsy subset ofs consisting of points of cofinality. A sequence(Cs : § € S)
will be calleda tight [truly tight] («, «, A) club guessing sequenife

(i) for every$ € Sthe sefC; is a sibset ofs with otp(C;) = u,
(ii) for every clubE of A there is§ € SsuchthatCs C E, and
(i) for everya € A

HCsNa:8€S& ae (Cs\Ilim(Cs))} < A.

[In addition to (i)—(iii) above,
(iv) sup(Cs) = 6.]

(2) Suppose that is a regular cardinalu < A and(Cs : § € S) satisfies (i)—(iii) from (1)
with the possible exception &notnecessarily being a set of points of cofinaktyor any
fixedx. Thenwe say thatCs : § € S) is atight (u, A) club guessing sequence

Definition 0.3. A theory T is said to behighly non-amenabléf for every large enough
regular cardinal andx < A such that there is a truly tiglit, «, ) club guessing sequence
(Cs : 8 € S), thenumber uniyT, A) is at least 2.

Suppose that a theory is both amenable and highly non-amenable, and.lee a
large enough regular cardinal whil¥ = L or simplyA<* = 1 and<>(Sj+) holds. Let
P be the forcing exemplifying thak is amenable. Clearly there is a truly tight, A, A™)
club guessing sequencein V, and sice the forcingP is A1-cc, every club oft in VP
contains a club of* in V; herceC continues to be a truly tight, A, AT) club guessing
segquence iV P. Then on he one hand we have thatVh®, univ(T, A1) > 2* by the high
non-amenability, while unigfT, A7) < 2* by the choice ofP, a mntradiction.

In fact [8] proves that any theory with the strict order property is highly non-amenable.
On the other hand Shelah proved 18] that all simple theories are amenable at all succes-
sors ofregulark satisfyinge <* = «. In that same gper Shelah introduced a hierarchy of
complexity for first order thories, and showed that higlon-amenability ppears as soon
as a certain level on that hierarchy is passed. The details of this hierarchy are described
in the following Definition 0.8 but for the moment let us just méon the fact that the
hierarchy describes a sequer®®R, (3 < n < w) of properties of increasing strength
such that the theory of a dense linear order possesses all the properties, while on the other
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hand no simple theory can have the weakest among tB&W®;. Shelah poved in [1] 1
that the propertysOR, of a theoryT implies thatT exhibits the same non-universality -
results as the theory of a dense linear order; in other words it is highly non-amenable. dn
the light of these results it might then be asked whe8@R, is a characterisation of high .
non-amenability, that is whether allgtily non-amenable theories also h&@R,. 5
The results available in the literature do not provide a counter-example, and the ques-
tion in fact remains open after this investigation. However we provide a partial solution
by continuing a result of Shelah about the the(f{g] of infinitely many indexed inde- ¢
pendent equivalence relationdf]. It is proved there that this particular theory exhibits
anon-amenability beaviour provided that some cardlraithmetic assumptions close to 1o
the failure of the singular cardinal hypotheSi€Hare satisfied (seBection Ifor details).
This does not necessarily imply higlbn-amenability, as it was proved also ] that this 12
theory is in fact amenable at any cardi which is the successor of a cardiradatisfying 1
k=¥ = k. Here we gereralise the first of these two results by defining a property which im-.
plies such non-amenabilitysdts and is possessed Efy;q. This pioperty is called the oak 5
property, as its prototype is the model completion of N . f g), a theay connected to
that of the treé= (for details se&xample 1.3 The oak property cannot be made a part of 17
the SOR, hierarchy, as we exhibit a theory which has oak, andS©R, while the model s
completion of the theory of triangle-free graphs is an exampleS@B theory which does 19
not satisfy the oak property. On the other hand we prove at the eé®eabion lthat nooak 2
theory is simple. We also exhibit a close connection betwiggrand THM;, . t,g). These
results indicate that in order to make thenaection between thedh non-amenability, =
amenability and th&OR, hierarchy more exact one needs to consider the failu&CHl =
as a separate case. In addition the oak property not being compatible W eier- 2
archy gives new evidence that this hierardoges not exhaust the unstable theories that dos
not have thetsict order property. Note that in IB], 2.3(2)] there is an example of a first 2
order theory that satisfies the strong ordesggerty but not the strict order property (and 2»
the strongorder property implies alBOR,, though it is not implied by their conjunction). 2
To finish this introduction, let us summarise the connection between the cardinal arith-
metic and the universality number that is shown in this paper (a more detailed discussiornof
this can be found at the end 8fection 2. Firstly, by classical model theory, BCH holds =
then the universality number of any first order theory of size, at anycardinal> A, is 32
1—hence the situation is trizlised. Similarly, the results that we have here on sufficients
conditions for non-amenability trivialise if the Strong Hypothe3ill of Shelah holds15] 3
because the conditions are never satisfBtHlsays ttat pp() = ™ for every singulag; 3
hence cf{u]<%, ©) < u™ for everyk < u, soStHimplies the Singular Cardinal Hypoth- s
esisSCH (it is itself implied by—07). However, ifStH fails, sayk, A regulars sasfy that &
for some singulay. we have cfu) = « andu™ < A while pp(u) > A, for all weknow s
the results here hold and are not trivial, ietfense tht not only do all known consistency s
proofs of the failure of5tH show this, but it is not known wéther it is consistent to have
the failure ofStH and at the same relevant cardinals a failure of our assumptions. a
Let us now commence the mathematical part of the paper by giving some background
notions which will be ued in the main sections of the paper, starting with some classical
definitions of model theory. a
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Convention 0.4. A theory in this paper means a first order complete theory, unless
otherwise stated. Such an object is usually denoted.by

Notation 0.5. (1) Given a theoryl', we let& = ¢t stand for‘the monster model”, i.e. a
saurated enough model af. As is usual, we assume without loss of generality that all our
discussion takes place inside some such model, so all expressions to the extent “there is”,
“exists” and “=" are to berelativised to this model, all models ake¢, and all sibsets of
¢ that we mention have size less than the saturation numk\E letic = i (€1) be the
size of¢, so thiscardinal is larger than any other cardinal mentioned in connectioniwith

(2) For a formulap(x; &) we letp(¢; @) be the set of all tuplels suchthate[b; a] holds
in¢.
Definition 0.6. (1) The tupleb is defined byp(X; a) if ¢(¢; &) = {b}. It is defned by the
type p if b is the ungue tuple which realiseg. It is defindle over A if tp(b, A) defires it.

(2) The formulap(X; &) is algebraicif ¢(¢; ) is finite. The typep is algéraic if it is
realised by finitely many tuples only. The tupiés algebraicover A if tp(b, A) is.

(3) Thedefinable closuref A is

del(A) £'4b : bis definable oven).

(4) Thealgebraic closureof A is

acl(A) def {b: bis algéraicoverA}.

(5) If A = acl(A), we saythat A is algebraically closedWhen dcl{A) and aclA)
coincide, c{A) denotes their common value.

Definition 0.7. (1) For a theoryl and a cardinal, models{M; : i < i*} of T, each of
sizea, arejointly universaliff for every N a model of T of sizeA thereis an < i* and an
isomorphic embedding oN into M;.

(2) ForT andx as above,

univ(T, 1) d=Efmin{|/\/l| : M is a family of jointly
universal models of of sizeA}.

To makeDefinition 0.7more readable, note that ugiv, ) = 1 iff there is auniversal
model of T of sizex. Thefollowing is the main definition of Shelah'd §].

Definition 0.8 (Shelah, LL8]). Letn > 3 be a natudenumber.

(1) A formulag(X, y) is said to exemplify the-strong order propertySOR, if 1g(X) =
Ig(y), and there aréx for k < w, each of lengthg(X) suchthat

(@) = ¢lak, am] fork < m < o,
(b) = —(3Xo, ..., Xn—DIA{pXe, Xk) : £,k <nandk =€+ 1 modn}].

T hasSOR, if there is a formulap (X, y) exempifying this.
(2) Atheory that does not posse®9R, is said to havdNSOR,.
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Note 0.9. Using a compactness argument and tlzenRey theorem, one can prove that if
T is a theory withSOR, and¢(X, ¥), and(a, : n < ) exemplify it, without loss of
genedity (&, : n < w) is an indigernible sequence. Sel] or [6] for examples of such
arguments.

E N

Example 0.10. The model completion of the theory of triangle-free graphs is as
prototypical example of &OBR; theory, with the formulap(x, y) just stating thak and 6
y are connected. It can be shown that this theoly$©OR; see [L§]. 7

The following fact indicates th&8OR, (3 < n < w) form a hierarchy, and the thesisis s
that this hierarchy is reflectdd the complexity of the behawur of the relevant theories

under natural constructions in model theory. 10
Fact 0.11 (Shelah, L8], Section 3. For 3 < n < w the poperty SOR,;+1 of a theory
implies thepropertySOR,. 12
1. Theoak property 13

In this section we define a theofly* that will serve as a protype of a theory that 1
possesses the oak property. Then we introduce the oak property and prove that the theory
T* has this property. We are interested in the connection between the oak property and
the SOPhierarchy (se®efinition 0.8. To this end we shall show that* satisfiedNSOR 17
(so byFact 0.11it clearly does not satisfgOR;). As another example we shall show that 1s
the model completion of the theory of infinigemany indexe independent equivalence 1

relaions,Tf;;q, also séisfies oak andNSOR,. This theory is known not to be simpld.§], 20
but we shalin fact show that no theory with the oak property is simple. 21
We commence with some auxiliary theories which will allow us to defiife(as the =
model completion off ;). 2
Definition 1.1. (1) Let Tp be the following theory in the language 2
{Qo, Q1. Q2, Fo, F1, F2, F3} : 2

() Qo, Q1, Q2 are unary predicates which form a partition of the universe, 2
(i) Fois a partial function fronQQ to Qq, 27
(iii) F1 is a partial two-place function fror@g x Q2 to Q1, 28
(iv) Fis a partial function fronQQg to Q2, 29
(V) Fsis a partial function fronQ; to Qo, 30
(vi) the range ofF1 is included in he domain ofFp and for all(x, z) € Dom(F1) we have =
Fo(F1(x, 2)) = x, and 32

(vii) the range of F> is included in he domain of F3 and F3(F2(x)) = x for all 33
X € Dom(F). 34

(2) Let TO+ be defined likeTp, but with the requirement thag, F1, F> and F3 are total s
functions. 36

Remark 1.2. It is to be noted that the above definition &f uses partial rather than the =
more usual full function symbols. Using partial functions we have to be careful when we
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speak about submodels, where we have a choice of deciding whether statements of the
form “F (x) is undefined” are preserved in the larger model. We choose to request that
the fact thatF is undefined at a certain entry is not necessarily preserved in the larger
model. Function$, andF3 are “dummies” whose sole purpose is to ensure that models of
To+ are non-trivial, while keepin'g’OJr auniversal theory (which is useful when discussing
the nodel completion). Also note that neith&g nor To+ is complete, but every model

M of To in which Q}', Q) # # and Fp and F5 are onto can be extended to a model

of TO+ with the same universeC{aim 1.42)), and every model oTy is a sitbmodel of

a model of TO+ (Claim 1.44)). TJ has a complete model completio@l&im 1.5. This
model completion is the main theory we shall work with and, as we shall show, it has the
oak property Claim 1.1 and isNSOR, (Claim 1.7).

As we are only interested ithe model completiornT * of T0+ we might have omitted the
mertion of Tg altogether, but in the interest of possible future examples and also in order
to make the pof of the existence of * easier, througClaim 1.4we defired bothTy and
TO+ and then showed how to pass from models of one to models of the other.

Example 1.3. Suppose that andA are infinite cardinals and is any surjective function
from “A to «, while g is a function fromk to “ satisfyingg(f(v)) = v forall v € “A.
Then we can construct a moddl = M, ;. 1,4 as follows: Ieth’I bex, QQ" be*>x, and
QY = “x. Furtrer let F) (i) be the length of; for n € Q1, and letFM (o, v) = v | .
Let FM be f and letF ) beg.

We consider such examples to be prototypical for model‘ﬁOJOf

Claim 1.4. (1) If M is a model of T, then @, QM and Q' are all non-empty, and }
and B are onto.

(2) Every model M of §'in which Q! = ¢ and Q' + ¢, while F)* and B are onto,
can be extended to a model Qf'l?vith the same univerdand every model ofO"I’ isa
model of ).

(3) There are mdels M of § with Q! # @ and Q) + ¢ and EM onto which cannot be
extended to a model ofOT with the same universe.

(4) Every model of J'is a sibmodel of a model of;T.

(5) -|-0+ has the amalgamation property and the joint embedding property JEP.

(6) If M = Toand AC M isfinite, then the closure B of A undeps FM, FM and B
is finite (in fact|B| < |A]? + 2| A]); moreover:

@BNQ¥ =An QM U{FM(@ : ac AnQY},

0 BNQY =(ANQHU{FMB : be AN QM U{FM(c): ce AnQY}and
© BN =AnQMHuU{FM@c):aecBNQY & ce BN QY.

In this case, B= Toand if M |= T, then Bl= T4

To declutter the notation we shall from now on whenever possible in discu%girg"

(and its model completiom* which will be introduced later) omit the superscrigtfrom
the functian synbols.

Proof. (1) AsM is a nodel we have thall # ¢, so at east one amon@})', QM. QM is
not empty.
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If Q' # @, thenF, guarantees thaR) # @, so Q) +# ¢ because of. If !
QM # ¢, thenQY # @ because oFy. Findly, if QY # @, thenQ}! # ¢ because of -

F3, and wecan again argue as above. 3

If a € QY. letb € Q) be arbitrary. TherFi(a, b) € QY andFo(Fi(a, b)) = a. s
Hence,Fg is onto. Also,F3(Fz(a)) = a, so F3'\’I is onto. 5

(2) LetM | Toand QY, QM # #. Forx € Q) andz € Q) suchthat (x,2) ¢ 6
Dom(FM), let F1(x, z) = y for anyy € Q) suchthatFo(y) = X, which exsts asF 7

is already onto. Fox € QS" for which F2(x) is not already defined, lét(x) = z for 8
anyz suchthat F3(z) = x, which exsts angM is onto. Finally, extend~g andF3 to be 0
total. The model described is a model'lfgjf with the same universe &4. 10

() Letks < k2 < 1 and letQ) = k2, QM = “>i, while QY = “a. For u
a < ko let Fa(a) be the function intA which is constantlyy, and forv € 13 let 12
F3(v) = min(Rangyv)) if this value is< «2, and 0 othervse. Also, letFo(n) = Ig(n) 13
andFi(a, v) = v | a be defined fow € “1) anda < «1. 14
This is a model ofTp, butnot of To+ becausd- is not total. If this model wereto s

be extended to a model CIB+ with the same universe, weould have that for every

v e ) 17

Fo(Fi(k1,v)) =«1 & Fi(k1,v) =1 1
for somen € “>A. As Fo(n) is already definedfo(n) = 19(n) < «1, whichisa 1
contradiction. 2

(4) Given a modeM of To. First ersure thatQ}!, QM, QY + ¢ by adding new elements
if necessary. The make sure thaEg and F3 are total and onto, which might require 2
adding new elements ol (and hence redefinin@}!, Q, QY if needed). Now for =
eachx € QY choosey(x) € Q) suchthat Fo(y(x)) = x, which ispossible sincdy =
is onto, and then define for evety, z) € Q' x QM the valie of Fi(x, 2) to bey(x), =
unlessF1(x, z) has already been defined to start withwhich case we leave it at that 2
value. Fnally declare foix € QS" for which F2(x) has not already been defined that »
F2(x) = z for anyz suchthat F3(z) = x, which can be done sindgs is onto. 28

(5) We first prove the amalgamation property. Suppose MhatM; and M2 are models 2
of To+ with |M1] N |M2| = |Mg|, andMgp € M1, My. We defineM3 as follows. Let =
IM3| = [M1|J|Mz|, and form € {0,2,3} let FM3(x) = FM(x) if X € M, for =
somel. This is well defined, becausd; and My agree onMg. Also, the identity =
F3(F2(x)) = x is satisfied inM3. Now we let F1M3 = Fl'vI1 U FlMZ. Thisdoes not =
necessarily give us a total function, but we still have a modelofvith universe s
[M1] U |[M2| and so to obtain the desired amalgam (which has the same universe) we
apply part (2) of this claim. From this definition it follows that bdhy and M, are 6
submodels o3 and equal to its restriction to their respective universes. a7

To see that JEP holds, suppose that we are given two mdde|dV, of T0+. Define s
M by letting its universe be the disjoint union bf; andMa, anddefine the functions s
Fmforme {0, 1, 2, 3} by Fr{\{' = F,T'Y'l U Fn'\]"z. ThenM is a nmodel of Ty, butlike inthe 4
proof of amalgamation, the functidfy might happen to be only partial, in which case «
we extendM to a nodel ofTOJr by applying part (2) of this claim. Then it can easily be ..
checked thaM embeds botiM; andM,. 4
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(6) Suppose tha® andM are as in the assumptions. Then items (a)—(c) of the statement

uniquely define a subset &, which we sfall call B. Theproof will be canplee if we
can prove thaB is of the required size and is the closurefof

Clearly B is contained in the closure ok and the size oB is as claimed. That is,
letting forl € {0, 1, 2} the size ofAN Q|M ben andn = X} _3n;, we have first that
IB N QM| < na+ng, then|B N QM| < ng+n1+n2 < n,andsdB N QM| < ny+n2.
It can be checked directly th&is closed, usinghe equatns forTy, and it akoeasily
follows thatB is a npdel of Tg, or ofTOJr if Mis. O

Claim 1.5. TJ has a complete model completion* which admits elimination of
quantifiers, and ikp-categorical. In this theory the closure and the algebraic closure
coincide.

Proof. We can construcil * diredly. T* admits elimiration of quantifiers becaus‘Egr

has the amalgamation property and is univers2] 8.5.19). It can be seen from the
construction ofT* that it is complete, or alternatively, it can be seen thathas JEP

and ® by [2] 3.5.11, it is complete. To see that the theoryigcategorical, observe that
Claim 1.46) implies that for every there are only finitely manyo-types inn-variables.
Then by the Characterisation of Compl&ig categorical TheoriesZ] 2.3.13), T* is Ro-
categorical. Using the elimination of quantifiers and the fact that all relational symbols
of the language off * have infinite domains in every model @f*, we can see that the
algebraic closure and the definable closure coincidein [

Observation 1.6. If A, B C ¢+ are closed and € cl(AU B) \ A\ B, thenc e QfT*.
Proof. Notice that
cl(AUB) =AUBU{Fi(a,c): ae€ (AUB)N Qo & ce (AUB)N Q2
& {a,c}¢ A& {a,c} £ B}
by Claim 1.46). O
Claim 1.7. T* is NSOR, consequently NSQP

Proof. Suppose thal * is SOR; and letp(X, y), and(a, : n < w) exempify this in a
modelM (seeDefinition 0.81)). Without loss of generality, by redefiningif necessary,
eacha, is without repetition and is closed (recéllaim 1.46)). By the Ramsey theorem

and compactness, we can assume that the given sequence is a part of an indiscernible

sgjuenceak : k € Z); herceay’s form a A-system. Let fok € Z

X &N cl@man.  Xg E M c@ma), X = clXg UXp).
m<k m>k
Hence Rank) C Xk, andX is closed. ByClaim 1.46), there is an a priori finite bound
on the &ze of X; hence by indiscernibility, we have thgXx| = n* for some fixedn*
not depending ok. Leta/ list X with no repetition. ByObservation 1.6Claim 1.46),
indiscernibility and the fact that eaéh is closed, we ave thaforl € {0, 2}

cl(am'ax) N QF = (Rangam) U Rangay)) N Q
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and 1
¢ 5 ¢ ¢ = ¢

Xk N Qg € Rangax) N Qy andXk N Q; € Rangéayx) N Q. 2

Applying the Ramsey theorem agawithout loss of generality we have th@f : ke Z) 3

are indiscernible. Let 4
=90 a3+ (1) = &t (1) for some (equialertly all) ki % ko)

wo ={l - g () =& q y 1 # ko}. 5

If aQLl(Il) = a;;(lz) for someky # kp, without loss of generalitky < k», by 6

indiscernibility and symmetry. By transitivity and the fact that ea‘a;jw is without 7
5 def

repdtition, usingk; < k2 < k3 we getly = |2 € wg. Let wj = n* \ wg, and 8
leta = & | wyandd, = & | wi. Herce, (34, : k € Z) is an indigernible
seguence, and Rarg) N Ranga,) = ¢ for all k. In addtion, for k; # k2 we have 1
Ranga ) NRanga,) = ¥ and Ranga'g,) = X. 1

Now we defie a modeN. Its universe isJo< <3{clm (@& "a/, )}, andQ = QY NN, =
FN = U{Fj) : | < 3}, whereFj; = FM | clw@&"q ), or Fjy = FM | &

_____

clw @y a1’+1))2, as ppropriate. Note thaN is well defined, and that it is a model of 1
To. N is not necessarily a model dT0+, as the @inction F1 may be ory pattial. Notice 15
that X; < N for| € [0, 3]. We wish b defineN’ like N, but idertifying & anda;j 16
coordinatewise. We shall now check that this will give a well defined modé&hoNote 17

that by tre proof of Observation 1.6ve have 18
N = U X U U {FN(c,d): ¢c,d € Xj U Xi41
0<l<3 0<l<3
& {c,d} € X & {c,d} & Xi11 & FlN (c,d) ¢ X U Xj41}. 19

The possible problem is thﬁN/ might not be well defined, i.e. there could perhapsz
be a case defined in two distinct ways. We verify that this does not happen, by discussing
variouspossibilities. 2

Case 1For someb € Ranga]), sayb = &5 (t), b’ = af(t) andj € {0,2,3}, we =
haveF; (b) # Fj(b’) after the identification o] with &aj. As &’s are closd, we have =
Fi(b) = a7 (s) andFj(b') = a] (s') for somes, s'. By indiscernibility, we haves = ', =
hence the identiiation will makeF; (b) = F; (b"). 2

Case 2 For somes, t we have thatF1 (&5 (s), &7 (1)) and F1(a] (s), & (t)) are well =
defined, but not the same after the identificatiorigifandé;. This case cannot happen, 2
as can be seen similarly to in Case 1. 29

Case 3For somer(x,y) € {Fi(X,y), Fi(y.X)} anddy = &f(s),d2 = &j(s) and =
somee € N we have thatN(e, d1), 7N (e, d2) are well defined but do not get identified =
whenN’ is defined. a2

By Case 2, we have that¢ a ands ¢ wg. As z(e, dy) is well defined andl; € Xo \ &, 33
necessarile € cly (Xo U X1). Similarly, ast (e, d2) is well defined andl; € X3\ a, we 3
havee € cly (X2 U X3). But, asFi(e, d)) is well defined, we have € Q2 U Qq. Herce 35
e e cly(Xp U X1) \ Q1 € Xp U X1 and similarlye € X2 U X3. This impliese € §, a 36
contradiction. 37
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As M is a nodel of Ty, FO'V' is onto (Claim 1.41)). Supposey € Q(’)\‘; then for
somel € [0,3) we have thaty € cly(X] U X|+1), so by Observation 1.6we have
y € X| U X|+1. AseachX| is closed inM, by Claim 1.46) eachX; is a nodel ofT0+, SO
y € RangF}" | X)); hercey € RangF}') andy € RangF}"). We can similarly prove
thatF)' is onto, and as eack; is a model of T,” we have byClaim 1.41) thatQY)", QY
and Qy/ are all non-empty. Bflaim 1.42), N’ can be extended to a modeIqu.

By the dhoice ofp and the fact that * is complete we have that

T* = (VXo, X1, X2)—[@(Xo, X1) A @(X1, X2) A ¢(X2, X0)].

As T* is the modécompletion of TJ, in paticular T* andTOJr are cotheories, so we have
that

Ty = (YXo, X1, X2)=[9 (X0, X1) A (X1, X2) A ¢(X2, X0)],
yetin N’ we have

N’ = ¢(a0, &1) A ¢(@1, &) A ¢(82, ),
by the idetification of &g andas. This is acontradiction. [

Definition 1.8. (1) AtheoryT is said tosatisfytheoak property as exhibited by a formula
@(X, Y, 2) iff for any infinite A, « there are, (n € “”A) andC, (v € “1) anda (i < «)
suchthat )

(a) [77 Qv & vefl] = (p[élg(n)7 bna Gl
(b) If n e “> A andn () < v1 € “Aandn™(B) < v2 € “A, while « # g andi > Ig(n),
M_‘EV [(p(éi 9 )7, Cl)j_) A (p(éi ) y7 Cl)z)]!
and in additionp satisfies
©) o(X, Y1, D) Ap(X, ¥2,2) = V1= V2.
We allow for the replacement aft by Qﬁq (i.e. dlow y to be a definhle equivalence
class).
(2) We say that oak holds far if this is true for somep.

Observation 1.9. If someinfinite A, x exempify that oak(¢) holds, then so do all infinite
A, k. (Thisholds by the compactness theorem.)

Remark 1.10. We shallnot need to use this, but let us remark that witnessés ¢ to

oak(p) can be chosen to be indiscernible along an appropriate index set (a tree). This

can be proved using the technique d6], Chapter VII, which emfpys the conpactness
argument and an appropriate partition theorem.

Claim 1.11. T* has oak.
Proof. Let
2(x, ¥.2) ' Qo) A Q1Y) A Q2(2) A Fo(y) = X A F1(X, 2) = .

Clearly, (c) ofDefinition 1.81) is sdisfied. Givem, «, we shalldefine a modeN = N, ,
of Ty". This will be a sibmodel of¢ = €7+ such that its universe consists Q@‘ def
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. . . def . -,
{a : i < «} with no repetltlons,QlN = {b, : n € “7A} with no repetitions and

QS‘ def {c, : v € “A} with no repetitions, whileQg, Q1, Q2 are pairwise disjoint. We
also require that the following are satisfieddin= Cy+:

Fo(b,) = aigey. F1(ai, ¢) = byji

and thatN is closed undeF, andF3. Tha such achoice is possible can be seen by writing
the corresponding type and using the saturativityof

We can check thalN = T0+, and thatN is a sitbmodel of¢ when understood as a
model ofTJ. Clearly, (a) fromDefinition 1.81) is sdisfied for¢ anda;, b,, ¢, in place
of &, b,, €, respectively. To see (b), suppose that, 8, v1, v2 andi are as there, but is
suchthate(a;, d, ¢,,) A ¢(&, d, C,,). Herce Fi(a, ¢,,) = F1(&, Cy,), S0Ov1 [ 1 =2 [,
a aontradiction. This shows thatis a witness foiT * having oak. [

A similar argument can be used to show tfidtis not simple, but in fact we shall prove
that no theory with the oak property is simple (this in particular answers a question
A. Dolich raised i a privae comnunication).

Claim 1.12. No theory with the oakroperty is simple.

Proof. Let T be a theory with the oak property andetx be cardinals such that> |T|,
2¢ < L andi = A= < A* (such cardinals always exist). Bybservation 1.9ve may

assume that the oak property Bfis exemplified by a formul@ (X, y, Z) and sequences

@ : i <k),(By:ne*aandC : verr). Forv e aletp, = p@ &

{o@&, BU“ ,2) : i < k}. Hence eaclp, is a type of cardinality and the setp, : v € “A}
consists of pairwise incompatible types. The set of parameters usgthin: v € “1} has
size< k- A= = A. By [[10], ll, 7.7, pg. 141] this implies thal is not simple. O

We now pass torsother example of a theory with oak that satisfN&OR, whichis the
theorny;q of infinitely many indexed independeng@ivalence relations. This example
also shows why it is that this research continueg}.[The readers uninterestedTl;gq can
skip to the next section without loss of continuity. We use the notation‘ﬁf'gq which was
used in ], while the fact that this is equivalent to the notation i§[was plained in f].
The existence of the required model completion is explained]in [

Definition 1.13. (1) Tqu is the following theory iffQ, P, E, R, F}:
(a) Predicate® andQ are unary and disjoint, an®x) [P(x) v Q(X)].
(b) E is an equivalence relation d@.
(c) Ris abinary relation o) x P suchthat
[XRz& YRZ& XEyYy] = X =Y.
(Explanation: soR picks for eacte € Q (at most)one representative of ar-equivalence class.)
(d) F is a (total) binary function fron® x P to Q, which saisfies
Fx,22e Q& (F(X,22R2 & (XE F(x,2).
(Explanation: so foix € Q andz € P, the functionF picks the representative of ttie-equivalence class of which
is in the relationR with z.)
(2) Tisq is the modecompletion of ngq.
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Remark 1.14. After renaming,@:%%q is a reduct of ¢31; formaly Tisq is interpretable in

T*. Givena modelM of T*, we defineN = Ni[M] by letting its universe b@ | QY
andPN = QY, while QN = QM. We let

y Eziff FM(y) = FM(2) andFN (x, 2) = F1(Fo(x), 2).
We also letx Rz <= FN(x,2) = x. Itis easily seen thaN = Tf;q, and moreover,
N = Ty
Using the above Remark and the fact that oak &N®IOR are preserved up to
isomorphism of¢®9, we obtain:

Corollary 1.15. (1) Tqu has oak.
(2) Tysq has NSOR.!

Proof. (1) Use tle formulap(x, y, 2) = F(X,2) =Y.
(2) Fdlows by Remark1.14 O

Part(2) of Corollary 1.15was dated without proof in [L8]. The results here suggest the
following questions.

Question 1.16. (1) DoesT * satisfySOR or SOR?
(2) Are there any nontrivial examples of oak theories that 20&;?

PropertiesSOR or SOR were introduced in4] where it wa shown thaSOR, —
SOR — SOR — notsimple, but it was left open to decide whether any of these
implications is reversible. Theg@operties are studied further i@4] where itis proved
thatTfj;q hasNSOR. This males it reasonable to conjecture that the answer to both parts
of 1.16is positive.

We finish the sction by quoting a result of Shelah frorbg], which can be compared
with our non-universality results fro®ection 2 Thenotation is explained iSection 2

Theorem 1.17 (Shelaf). Suppose that, © andx are cardinals satisfying

(1) € = cf(u) < p, A =cf(r),
(2) ut <,
(3) there is a family

{(@.b): 1 <i* a € [A]"H b €[A]}

suchthat |{b; : i <i*}| < A and satifying that for every f: A — A thereisi such
that f(bj) € &; and
(4) PPry () > A+ [i*|.

Thenuniv(Ted,, ) = PPp ) (10)-

Lithas subsequently been proved by Shelah and Usvyats@d]ithiat T{gq has a stronger propertySOR .
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2. Non-universality results 1

In this section we present two general theorems showing that under certain cardinal
arithmetic assumptions oak theories do not admit universal models. Let us start by
introducing some common abbreviations that we shall use in the statements and the proofs

in this section. 5
Notation 2.1. (1) Letk < A be cardinals. We let 6

A EACL: A=), v
If  is regular we let 8

Sﬁ‘d=ef{oz<)»: cf(a) = «}. 0
(2) For a setA of ordinals we let the set afccumulation pointef A be ac¢A) def {a € 10
A: o = supANa)} and the set ofion-accumulation pointise nac¢A) %A \ acdA). 1

Before proceeding to the non-universality thems recall from the Introduction the def- 1.
inition of a tight club guessing sequendaefinition 0.2. Note that the definition does not 13
require set<;s to be either closed or unboundeddnlit can be deduced from the existing 14
literature on club guessing sequences that tight and truly tight club guessing sequenees
exist for many triples («, i, 1). We shdl indicate inClaim 2.10how this deduction can be s
made, but let us leave this for the discussion on the consistency of the assumptions ofithe
non-universality theorems, which will be given after their proofs. We shall now give twe
non-universality theorems. These theorems Isaiveheoretic and modeheoretic assump- 1
tions. The model-theoretic assumption is the same in both cases: that we are dealing with
an oak theory of size: A, with the desired conclusion being that the universality numbeg.
univ(T, 1) is larger thar.. The settheoretic assumptions, which are different for the two 2
theorems, will be phrased in the form of certain combinatorial statements that are neeeed
for the proofs of the theorem. As with tight club guessing sequences, it might not be imme-
diately clear to the reader that these asstioms are consistent. However, after we prove s
the therems we shall give some sufficient conditions for these assumptions to be satisfied
and as a corollary get some non-universalityuts whose set-theoretic assumptions are

phrased in the form of cardinal arithmetic and known to be consistent. 28
Theorems 2.2nd 2.4 have similar proofs, as we explain below, so we shall first states
both theorems and then give the proofs simultaneously. 30
Theorem 2.2. Assume that, i, o andA are cardinals satisfying 3
(1) cf(k) =k < u < A = cf(r) and there is a tighfu, 1) club guessing sequence, 32
(2) A < u, 33
(3) Kk <o <A, 34
(4) there are familiesP; C [A]€ and P> C [o]* suchthat 35
(i) for every injective g o — A thereis Xe Powith{g(@i): i € X} € Py, 36

(”) [P1| < HKv |P2| < A, 37

(5) T is a theoay of size< A which has theak property. 38
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Then
univ(T, 1) > u“.

Definition 2.3. Forcardinalsc < u we define

Uppa(u) E'min{[P] : P < [u]* & (Vb € [u]*)(Fa € P)(janb| = «).
More OnuJPd(/L) can be found in22].
Theorem 2.4. Assume thak, 1, o and are cardinals satisfying

(1) cf(x) =k < u < A = cf(r) and there is a tightu, 1) club guessing sequence,
(2) A < Ujpa(p),
@) k<o =i
(4) there are familiesP; C [A]€ and P2 C [o]¢ suchthat
(i) for every injective g o — A there is Xe P> such hat for some Ye Py
{g@):ieX}NY|=«,
(il) [P1l < Uspa(u), |Pa2| < A,
(5) T has the oak property.

Then
univ(T, A) > Z/{kad(u).

Before we start the proof let us give an introduction to the methods that appear within
it. When proving that the universality number of a certain category with given morphisms
(so not just in the context of first order model theory) is high it is often the case that
one can associate with each object in the category a certain construct, an invariant, which
is to some extent preserved momphisms. For example such an invariant might be an
ordinal number and then one can prove that such an invariant may only increase after
an embedding. The proof then proceeds by katittion by showing that any candidate
for the universal would have to satisfy too many invariants. A trivial example would be
to show that there is no countable well-ordering that is universal under order preserving
embeddings: the order type of the ordering is an invariant that satisfies thatif — Q
is an oder preserving embedding, then the order typ®ad$ at least as large as that Bf
Any Q that would be universal would have to have a countable well-order type that is larger
than that of all countable ordinals, a contradiction. As trivial as it is, this example points out
two stages of a non-universality progbnstructionwhich associates an object with every
invariant prescribed by a certain set (e.g. the uncountable set of all countable ordinals) and
preservationthat shows that some essential features of the invariant are preserved (e.g.
the arder type does not decrease) under embeddings. In our proofs we shall use the same
method, except that the invariants will be defined as ceitarquences of subsets of
unique modulo the club filter ok, andthat the preservation and the resulting contradiction
will be dependent on a certain club guessing sequence. Using such invariants is a technique
that was first used by Kojman and Shelah & dndhas appeared in a number of papers
since. The main point tends to be the right definition of an invariant and the use of a right
kind of club guessing.
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Proof. We shall e the same pof for bothTheorems 2.2nd2.4. The two mai Lemmas
are the same for the two theorems, and we shditate the differences which occur toward
the end of the proof. Suppose thatX, y, 2) shows thafl has the oak property and let
a (i <«),b,(n € “1) andc, (v € “1) exempify the oak property ofp(X, ¥, Z) for A
andk. Fornotational sinplicity, let us assume thag(x) = lg(y) = 19(2) = 1.

Let (Cs : 8 € S) be atight(u, A) club guessing sequence. For edglet (« (s, ¢) :
¢ < u) be the increasing enumeration®@f. Let €1 be a (saturated enough) expansion of
¢t by the Skolem functions fot.

©® N o o B~ W N P

Definition 2.5. (1) ForN = (N, : y < A) an <-increasing continuous sequence of s

models ofT of size< A, and fora, c € N, d:‘EfUV<A N, ,ands € S, we let 10
. def
invig(c, Cs, ) {7 < s (b€ Nog 41 \ Nags0))(Ni = gla, b, €D} n
(2) For a setA ands, N as above, let 12
. def .
invfi(c. Cs) = | Jlinvg(c.Cs.a) : ae A} "

Note 2.6. Following the notation oDefinition 2.5 notice that iny;(c, Cs, a) is always a 1
singleton or empty, since if therelise N, suchthatg[a, b, c] holds then sucb isunique s
(by part (c) ofDefinition 1.8. Consequently irﬁ(c, Cs) € [u]=1A, 1

Construction Lemma 2.7. For every A" € [u]“ of order typex, thereis an<-increasing
continuous sequencl” = (N/¥ : y < 1) of models of T of size- 1 and a set 1

{& : i < o} of elements of N: d=ery<A le\* such hat for some club Eof A, for every 1

X € Po, for somexx < A, for every$ € S sdisfyingmin(Cs) > ax, there is ce Nax 2

suchthatinv{é‘i\;iem(c, Cs) = A*. "
In addition, the universe of N is A. 22

Proof of theLemma. Let P, = {X, : a < o < A}. Without loss of generality 2
o< Ua<a* Xa- 24
Given A*. Let f = fa be an increasing function from the successor ordirals 25
into u such that Rang f) = A*. For§ € Slet vs be the function fromx into A suchthat 2
vs(¢) = a(8, T(¢)) forall ¢ < k. Note hatv; is increasing. Hence,; is well defined, as 2
isb, for n < vs. For X € P, let px be a bijetion between the ordinals « that have the 2
form g + 2 for somes and X. Forn € “~ A let us say thay is goodiff the domain ofy is 20
of the formp + 2 for someB < «. 30
By a conpactness argument, we can see that theréére i < o) and forX € Po, 3
sequencesc) : § € S), (b : n < vs & ngood &8 € S) suchthatforpgoodand € S =
nvs — |= (p[élpxdg(n)), b?](, CZZ] 33

and the appropriate translation of (b) frddefinition 1.8holds. By taking an isomorphic s
copy of¢™ if necessary, we can assume that the Skolem huitirof 35

{&:i<o}U{bl: XeP2& @5 eSn<vsiufc): XePr&seS %
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is contained ini. Let fory < A the nodel Nﬁ* be the reduction t&€(T) of the %olem
hullin ¢+t of

y U {&:1c¢ Ua<min{a*,y}xa} U
u |J (e 8esSny & supRangvs)) < y}U

a<minfa*,y}

U |J (b :n<vsforsomes e S& ngood & sugRangn)) < y}.

a<minfa*,y}
HenceNA" = (NA* .y < M) is <-increasing continuous, and it also follows that the

universe ofNA" = def U, < N/ is A. We observe also that for < 1 we have|N/¥'| < A

because. is regular, T has size< A and the Skolem hull needed to obtaif* is taken
over a set of size: A. That his set has size: A might not be immediate, since in the last
clause of its definition we allow to range over the entire s& whose sie isA. However,
for everyn appearing in this part of the definition,js increasing (as an initial segment of
somevs) and it saisfies supRangn)) < y. Sincethe domain ofy is of the formg + 2
for someg, this meansn(8 + 1) < y. For anyé € Ssuchthatn < vs we have that
n(B + 1) € Cs, so dthern(B + 1) € nacdCs) or for somey’ € nacdCs) we have that
n(B) <y’ < n(B+1).Atany rate, Ran@) is a subset of size< « of a set of the form
Cs N & U {o} for somet e nacaCs) and&, o are both< y. As part of he choice ofC we
obtain that for any < y

HCsNE&:5e S & enacdCs)}| < A.
Fors € Sandé € nacgCs) let £*(5,&) = des min{¢ : «(8, f(¢)) > &}, if this is well
defined, and let*(8, &) = « otherwise. Now notice that €5 N & = Cy N & then we have
C*(8,8) = ¢*(8', &) andthatvs | ¢*(8, &) = vy | £*(8, &). Our aralysis shows that any
relevant to the third clause of the definition Nﬁ* and having domaig + 2 sdisfies that
nl B+ =@ws]c*6,&) I (B+1 forsomes € Sandé < y and hence that there are
< A choices forb;(“. Let E* be a club ofs such that for everys € E* and good; we have

by e NAiff <5 & (35 € SN8)[n < vyl.
Givena < a*, X = X, ands € Swith min(Cs) > « + 1 andCs € E*, we shall show
that with

def.  (§:ieX)

I_|nvNA* (c Cs)

Vs ?

we havel = A*. Notice thate < x = «(8, f(¢)) > « trivially since min(Cs) > «.
Leti € X, B+2 = px(i) and lety = (a(8, f(¢)) : & < B+ 1). We have thay <1 vs
andi = px(g(n)). Herce ¢[4;, b,),(, cﬁg] holds. Let; = f(8 + 1). We then fave that
by e Nof\((s 041 S Nof\(fs e, (aSa(5 ¢) + 1is stictly larger than sufRandn)) = «(8, ¢)
anda <a(d,2)+ 1), butb ¢ N ) by the choice oE*. Herce¢ = f(B+1) € |. So
A* C | because every eIementAf is f(B + 1) for someg as above.

In the other direction, suppose € | and leti € X be such thats is in
invga (cX, Cs, &). Herce for someb e Na(é t+1) \ Noé(5 o) We have= ¢[4, b, c va]

Vs’
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Constructing; as in the previous paragraph we have thap[§;, bf,‘, cX] holds. Usingthe .
uniqueness property from (c) @fefinition 1.8we see thab = bZ’( so¢ = f(B+1) for 2
somef. SOA* =1. O 3

Note2.8. With the notation ofLemma2.7 for anyi € Uy-minjr.s) X« We have .
NV ax (c§<, Cs, &) # ¢, as fdlows from the forward direction of the proof that* = 1. 5

Preservation Lemma 2.9. Suppose that N andNare models of T both with univerge
and f: N — N*is an elementargmbedding, whilgN, : y <2)and(NJ : y <) are
continuous increasing sequences of models of T of card|nalmyW|th Uyd , = N
and(J Ny = N*. Further suppose tha, : @ <} S N is given. Let

y<Ai
goer], (N,N*,f)W<(N,N*,f)&SUD({aa:a<K})<J/&
B theuniverses of ) and N; are both the sey
Thenfor every ce N and$ with Cs € E, and for everyr < « wehave 6
invg(c, Cs, &) = invg.(f(c), Cs, T (&a)). 7

Proof of the Lemma. Note thatE is a club ofi. Fixc € N ands € Sas required, and let s
a = a, forsomex < «. We shall se that iny(c, Cs, a) = invg.(f(c), Cs, f(a)). 9

Suppose; < u is an element of ing(c, Cs, @), so there isb € Ny c41) With 10
N = ¢[a, b, c], while there is no such € Ny ) (We are using the uniqueness property u
from (c) of Definition 1.§. We have thalN* satisfiesy[ f (@), f (b), f(c)]. AsCs C E we 12
have that (8, ¢ + 1) € E, and ash € Nys,0+1), Clearly f (b) € Na(é t+1)" Similarly, by 13
the definition ofE again and the fact that is injective we havef (b) ¢ N* 0.0)- BY the 4

assumptions op we have 15
N* =" (vWlp(f@),y, f(c) = y= fb)]", 16

s0¢ € inv«(f(c), Cs, f(a)). 17
In the other direction, suppoge< w is an element of inyg. (f (c), Cs, f(a)), so there

is b* € N*@ 1) with N* = ¢[ f (a), b*, f(c)], while there is no sucl* e Nja o) 10

HenceN* = 3y (p[f(@),y, f(©)]), soN & Jy(¢[a,y,c]). Letb € N be such that
N = ¢[a, b, c]. Herce N* & ¢[f(a), f(b), f(c)]. Againby (c) of Definition 1.8 we 21
have f (b) = b*, sob € Nys,c+1) \ Nos,¢) becausdu (s, ¢), (8, +1)} € E, so by the 22
choice ofE we have that foy € {«(8, ¢), (8, ¢ + 1)}, (N, N*, f) | y is an elementary 2
submodel of (N, N*, f). As thisb is unique (by (c) ofDefinition 1.§ we hawe that¢ 2
belongs to iny (c, Cs,a). O 2

Proof of the Theorems continued (Theoren2.2 (Theoren.4)). To conclude the proof 2
of the theorems, gived < u* [0 < Ujpwa(w)], we shall see that unif,r) > 6. 27
Without loss of generality, we can assume that A + |P1]. Given (NJ-* ] < 6)a 28
sequence of models of each of sizex, we shall sbbw thatthese models are not jointly 2o
universal. So suppose they were. Without loss of generality, the universe oN?aish\. 30

Let NJ-* = (N)jj . ¥ < A) be an increasing continuous sequence of models of size s
< A suchthat N = U, < NS . forj < 6. ForeachA € Py (soA € [A]), 8 € S 2



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

M. DZamonja, S. Shelah / Annals of Pure and Applied Logic xx (XXXX) XXX—XXX 19

j < 6 andd € N¥, we conpute invs?k (d, Cs), each time obtaining an element [pf]=¥
]
The number of elements §f:]=¥ obtained in this way is
<I|Pil-1S-6 -1 <90.

By the dhoice of6 [and the definition otLlde(u)] we can choos@&* € [u]* suchthat A*
is not equal to any of these sets [is almost disjoint (i.e. has intersection of si2¢0 any

one of these sets]. Lot 2 NA* be as guaranteed to exist by the Construction Lemma,
andlet{a : i < o}, NA" % (N : y < 1) andE* be as in that Lemma. In particular,
theuniverse ofN is A. Suppose that <fandf : N— NJ-* is an elementary embedding,
and let

o def § € E*: (N, N, f)r5<(N,Nf,f)&}

the universe of eacN; ;. N/ is 8

Letg : o — A be given byg(i) = f(&). Note hat g is injective becausd is an
isomorphic embedding. By assumption (4)(i) Dfieorem 2.22.4, there isX = X, € P>
suchthat{f (&) : i € X} € Py [for someY € P; we have

HE@):ieXInY|=«l

Letax < A be as provided by the Construction Lemma, and let
ELE“\ax)N{s: (& :ieX}C4).

Since we hag that he universe olN is A we have{g; : i < o} C A, so asX is a set of
sizex < A we can conlude thatkE is a club ofA. We now choose’ € SsuchthatCs C E,
so in particulaiCs € E* and minCs) > ax.

The Construction Lemma guarantees that thepedsN such that inv{g“'EX}(c, Cs) =
A*. By the Presrvation Lemma we have

nvil @€ (£ (0), Cy) = A

J
[mvma‘) '€X}(f (c), Cs) N A* includes |n\klf(a‘) XY (£ (c), Cs)].

In the case offheorem 2.2ve have a ontradlctlon with the choice of* and we are
done. We are almost done also in the casdloforem 2.4 but we need to know that

invt! @ 1eXINY ¢ o) C5) has sizec. We know that{f(&) : i € X} N Y has sizex,

Ny
but |t is a priai possible that for somé € X we have iny:(f(c), Cs, f(&)) =
J

However, byNote 2.8and the choice oE we have that ing(c, Cs5, &) # ¢ for all i,
and then by the Preservation Lemma,\i,Jm(/f (), Cs, f(&)) # . This finishes the proof

of Theorem2.4 O O

Let us now pass to the promised discussion of the consistency of our assumptions. The
following is a claim about the existence of tight club guessing sequences. If we were to
concentrate on truly tight club guessing sequences then we could quote further results,
for example a theorem of Shelah frohg], so in this senseClaim 2.10is not optimal.
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However for what we need in the main theors tight club guessing sequences suffice; :
hence the claim is formulated in a form that is not optimal but is sufficient, with a gain ot

simplicity in presentation. 3
Claim 2.10. Suppose that < A are regular. 4
(1) If «* < A thenthere is a truly tight(x, «, 1) club guessing sequence. 5
(2) If « =cf(n) < pandut < A then there is a tighfu, ) guessing sequence. 6

Proof. (1) This is proved in [22], 1.3(a)]. An alternative proof is to deduce the statement -
from Claim 1.6. of [L5] (for uncountable) by lettingPs = {Cs} for s € S. 8
(2) If ™™ < A we simply find a truly tight(u™, u™, A) sequence(Es : § € S), which 0
exigs by (1), and then leCs be the firstu elements ofE;. If A = ™, the staémentis 1
proved in [[22], 1.3(b)]. Alternatively, this follows from the partial square for successors:
of regulars proved in [[4], Section 4]. O 12

Remark 2.11. A problematic but natural case for (2) i@Glaim 2.10would be when 1
k = cf(n) < wandi = ut. The conclusion still “usually” holds (i.e. it holds in most 1
natural models of set theory). 15

Let us now comment on the assumptions (3) and (4) usétheorems 2.2nd 2.4. 16
An impatient reader might have accused ushét point of unnecessary generalisation 17
and introduction of too many cardinals into the theorem, only to obscure the real issues.
Why not setk = u = o? The eason is that in this case (2) would prevent us froms
fulfilling (4). For example, suppose that* = x and we are considering the requirements

of Theorem 2.2We can letP of sized %'« be a family of almost disjoint elements of 2
[«]°. Let(gj : j < @) be some sequence enumerating all increasing enumerations of the
elements ofP. Herce for j # j’ the set{y : gj(y) = gj/(y)} has size< «. Suppose =
that P1 and P, exempify that (3) and (4) hold withc = «, and &sume also that (1) 2
and (2) hold withu = «. LetPy = {X, : @ < o® < A}. For everyj < 6 thereis
a(]) < a* suchthat{gj(i) : i € Xu(j)} € P1. Since|Py|, 1 < 6, there isA € Py such 2

thatBa £'(j <0 : {gj() : i € Xu(j)} = A} has size at least™. Since|P,| < A, there =

is B8 suchthat 28
i :a()=B&{gj):ie X} = A} = A" 20
This is a contradiction to the fact that the element®afre almost disjoint. 30

In fact the guation that is natural for us to consider is whets a 4rong limit singular, =
because of the following Claim, vi¢h follows from the “generalise®CH” theorem of =
Shelah proved in17] (Theorem 0.1). 33

Claim 2.12. Suppose that is a grong limit singular cardinal (for examplé = 3,) and =
thatx = cf(x) and A satisfyd € («, A]. Thenfor every large enough regulas € («, 6), 3
there areP1, P, satisfying partg4) of the assumptions dheorenR.2and|P1|, |P2| < A. 36

Proof. By Theorem 0.1 of17] for every large enough regulare (k, 0) there is a family =
P = P(o) of elements of1]° whose size is. and such that any element [0f]° can be
covered by the union ok o members ofP (in the notation of 17], Al°! = A). Letus =
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fix such ac and letP = P(0). Let P> = [o]*, so sinced is a strong limit we have
P2l < 6 < A. LetP1 be the family of all subsets of size of the dements ofP, so
[Pl < A-0F <A.

Suppose now thal : o — A is injective; hace the range df is an element ofA]°. By
the thoice of P and the regularity of there isZ € P such that Rangg) N Z has sizer.
LetY be any subset of of sizex, soY € P1. Letting X be suchthafg(i) : i € X} =Y
we have thaX € P> sinceg is injective. [

~ o o~ w N P

8 Putting togethe€laims2.10and2.12we can see that our non-universality results apply
o In alargenumber of set-theoretic situations that are known to be consistent, and moreover
10 follow just from the assumptions on the cardinal arithmetic:

u Corollary 2.13. Suppose tha# is a grong limit singular cardinal and thak, © and A
12 satisfy

s (1) cf(u) =« <6 <pu<pt <ir=cf),
14 (2) A< ,u,'“.

15 Thenfor any theory T of size: A satisfying the oakroperty, we haveniv(T, 1) > u*.

s Proof. The assumptions in (1) specifically say that- . By Claim 2.1Q assumption
17 (1) of Theorem 2.4s satisfied. ByClaim 2.12 assumptio (4) of Theorem 2.2s satisfied
1s  for all large enough regular € (x, 8). The @nclusion follows byrheorem 2.2 [

19 We shall nowshow that a conclusion sitar to theone obtained irCorollary 2.13can
20 be obtained from an assumption whaosgationis not known to be consistent (i.e. for all
a1 weknow this assumption is true just laF C).

» Claim 2.14. Suppose that and are regular andh > «t®*1. Further suppose that
2 for some ncov(x, kL L ety = o (k5.

2« Thenfor any n showing that«(;, ) holds lettingo = «*" we have that claus¢4) of the
;s assumptions ofheoren®.4 holds with soméP1, P» satisfying|P1|, |P2| < A.

2 Here we use the familiar pcf notation:

2z Notation 2.15. For cardinalsh. > u > 6 > o we let coVi, i, 9, o) be the sdlest
» possible sie of a fanily P of elements ofA]<* such that every element df.]<? is covered
2 by the union of< o elements ofP.

3 Proof. By the doice ofn there isPy C [)»]’(+n with |Pg| < A and such that for every
x A€ [/\]"+n there arex < k™ andA; € Pofori < « suchthat A € Ui, Ai. Ask is
= regular, cf[xt"<, ) < kT Let P, C [0]¢ exempify this. For A € Pg letha be a
3 one-to-one function fronar onto A, and letP; = {ha“B : A € Po, B € P2}. We have
. that|Pi], |P2| < A and thatPy C [A]¥.

3 As for the clause (i) of (4), let an injectivg: o — A be given. By the choice dP,
% therearex < o andA; € Pp fori < « such that Rangg) € U, Ai. Herce for some

7 | <awehavelRangg) N Ai| =o.LetB ={¢ <o : ha (¢) € Rangg)}, soB € [0]°.
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Hence br someB’ € P> we havelBN B| = k. LetY = ha “B’, soY € P1. Nowchoose
X € Pathatincludede < o : g(e) € Y}, sockarly|{g(i): i e X}nY|=«k. O

N

Remark 2.16. In the noation of Claim 2.14 the falure of (x, ) is not known to be
consistent for any, « as above. For example, consider the hypothesis (R)5Hedion 6,
which states:

for everya the st of singular cardinalg < A whose cofinality is uncountable and that
satisfy pp-(ciy) (x) = A is finite,

and the consistency of whose negation is not known. By the “cov versus pp” theorem

~ o o &> w

of [12], Il 5.4, we have that for evermy > 1, 9
COV(h, ke tMHL L ety — SURPP(+ny(X) : X € [k ML AL cf(x) = kM, 10

so Hypothesis (F) implies#, ). One can see from the proof Glaim 2.14that foar our 1
purposes even weaker statements suffice. 12
Corollary 2.17. Suppose that 13
Q) cflu) =k <p<put <A, 14
(2) (*)\,K), and 15
(3) A< Z/{Jlgd(,u,). 16
Thenfor every thery T of size< A satisfying the oalproperty we haveuniv(T, 1) > 17
UJPd(M). 18
Proof. The conclusion follows blaim 2.10 2.14andTheorem 2.4 O 19
Let us also comment on the connection between the assumptidieofems 2.2and 2
2.4.1f Rg < k = cf(u) < nandforalld < u we haved” < u, then 21
ppjpd(ll«) =u* = uJPd(M) 22

(by [12], Chapter VII, Section 1). 23
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