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ABSTRACT

Let F be a non-archimedean local field and let G = G(F ) be the F -points of a
reductive group defined over F . Bushnell and Kutzko have described a strategy to
classify the representations of G via the theory of types, which associates to each
inertial class in the Bernstein spectrum a pair (K, ρ) consisting of a compact open
subgroup K of G and an irreducible representation ρ of K.

We impose the restriction that the residual characteristic of F not be 2.

In this thesis we begin the construction of types associated to certain discrete
series (in particular, to supercuspidal) representations of G = Sp2N (F ) by trans-
ferring Bushnell and Kutzko’s construction for GL2N (F ) to our situation. Certain
objects in the construction, in particular the simple characters, transfer simply by
restriction.

In a certain case, we complete the construction of the type (K, ρ) and hence con-
struct new supercuspidal representations in the wildly ramified case. In this case,
we are also able to describe a (tentative) transfer map from certain supercuspidal
representations of GL2N (F ) to supercuspidal representations of Sp2N (F ), which
associates to each representation π of GL2N (F ) a set Π(π) of representations of
Sp2N (F ).
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INTRODUCTION

The aim of this thesis is to begin the systematic examination of the admissible dual
of the symplectic group Sp2N (F ) over a non-archimedean local field, of residual
characteristic not 2, via the theory of types (see below).

Let F be a non-archimedean local field and let G be a reductive group defined over
F . Let G = G(F ) be the F -points of G and let R(G) be the category of smooth
representations of G.

For i = 1, 2, let Mi be a Levi subgroup of G and let σi be an irreducible su-
percuspidal representation of Mi. We say that the pairs (Mi, σi) are inertially
equivalent if there exist g ∈ G and χ an unramified quasicharacter of M2 such
that M1 = gM2g

−1 and σ2 ⊗ χ ' σg
1 . We write s = [M1, σ1]G for the inertial

equivalence class of (M1, σ1) with respect to this equivalence relation and write B
for the set of such equivalence classes (called the Bernstein spectrum).

For each inertial equivalence class s = [M,σ]G, we can define a subcategory Rs(G)
of R(G), which is the full subcategory of representations π of G such that any
irreducible subquotient of π is equivalent to an irreducible subquotient of the
parabolically induced representation IndG

L,P τ , for some (L, τ) ∈ s, P a parabolic
subgroup of G with Levi factor L. Then we have the Bernstein decomposition
R(G) =

∏
s∈B Rs(G) ([B] or see [BK2]).

In [BK2], Bushnell and Kutzko describe a strategy for classifying the represen-
tations of the group G via types: these are pairs (K, ρ) consisting of a compact
open subgroup K and an irreducible representation ρ of K. The pair (K, ρ) is
then called an s-type, for s = [M,σ]G, if, for π any irreducible representation of
G, π contains ρ (i.e. HomK(ρ, π) 6= 0) if, and only if, π ∈ |Rs(G)|. If this is the
case, then we have an equivalence of categories

Mρ : Rs(G)
'

−−→ H(G, ρ)-Mod,

where H(G, ρ) is the spherical Hecke algebra and H(G, ρ)-Mod is the category of
left modules over H(G, ρ).

So the strategy is first to construct types for each inertial equivalence class s

and then to describe H(G, ρ)-Mod. This has been done for G = GLN (F ) (see
[BK], [BK1]) and, partially, for G a division algebra over F (see [Br1]) and for
G = SLN (F ) (see [BK3], [BK4]).

If s = [M,σ]G and M is a proper Levi subgroup of G then [BK2] §8 describes a
method for approaching the construction of an s-type via covers, if you already
have an [M,σ]M -type (i.e. a type for the decomposition of R(M)). This has
been used to construct types for certain classical groups (see [Bl], [Au]) and, in
this way, types have been constructed for every [M,σ]G, M ¯ G = Sp4(F ) if

9



the residual characteristic is not 2 ([BB]). Types have also been constructed for
principal series representations of split groups ([Ro]).

For s = [G, σ]G (i.e. for supercuspidal representations of G), types have been
constructed in the tame case ([Ad], [Kim], [M2], [M3]).

In this thesis we look at the case G = Sp2N (F ), for F of residual characteristic
not 2, and take some steps toward the construction of types in the arbitrarily
ramified case. The construction procedure follows closely [BK] and we often call
upon results from there. It would also be possible to extend the results here to all
unitary groups (indeed, many of the results are given in this generality), a work
which is postponed to a later date.

At this point, we should remark that, in the recent paper [Ka], Kariyama gen-
eralizes the methods of Carayol (in [Ca]) to the symplectic group, for arbitrarily
ramified tori. We shall discuss the similarities and differences with this work at
the end of this introduction.

Let F be a non-archimedean local field of residual characteristic not 2 and V a 2N -
dimensional F -vector space, equipped with a nondegenerate alternating form h.
This form then induces an adjoint involution on A = EndF (V ). The symplectic
group G can then be seen as the set of g ∈ A such that gg = 1 and the symplectic
Lie algebra g = A− as the set of x ∈ A such that x + x = 0.

A skew stratum in A is a quadruple [A, n, r, β] which is a stratum in the sense of
[BK] (1.5) (i.e. A is a hereditary oF -order in A, n > r are integers and β ∈ P−n,
where P is the Jacobson radical of A) subject to the additional conditions that A

is stable under the involution and β ∈ A−.

In the case of a stratum of the form [A, n, n − 1, β] for GLN (F ), the stratum
corresponds to a character ψβ of the group Un(A) which is trivial on Un+1(A),
where Ur(A), r ∈ Z is the standard filtration (by powers of the Jacobson radical) of
the parahoric subgroup A× of GLN (F ). If a representation π of GLN (F ) contains
the representation ψβ then we say that π contains the stratum.

For the symplectic group G the situation is similar, with the parahoric subgroup
P = A∩G and the standard filtration P r(A) = Ur(A)∩G. In fact, the character
ψβ of Pn(A) is just the restriction of the character ψβ of Un(A).

The construction procedure for simple types begins with a skew simple stratum
[A, n, 0, β] (see chapter 2 or [BK] (1.5.5) for the definition). These skew simple
strata have the property that their intertwining is, in some sense, as small as
possible. We then construct some special characters (called simple characters,
see chapter 6 for definitions) of certain compact open subgroups Hm+1

− (β,A) ⊂
Pm+1(A), for 0 ≤ m ≤ n − 1. In fact, these turn out to be nothing other than
the restrictions of simple characters for GL2N (F ) ([BK] (3.2)). These simple
characters also have a “good” intertwining formula.
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Given a simple character θ of H1
−(β,A), there exists a unique irreducible (Heisen-

berg) representation η of another compact open subgroup J1
−(β,A) ⊃ H1

−(β,A)
which contains θ. This representation also has a “good” intertwining formula.

The final step then consists in extending the representation η to a representation
κ of a compact open subgroup J−(β,A) ⊃ J1

−(β,A) which also has “small” inter-
twining (for GL2N (F ), such a κ is called a β-extension of η). We complete this
step in the case where the field extension F [β]/F is maximal in A (i.e. it is of
degree 2N).

The simple characters and the groups Hk
−(β,A), Jk

−(β,A) are defined by an in-
ductive process. For [A, n, 0, β] a (skew) simple stratum, there exists an integer
r such that the stratum [A, n, r − 1, β] is simple but [A, n, r, β] is not - it is only
pure (see chapter 2 or [BK] (1.5.5)).

The main result in [BK] which allows the induction procedure to be set up says
that there is an element γ such that the stratum [A, n, r, γ] is simple and equivalent
to [A, n, r, β] ([BK] (2.4.1)). Then the objects for the stratum [A, n, 0, β] are
defined in terms of those for [A, n, 0, γ].

In our case, we must prove the analogous result: for [A, n, r, β] a skew pure stratum
there exists an element γ ∈ A− such that the stratum [A, n, r, γ] is skew simple
and equivalent to [A, n, r, β] (see (5.4.7)).

This construction procedure will not produce all types for Sp2N (F ) and we now
discuss the reasons for this.

The idea for GLN (F ) is that, given a positive level representation π of GLN (F ),
we can find a stratum which is contained in π and is fundamental (nondegenerate
in [MP]). i.e. the coset β + P1−n contains no nilpotent elements.

However, for the symplectic group (the situation is similar for other reductive
groups) the results of Moy and Prasad ([MP]) require us to use more than just
the standard filtrations of parahoric subgroups in order to obtain a similar result -
in general the filtrations come from self-dual lattice functions (see [Br3]). Recent
work [PY] has shown that for the symplectic group the only filtrations which are
really needed are the standard ones and Morris’s “C-chain” filtrations (see also
[M3]).

Here we consider only the standard filtrations; however, the results of chapter
1 were written by Morris for C-chain filtrations (indeed they are valid for any
self-dual lattice function filtration) and the results of chapter 2 are, in a sense,
generalizable to this case.

In searching for supercuspidal representations we next require the notion of a split
stratum: if a stratum is split then we want any representation containing it to be
non-supercuspidal (so any supercuspidal will contain a non-split stratum). In the
case of GLN (F ) this is fairly simply expressed in terms of a characteristic polyno-
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mial of the stratum (see [BK] (2.3.3) or chapter 5 for the definition of characteristic
polynomial) - a stratum is split if and only if its characteristic polynomial has at
least two distinct irreducible factors. This definition is the correct one because
every maximal torus T of GLN (F ) contained in no proper Levi subgroup is of the
form T = E× for E a field extension of F of degree N .

Here we use the same definition of a split stratum but this will not be the correct
one in general. As Morris remarked [M3] (1.3) (see also [Kim] (1.1)) the maximal
tori in G = Sp2N (F ) contained in no proper Levi take the form

N1(E1) × · · · × N1(Er),

where Ei/F is a field extension of degree 2ni contained in A, i = 1, . . . , r,∑r
i=1 ni = N , Ei = Ei but is non-trivial on Ei, i = 1, . . . , r, and N1(Ei) =

{e ∈ Ei : ee = 1} are the norm 1 elements of Ei.

So we are restricting considerably the supercuspidals we hope to construct (even
in Sp4(F ) we will miss some). However, we can hope methods similar to those of
“semisimple types” [BK1] may allow us to obtain the remaining supercuspidals
in the future.

We are able to show (as a corollary to the results of chapter 5) that if an irreducible
representation π contains a nonsplit fundamental skew stratum then it contains a
skew simple stratum.

Note that there is a general definition of split stratum for any reductive group due
to Lemaire [Le]. This definition is in terms of the building of G and a lattice-
theoretic translation has yet to be done.

There are several differences between this work and the paper [Ka]. In that paper,
arbitrary maximal anisotropic tori are considered. This has the advantage that
those strata which appear split (by our definition) are not excluded. However,
considering only maximal tori will certainly not be enough - it is not so even for
GLN (F ). Further, only elements which are a sum of minimal elements (see [BK]
(1.4.14)) are considered, which again is insufficient even for GLN (F ). As in this
thesis, only the standard filtrations of parahoric subgroups are considered.

We now give a brief summary of the contents of each chapter.

In chapter 1 we present some preliminary results, most of which are due to Morris
([M1],[M2],[M3]). In chapter 2 we check that we have the exact sequences anal-
ogous to those in [BK] (1.4) and we prove the intertwining theorem for a skew
simple stratum. In chapter 3 we introduce the notion of a residual subspace of a
lattice chain L (due to Bushnell) and prove some results about block decomposi-
tions for A. In chapter 4 we introduce the analogue of the (W,E)-decomposition
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[BK] (1.2.6) for the symplectic Lie algebra and use it to begin the refinement pro-
cess. In chapter 5 we prove some results on Jordan decompositions and prove that
a nonsplit fundamental skew stratum is “contained in” a skew simple stratum (cf.
[BK] (2.3.4)) and that a skew pure stratum is equivalent to a skew simple one (cf.
[BK] (2.4.1)). In chapter 6 we define the groups Hm+1

− (β,A) and Jm+1
− (β,A),

define simple characters and calculate their intertwining. Finally, in chapter 7,
we consider the case where the field extension associated to the skew simple stra-
tum is a maximal extension of F in A; in this case we complete the construction
of the type and examine a tentative transfer map from certain supercuspidals of
GL2N (F ) to supercuspidals of G.
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1
PRELIMINARIES

In this chapter we recall some results concerning self-dual lattice chains and para-
horic subgroups of symplectic and unitary groups. Most of the results in this
section can be found in Morris’s papers [M1], [M2], [M3].

(1.1) Notation

Let F be a non-archimedean field equipped with a Galois involution x 7→ x with
fixed field F0. We allow the possibility that F0 = F . We will use the following
notation throughout:

oF the discrete valuation ring in F ;

pF the maximal ideal of oF ;

kF = oF /pF , the residue class field of F ;

p the residual characteristic of F ;

q = pf = #kF .

(1.1.1) Assumption We assume throughout that p 6= 2.

We have similar notation o0, p0, k0 for the same objects in F0. We also use

ψ0 some fixed continuous character of the additive group of F0,

with conductor p0;

ψF = ψ0 ◦ trF/F0
, where trF/F0

denotes trace;

V an F -vector space of finite dimension N ;

A = EndF (V ).

Note that F/F0 is at worst tamely ramified, since the residual characteristic of F
is not 2, so the character ψF of (F,+) has conductor pF .

If F/F0 is unramified, we put πF = π0, a uniformizer of F0; if F/F0 is ramified,
we choose πF to be a uniformizer of F such that πF + πF = 0 and put π0 = π2

F .
In either case we have πF = ±πF .

Let h : V × V → F be a nondegenerate ε-hermitian form on V , with ε = ±1 (see
[Sch] (7.1.2), for example). If F = F0 we exclude the case ε = 1 (i.e. we rule
out orthogonal groups). For definiteness, assume that h is F -linear in the first
variable. So

h(λv,w) = λh(v, w) = λεh(w, v), for v, w ∈ V, λ ∈ F.
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Then h induces an adjoint involution on A, also denoted , given, for a ∈ A, by

h(av, w) = h(v, aw), for all v, w ∈ V.

Note that for F embedded diagonally in A, the two involutions coincide.

We set G = {g ∈ AutF (V ) : h(gv, gw) = h(v, w) for all v, w ∈ V }
= {g ∈ AutF (V ) : gg = 1}.

This is the group of F0-points of a unitary (or symplectic) group defined over F0.

For X an additive subgroup in A invariant under the involution, define

X− = {x ∈ X : x = −x}, the skew elements;

X+ = {x ∈ X : x = x} , the symmetric elements.

These are both additive groups and if X is an oF -lattice then

X = X+ ⊕ X−

x = 1
2 (x + x) + 1

2 (x − x)

since 2 ∈ o×F . Set tr0 = trF/F0
◦ trA/F : A → F0 where tr denotes trace. Then

this is an orthogonal direct sum decomposition with respect to tr0 since, for x ∈
X−, y ∈ X+, we have

tr0(xy) = trF/F0
(trA/F (xy)) = trF/F0

(trA/F (xy))

= trF/F0
(trA/F (y x)) = −tr0(yx) = −tr0(xy),

and hence tr0(xy) = 0.

Note that A− is just the Lie algebra of G.

For L an oF -lattice in V , define the dual lattice of L to be

L# = {x ∈ V : h(x, L) ⊂ pF }.

Then L## = L and L# can be identified with Hom(L, pF ) by the non-degeneracy
of h. For L = {Lk : k ∈ Z} an oF -lattice chain, define the dual chain

L# = {L#
k : k ∈ Z}.

We say that L is self-dual if L# = L.

(1.1.2) Lemma Let L be a self-dual lattice chain in V . Then there exists a

unique d ∈ Z such that L#
k = Ld−k for k ∈ Z.

Proof: L#
k = Lk′ for some k′ = k′(k) ∈ Z and L##

k = Lk so k 7→ k′ is an
order-reversing bijection Z → Z. So it is of the form k 7→ d − k. ¥

In fact, by changing the indexing of the lattices in L (so that L[ d+1
2 ] becomes L0),

we may assume that d = 0 or −1.
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(1.2) Hereditary orders

Let L be a lattice chain in V and let A = End 0
oF

(L) be the associated hereditary
oF -order in A (see [BK] (1.1)). Let P be the Jacobson radical of A. Then P is
invertible as a fractional ideal of A and the Pn, for n ∈ Z, give a filtration of A.
There is also a valutation map νA associated to the hereditary order A, given by

νA(x) = max{n ∈ Z : x ∈ Pn}, x ∈ A,

with the understanding that νA(0) = ∞.

(1.2.1) Lemma Let L be a self-dual lattice chain in V and let A be the associated
hereditary oF -order, with Jacobson radical P. Then we have Pn = Pn, for n ∈ Z.

Proof: Choose x ∈ Pn ; so xLk ⊂ Lk+n for all k ∈ Z. Let d be the unique integer
such that L#

k = Ld−k for k ∈ Z given by (1.1.2). Fix k ∈ Z and let v ∈ Lk; then

h(xv, L#
k+n) = h(v, xLd−k−n) ⊂ h(v, Ld−k) ⊂ pF

so xv ∈ L##
k+n = Lk+n. This is true for all k ∈ Z so x ∈ Pn. ¥

In particular, in the situation of (1.2.1), we have A = A and, for n ∈ Z, we may
define the additive groups Pn

− and Pn
+ as in (1.1) above; so P = Pn

− ⊕ Pn
+.

(1.2.2) Lemma ([M3] (2.8)) Let A be a hereditary oF -order in A such that
A = A and let b be a left ideal in A. Suppose that x ∈ b satisfies x = ηx for
η = ±1. Then x = y + ηy for some y ∈ b.

Proof: 2 ∈ o×F so 1
2 .1A ∈ A. Then set y = ( 1

2 .1A)x ∈ b. ¥

Let A be a hereditary oF -order in A such that A = A and let b ⊂ P be a
left ideal in A such that b = b. We now define the Cayley transform C on
{x ∈ A− : det(1 − x

2 ) 6= 0} by

C(x) = (1 + x
2 )(1 − x

2 )−1.

It is easy to check that im C ⊂ G. Moreover, if x ∈ b− then C(x) exists since

bn ⊂ Pn ⊂ p
j(n)
F A, for some j(n) ∈ Z, and j(n) → ∞ as n → ∞ so (1 − x

2 )−1 can
be defined by the usual power series expansion; then also C(x) ∈ (1+b)∩G. Note
that this is not quite the same Cayley transformation as that used by Morris in
[M1].

(1.2.3) Lemma (cf. [M1] (2.13)(c)) With notation as above, we have a
bijection

b− → (1 + b) ∩ G

x 7→ C(x)

Proof: The map is certainly injective since, if u ∈ (1 + b) ∩ G then, for u = C(x),
we must have x = −2(1 − u)(1 + u)−1.
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Now let u ∈ (1+b)∩G; then u = 1+y, for some y ∈ b, so 1+u = 2+y = 2(1+ y
2 ).

Then 2 ∈ o×F implies y
2 ∈ b so 1 + u is indeed invertible and we have

−2(1 − u)(1 + u)−1 − 2(1 − u)(1 + u)−1 = 0,

(1 + u)(1 − u) + (1 − u)(1 + u) = 0,

2 = 2uu,

uu = 1.

So x is indeed skew and x = y(1 − y
2 + (y

2 )2 − . . . ) ∈ b; so x ∈ b−. ¥

We now give a multiplicative version of (1.2.2)

(1.2.4) Lemma Let A be a hereditary oF -order in A such that A = A and let
b ⊂ P be a left ideal in A. Let u ∈ 1 + b ⊂ U1(A).
(i) If b = b and uu = 1 then there exists v ∈ 1 + b such that u = vv−1.
(ii) If u = u then there exists v ∈ 1 + b such that u = vv.

Proof: (i) This follows from (1.2.3) since u ∈ (1 + b) ∩ G so u = C(x) for some
x ∈ b−. Then we put v = 1 + x

2 .

(ii) For each n ∈ N, we will find inductively vn ∈ 1+b such that vn−vn−1 ∈ b(n−1)

and vnvn ≡ u mod bn. Then, as A is compact and bn ⊂ Pn, there exists v ∈ A

such that vn → v; then v ∈ 1 + b and vv = u as required.

We can take v1 = 1, so assume we have found vn as required, i.e. v−1
n uvn

−1 ≡ 1

mod bn. Write v−1
n uvn

−1 = 1 + x, x ∈ bn; then v−1
n uvn

−1 = v−1
n uvn

−1 implies
x = x. By (1.2.2), there exists y ∈ bn such that y + y = x. We obtain

(1 − y)v−1
n uvn

−1(1 − y) = 1 + x − y − y + O(b2n) ∈ 1 + b(n+1)

So we set vn+1 = vn(1 − y)−1. ¥

In particular, we will apply the preceding two lemmas to b = Pn.

Before proceeding we give some further preliminary results which will be useful
later.

(1.2.5) Lemma ([M4] (6.1)) Let X ⊃ Y be oF -lattices in A which are stable
under the involution, so that X/Y inherits an involution and (X/Y )− is defined.
Then
(i) the natural map I− → (I/J)− is surjective;

x 7→ x + J
(ii) the map I−/J− → (I/J)− is an isomorphism.

x + J− 7→ x + J

Proof: (i) Let y + J ∈ (I/J)−, so that y + y = a ∈ J . Since a = a, (1.2.2) implies
that a = b + b for some b ∈ J . Then set y′ = y − b. Then part (ii) is clear. ¥

There is an analogous lemma in the case of (X/Y )+. Further

X/Y = (X/Y )− ⊕ (X/Y )+

x + Y =1
2 (x − x) + Y + 1

2 (x + x) + Y
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(1.2.6) Lemma Let X,Y be additive subgroups of A invariant under the involu-
tion. Then

(X + Y )− = X− + Y−

Proof: We clearly have the containment ⊃. Let x + y ∈ (X + Y )−; so x + x =
−(y + y). We have x + x ∈ (X ∩ Y )+ and, by (1.2.2), there exists z ∈ (X ∩ Y )
such that x + x = z + z. Then set x′ = x − z, y′ = y + z. ¥

We now give a multiplicative version of the previous lemma.

(1.2.7) Lemma Let K,K ′ be subgroups of GL2N such that K ∩ K ′ = 1 + b,
where b is a left ideal in some hereditary oF -order A, both invariant under the
involution and with b ⊂ P = rad A. Then (K.K ′) ∩ G = K ∩ G . K ′ ∩ G.

Proof: Let kk′ ∈ (K1K2) ∩ G. Then k′k′ = k−1k−1 lies in K1 ∩ K2 and, by
(1.2.4)(ii), there exists u ∈ K1 ∩ K2 such that k′k′ = uu. Then we set k1 = ku,
k′
1 = u−1k′. ¥

(1.3) Parahoric subgroups and filtrations

Let A be a hereditary oF -order in A; then we have a parahoric subgroup in
GL2N (F ) given by U(A) = A×, the groups of units in A. This has standard
filtration given by

Un(A) = 1 + Pn for n ≥ 1.

Set P = P (A) = A ∩ G, a parahoric subgroup of G; this comes equipped with its
standard filtration Pn = Pn(A) = {x ∈ P : x ≡ 1 mod Pn} = Un(A) ∩ G, for
n ≥ 1. This gives a filtration of P (A) by normal open subgroups and [Pn, Pm] ⊆
Pm+n for m,n ∈ Z. Then we can apply (1.2.3) to give

(1.3.1) Proposition ([M1] (2.13)(c)) For each n ≥ 1, the Cayley map provides
a bijection Pn

− → Pn; x 7→ C(x).

(1.3.2) Corollary ([M3] (2.1.4)(b)) If 2n ≥ m ≥ n ≥ 1, the map Pn
− → Pn

in (1.3.1) induces an isomorphism of abelian groups

Pn
−/Pm

− ' Pn/Pm

x 7→ 1 + x

Proof: We only need to check that the map is indeed a group homomorphism but
this follows since 2n ≥ m. ¥

As P is stable under the involution, A/P is a kF -algebra which inherits an invo-
lution. Set

P (A) = {x ∈ A/P : xx = 1}

= {x + P : xx − 1 ∈ P}

(1.3.3) Proposition ([M3] (2.11)) The natural map P → P (A) is surjective.

19



Proof: Suppose x ∈ A and x + P ∈ P (A). Let x1 = x. For each n, we will find
inductively xn ∈ A such that xn − xn−1 ∈ Pn−1 and xnxn ≡ 1 mod Pn. Then, as
A is compact, there exists t ∈ A such that xn → t; then t − x ∈ P and tt = 1, i.e.
t ∈ G ∩ A = P and t maps to x + P.

We have x1 already so assume we have found xn as required, for some n ≥ 1.
Then xnxn − 1 = xnxn − 1 so, applying (1.2.2), there exists a ∈ Pn such that

xnxn = 1 + a + a.

Then (1 + a)(1 + a) = xnxn + aa and aa ∈ P2n ⊂ Pn+1 so

1 ≡ ((1 + a)−1xn)((1 + a)−1xn) mod Pn+1.

So set xn+1 = (1 + a)−1xn. ¥

(1.3.4) Corollary ([M3] (2.14)(a)) The natural map in (1.3.3) induces an
isomorphism P/P 1 ' P (A)

Proof: Consider the natural map ϕ : P ↪→ A → A/P. By (1.3.3), imϕ = P (A).
Further

ker ϕ = {x ∈ P : x + P = 1 + P}

= {x ∈ P : x ∈ 1 + P} = P 1. ¥

Then we see that P (A) is the reductive quotient of the parahoric subgroup P .
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(1.4) Characters

Recall that tr0 = trF/F0
◦ trA/F . If X is an oF -lattice in A (hence an o0-lattice in

A) define
X∗ = {a ∈ A : tr0(aX) ⊂ p0},

which is also an oF -lattice. Since 2 ∈ o×F and F/F0 is of degree at most 2, F is at
worst tamely ramified over F0 so

X∗ = {a ∈ A : trA/F (aX) ⊂ pF }

which is the same as the usual definition of X∗ (as in [BK] (1.1.4)). In particular

(Pn)∗ = P1−n , for all n ∈ Z

(see [Bu] p.190).

If X is also stable under the involution, we can define

(X−)∗ = {a ∈ A− : tr0(aX−) ⊂ p0}.

Then, as the direct sum X = X− ⊕X+ is orthogonal with respect to tr0, we have

(X−)∗ = (X∗)−

and, in particular,
(Pn

−)∗ = P1−n
− .

Recall that ψ0 is a character of the additive group of F0 with conductor p0. As in
[W] (II.5), the map

A− → (A−)̂

x 7→ (y 7→ ψ0(tr0(xy)))

is an isomorphism of abelian groups, where ˆ denotes the Pontrjagin dual.

Given an o0-lattice L in A−, set L
ˆ

= {χ ∈ (A−)̂ : χ(L) ≡ 1}. Then the identifi-

cation A− → (A−)̂ enables us to identify L
ˆ

with L∗. Moreover, if L1 ⊃ L2 then

(L1/L2)̂ ' L2ˆ
/L1ˆ

' L∗
2/L∗

1. We have obtained:

(1.4.1) Lemma ([M2] (4.19)) If 2n ≥ m ≥ n ≥ 1 there is a P -equivariant
isomorphism of abelian groups

P1−m
− /P1−n

− →̃ (Pn/Pm)̂

b + P1−n
− 7→ ψb

where ψb(p) = ψ0(tr0(b(p − 1))) for p ∈ Pn.

Then ψb is the restriction to Pn of the character ψb of Un(A) defined in [BK]
(1.1.6), since ψ0 ◦ tr0 = ψF ◦ trA/F and ψF has conductor pF .
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2

EXACTNESS AND INTERTWINING

In this chapter we show that the exact sequences of [BK] (1.4) restrict well to the
symplectic Lie algebra. This will follow from the fact that if E/F is a subfield of A
stable under the involution then there is a tame corestriction on A relative to E/F
which commutes with the involution. (See below or [BK] (1.3) for definitions.).

These exact sequences, together with the formula for the intertwining in GL2N

of simple strata [BK] (1.5.8), allow us to calculate the intertwining in G of skew
simple strata, showing that it is, in some sense, as small as possible. Note that a
similar intertwining theorem has been obtained in the case E/F tamely ramified
by Morris ([M3] (3.13)).

(2.1) Exact Sequences

Let E/F be a subfield of A such that E = E and let E0 be the fixed field of
the involution. Let A be a hereditary oF -order in A which is invariant under the
involution and suppose E× normalizes A. Then we define

B = EndE(V ), the A-centralizer of E;

B = A ∩ B, Q = P ∩ B.

Then, by [BK] (1.2.4), B is a hereditary oE-order with Jacobson radical Q and
Qn = Pn ∩ B. Note also that E = E implies that B = B.

Recall, from [BK] (1.3.3), that a tame corestriction on A (relative to E/F ) is
a (B,B)-bimodule homomorphism s : A → B such that s(A) = A ∩ B for any
hereditary oF -order A in A which is normalized by E×. By [BK] (1.3.2), a tame
corestriction is uniquely determined up to multiplication by a unit u ∈ o×E . For
E/F tamely ramified, we can take s to be orthogonal projection, relative to the
pairing (x, y) 7→ trA/F (xy) (see [BK] (1.3.8)(ii)).

We now prove that there is a tame corestriction which commutes with the involu-
tion on A.

(2.1.1) Lemma There exists a tame corestriction on A relative to E/F such
that s(x) = s(x) for all x ∈ A.

Proof: Recall that we have the character ψ0 of the additive group of F0, with
conductor p0; then ψF = ψ0 ◦trF/F0

is a character of the additive group of F , with
conductor pF since F/F0 is at worst tamely ramified. We put ψA = ψF ◦ trA/F =
ψ0 ◦ tr0, as in (1.1), where tr0 = trF/F0

◦ trA/F .

Similarly, let ψE0 be a character of the additive group of E0, with conductor pE0 ;
then ψE = ψE0 ◦ trE/E0

is a character of the additive group of E, with conductor

pE . We put ψB = ψE ◦ trB/E = ψE0 ◦ trE
0 , where trE

0 = trE/E0
◦ trB/E .
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As in [BK] (1.3.4), there exists a unique map s : A → B such that

ψA(ab) = ψB(s(a)b), a ∈ A, b ∈ B

and this is a tame corestriction on A relative to E/F . Then, for a ∈ A−, b ∈ B+,
we have ψB(s(a)b) = ψA(ab) = ψ0(tr0(ab)) = ψ0(0) = 1 as A−, A+ are orthogonal
with respect to tr0. Hence s(a) is orthogonal to B+ with respect to trE

0 , that is,
s(a) ∈ B−. Similarly, we have that s(A+) ⊂ B+.

Now, for a ∈ A, a = a+ + a− with a+ ∈ A+ and a− ∈ A− so we have

s(a) = s(a+) + s(a−)

= s(a+) − s(a−)

= s(a+ − a−) = s(a)

as required. ¥

From now on, let s be a tame corestriction given by (2.1.1); it is uniquely de-
termined up to multiplication by u ∈ o×E such that u = u. Then s splits as
s− : A− → B− and s+ : A+ → B+.

Now let β ∈ A− be such that the algebra E = F [β] is a field and consider the
adjoint map

aβ : A → A

x 7→ βx − xβ

This is a (B,B)-bimodule homomorphism with kernel B. Then

aβ(x) = βx − xβ = xβ − βx = −xβ + βx = aβ(x)

So aβ also splits as a−
β : A− → A− and a+

β : A+ → A+. In particular we have an
infinite exact sequence

· · ·
s

−→ A
aβ

−→ A
s

−→ A
aβ

−→ · · ·

which splits as

· · ·
s−

−→A−

a−

β

−−→A−
s−

−→A−

a−

β

−−→ · · ·

· · ·
s+
−→A+

a+
β

−−→A+
s+
−→A+

a+
β

−−→ · · ·

Let β be as above and let k ∈ Z. Define

Nk = Nk(β,A) = {x ∈ A : aβ(x) ∈ Pk}.

Then Nk = Nk and Nk is an oF -lattice in A. In particular, Nk also splits as
Nk

+ ⊕ Nk
−.

23



Let n = −νA(β); then aβ(A) ⊂ P−n whence Nk = A for k ≤ −n. Suppose E 6= F .
Define

k0 = k0(β,A) = max{k ∈ Z : Nk 6⊂ B + P}

which exists, by [BK] (1.4.4), and we have k0 ≥ −n. If E = F then set k0(β,A) =
−∞.

(2.1.2) Remark Let e = e(E|F ) be the ramification index and ν = νE(β). We
say the element β is minimal if it satisfies
(i) gcd(ν, e) = 1;
(ii) π−ν

F .βe + pE generates the residue class field extension kE/kF .
Then, by [BK] (1.4.15), k0(β,A) = −n if, and only if, β is minimal. Moreover,
we then have

Nr−n(β,A) = B + Pr for r ≥ 0

and, in particular, Nk0 = N−n = A.

(2.1.3) Proposition ([BK] (1.4.7)) Let k, r ∈ Z and suppose k ≥ k0(β,A) , r ≥
1. Then the following sequences are exact:

0 → Nk/Nk+r
aβ

−→ Pk/Pk+r s
−→ Qk/Qk+r → 0

0 → Nk/B
aβ

−→ Pk s
−→ Qk → 0

By (1.2.5) all the terms in the exact sequence are stable under the (induced)
involution and split as a sum of skew elements and symmetric elements. Further,
we have seen that aβ and s both preserve the skew elements and the symmetric
elements. Therefore these exact sequences split in two. In particular, we have:

(2.1.4) Proposition Let k, r ∈ Z and suppose k ≥ k0(β,A), r ≥ 1. Then the
following sequences are exact:

0 → N−
k /N−

k+r

a−

β

−−→ Pk
−/Pk+r

−

s−

−→ Qk
−/Qk+r

− → 0

0 → N−
k /B−

a−

β

−−→ Pk
−

s−

−→ Qk
− → 0

Note also that we have

QmNk = Nk Qm = NkQm

= QmNk by [BK] (1.4.8)

so, from [BK] (1.4.10) and (1.2.5), we also have

(2.1.5) Corollary For m, k ∈ Z , k ≥ k0(β,A) the following sequences are exact:

0 → (QmNk)−/Qm
−

a−

β

−−→ Pm+k
−

s−

−→ Qm+k
− → 0
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0 → (QmNk)−/(QmNk+1)−
a−

β

−−→ Pm+k
− /Pm+k+1

−

s−

−→ Qm+k
− /Qm+k+1

− → 0

Note that if E/F is tamely ramified then, taking s to be the projection pr:A → B,
all these exact sequences are split by the inclusion B ↪→ A.

Recall from [BK] (1.3.10) that a lattice L is called E-exact if s(L) = L ∩ B.

(2.1.6) Lemma Let γ ∈ B, r ∈ Z; then L = Pr + γPrγ−1 is E-exact.

Proof: From [BK] (1.3.16), the lattice Lγ = Prγ + γPr is E-exact and, further,
an Ad (E×)-invariant (A(E), oE)-bilattice. Then L = (Lγ)γ−1 is also an Ad (E×)-
invariant (A(E), oE)-bilattice, and hence is E-exact by [BK] (1.3.12). ¥

In particular, if γ ∈ B ∩ G then (Pr
+ + γPr

+γ−1) ∩ B = (Pr + γPrγ−1)+ ∩ B =
(Qr + γQrγ−1)+ = Qr

+ + γQr
+γ−1.

Let k = k0(β,A) and write N for Nk0(β,A). Finally in this section we present the
multiplicative analogue of (QmN)− for the symplectic group G. For m ≥ 1 define

Qm = (1 + QmN) ∩ G.

Then, by (1.2.3), there is a bijection (QmN)− → Qm given by x 7→ C(x). Note
that for β minimal over F , N = A so Qm = Pm(A).

(2.2) Intertwining of simple strata

Recall (from [BK] (1.5)) that a stratum in A is a 4-tuple [A, n, r, b] consisting of
a hereditary oF -order A in A, integers n ≥ r, and an element b ∈ A such that
νA(b) ≥ −n. If [Ai, ni, ri, bi] are strata in A, i = 1, 2, and Pi = rad(Ai), we say
they are equivalent, denoted

[A1, n1, r1, b1] ∼= [A2, n2, r2, b2], if

b1 + P−r1
1 = b2 + P−r2

2 .

If they are equivalent then, by [BK] (1.5.2), A1 = A2, r1 = r2 and, if we have
νAi

(bi) = −ni for i = 1, 2, also n1 = n2.

(2.2.1) Definition A stratum [A, n, r, b] in A is called skew if b + b = 0 and A

is invariant under the involution on A.

(2.2.2) Definition ([BK] (1.5.5)) Let [A, n, r, β] be a stratum in A. It is pure
if
(i) the algebra E = F [β] is a field,
(ii) E× ⊂ K(A),
(iii) νA(β) = −n.
It is called simple if, in addition,
(iv) r < −k0(β,A).
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We now define the formal intertwining in G of a skew stratum [A, n, r, b]

IG[A, n, r, b] = {x ∈ G : x−1(b + P−r
− )x ∩ (b + P−r

− ) 6= ∅}

(2.2.3) Theorem Let [A, n, r, β] be a simple stratum with β ∈ A− and A stable
under the involution . Write k = k0(β,A) and N = Nk(β,A) and, for m ≥ 1,
define Qm as in (2.1). Then

I = IG[A, n, r, β] = Q−(k+r)(B ∩ G)Q−(k+r)

Before proceeding with the proof, we remark that B ∩ G is a unitary group (we
will examine it more closely in chapter 4). It will therefore be necessary for us
to prove many results (concerning refinement of strata etc.) for unitary groups as
well as for symplectic groups.

Proof: Let J = {x ∈ G : x−1(b + P−r)x ∩ (b + P−r) 6= ∅}. This is the GL(2N)-
intertwining of the stratum (in the sense of [BK] (1.5.7)) contained in G. Clearly
I ⊂ J . Suppose, on the other hand, x ∈ J ; then there exist bi ∈ P−r, i = 1, 2
such that

x(β + b1)x
−1 = β + b2.

We now write bi = ui + vi, ui ∈ P−r
+ , vi ∈ P−r

− , for i = 1, 2 so

x(β + v1)x
−1 + xu1x

−1 = (β + v2) + u2.

Now xA−x−1 ⊂ A− and xA+x−1 ⊂ A+ so A = A− ⊥ A+ implies

x(β + v1)x
−1 = β + v2,

i.e. x ∈ I. So we see that I = J = (1 + QdN)B×(1 + QdN)∩G by [BK] (1.5.8),
where d = −r − k > 0.

We continue with two lemmas:

(2.2.4) Lemma We have

(1 + QdN)B×(1 + QdN) ∩ G ⊂ (1 + QdN)(B ∩ G)(1 + QdN).

Proof: Let t ∈ (1+QdN)B×(1+QdN)∩G with νA(t) = m. So t = (1+x1)
−1b(1+

y1) with b ∈ B×, x1, y1 ∈ QdN ⊂ Pd. Then we have

(1 + x1)t = b(1 + y1),

(1 + x1)(1 + x1) = b(1 + y1)(1 + y1)b,

bb − 1 = x1 + x1 + x1x1 − b(y1 + y1 + y1y1)b.

So bb ≡ 1 (mod Pd
+ + bPd

+b). We will find inductively bn ∈ Ud(B)bUd(B) such
that

(2.2.5) bnbn ≡ 1 (mod Pnd
+ + bnPnd

+ bn)
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and bn+1 ≡ bn (mod Pm+nd). Granting this, we have νA(bn) = νA(t) = m
so bnbn ≡ 1 (mod Pnd

+ + Pnd+2m
+ ). Then the sequence {bn} converges to b′ ∈

Ud(B)bUd(B) (since the double coset is compact) and b′b′ = 1. So t ∈ (1 +
QdN)(B ∩ G)(1 + QdN) since Qd ⊂ QdN.

We are reduced to proving (2.2.5). The case n = 1 is immediate: take b1 = b.
So let n ≥ 1 and assume we have found the required element bn. We write
bn = (1 + x)t(1 + y)−1 with x, y ∈ QdN ⊂ Pd. Then, as above,

bnbn − 1 = x + x + xx − bn(y + y + yy)bn

Now bnbn − 1 ∈ (Pnd
+ + bnPnd

+ bn) ∩ B = Qnd
+ + bnQnd

+ bn by the remark following

(2.1.6). So there exist v′, w′ ∈ Qnd
+ such that bnbn − 1 = v′ − bnw′bn. Then let

v = 1
2v′, w = 1

2w′; v, w ∈ Qnd
+ since 2 ∈ o×F and

bnbn − 1 = v + v − bn(w + w)bn = x + x + xx − bn(y + y + yy)bn

We set bn+1 = (1 − v)bn(1 − w)−1. Then

v + v − bn+1(w + w)bn+1

=(v + v) − (1 − v)bn(1 − w)−1(w + w)(1 − w)−1bn(1 − v)

≡(1 − v)[(v + v) − bn(1 − w)−1(w + w)(1 − w)−1bn](1 − v) (mod P2nd
+ )

≡(1 − v)[v + v − bn(w + w)bn](1 − v) (mod P2nd
+ + bn+1P

2nd
+ bn+1)

≡(1 − v)[x + x + xx − bn(y + y + yy)bn](1 − v) (mod P2nd
+ + bn+1P

2nd
+ bn+1)

≡(1 − v)(x + x + xx)(1 − v) − (1 − v)bn(1 − w)−1(y + y + yy)(1 − w)−1bn(1 − v)

(mod P
(n+1)d
+ + bn+1P

(n+1)d
+ bn+1)

≡x + x + xx − bn+1(y + y + yy)bn+1 (mod P
(n+1)d
+ + bn+1P

(n+1)d
+ bn+1)

Now (1 − v)(1 + x)t = bn+1(1 − w)(1 + y) so, misappropriating the O-notation in
the obvious way, we get

(1 − v)(1 + x)(1 + x)(1 − v) = bn+1(1 − w)(1 + y)(1 + y)(1 − w)bn+1,

hence 1 − v − v + x + x + xx + O(P
(n+1)d
+ ) =

bn+1bn+1 − bn+1(−w − w + y + y + yy + O(P
(n+1)d
+ ))bn+1

and bn+1bn+1 ≡ 1 (mod P
(n+1)d
+ + bn+1P

(n+1)d
+ bn+1).

This completes our induction and the proof of the lemma. ¥

(2.2.6) Lemma Let t ∈ G; then

(1 + QdN)t(1 + QdN) ∩ G = QdtQd.
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Proof: Let h ∈ (1+QdN)t(1+QdN)∩G and νA(t) = m. We will find inductively
tn ∈ QdhQd such that

(2.2.7) tn ≡ t (mod QndNtn + tQndN).

Granting this, we have νA(tn) = νA(t) = m so tn ≡ t (mod Pnd+m). Then the
sequence {tn} converges to t. The double coset QdhQd is compact in G so we
conclude that t ∈ QdhQd, or h ∈ QdtQd, as required.

So we are reduced to proving (2.2.7). The case n = 1 is immediate; take t1 = h.
So let n ≥ 1 and assume we have found the required element tn satisfying (2.12).
Then there exist x, y ∈ QndN such that tn = t−xtn + ty, i.e. (1+x)tn = t(1+ y),
and we have

(1 + x)(1 + x) = t(1 + y)(1 + y)t,

hence x − tyt ≡ −(x − tyt) (mod (Q2ndN)+ + t(Q2ndN)+t),

i.e. x − tyt ∈ (QndN + tQndNt)− + (Q2ndN)+ + t(Q2ndN)+t. Now we have
(QndN + tQndNt)− = (QndN)− + t(QndN)−t so there exist v, w ∈ (QndN)− such
that

(2.2.8) x − tyt ≡ v − twt (mod Q2ndN + tQ2ndNt).

We set tn+1 = C(v)tnC(−w) ∈ QdhQd. Then, from (2.2.8), we have

(x − v)t ≡ t(y − w) (mod Q2ndNt + tQ2ndN)

i.e. (x − v)(1 + x)C(−v)tn+1C(w)(1 + y)−1 ≡ t(y − w)

(mod Q2ndNt + tQ2ndN)

i.e. (x − v)(1 + x)C(−v)tn+1 ≡ t(y − w)(1 + y)C(−w)

(mod Q2ndNtn+1 + tQ2ndN)

i.e. (x − v)tn+1 ≡ t(y − w) (mod Q2ndNtn+1 + tQ2ndN)

Then (1 + x)C(−v)tn+1 = t(1 + y)C(−w) implies

(1 + (x − v) + Q2nd)tn+1 = t(1 + (y − w) + Q2nd)

and tn+1 ≡ t (mod Q2ndNtn+1 + tQ2ndN).

Now n ≥ 1 so tn+1 ≡ t (mod Q(n+1)dNtn+1 + tQ(n+1)dN) as required. ¥

Returning to the proof of the theorem, we have

I = (1 + QdN)B×(1 + QdN) ∩ G

= (1 + QdN)(B ∩ G)(1 + QdN) ∩ G, by (2.2.4),

= Qd(B ∩ G)Qd, by (2.2.6). ¥

Note that, following the proof of (2.2.6), we find

(2.2.9) Un(A)tUn(A) ∩ G = Pn(A)tPn(A),
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for t ∈ G and n ≥ 1. Further, replacing A with B, A with B etc. we have

(2.2.10) Un(B)tUn(B) ∩ G = Pn(B)tPn(B),

for t ∈ B ∩ G, n ≥ 1 and where Pn(B) = Un(B) ∩ G = Pn(A) ∩ B.

(2.2.11) Proposition Let t ∈ B ∩ G, n ≥ 1. Then

Pn(A)tPn(A) ∩ B = Pn(B)tPn(B).

Proof: Pn(A)tPn(A) ∩ B = Un(A)tUn(A) ∩ G ∩ B, by (2.2.9),

= Un(B)tUn(B) ∩ G, by [BK] (1.6.1),

= Pn(B)tPn(B), by (2.2.10). ¥
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3
RESIDUAL SUBSPACES

In this chapter we introduce the notion of a residual subspace of a lattice chain
in V . This is due to Bushnell, as are the results (3.1.1–9). These will be seen to
correspond to subspaces of V which split L in some sense. They will play a role
similar to the Z/eZ-graded algebras in [M3].

We can then apply the results obtained about residual subspaces to find “nice”
block decompositions for the hereditary order associated to a self-dual lattice chain
in V (cf. [BK] (2.5.1)). In particular, the involution on A will permute the blocks
with respect to this decomposition.

This chapter is given in the generality of unitary groups so, as in (1.1), h will be
an ε-hermitian from on V .

(3.1) Residual subspaces

Let L be an oF -lattice chain in V of period e. Then we have an additive norm νL

(in the sense of [BT] (1.1)) on V associated to L given by

νL(v) = sup
k∈Z

{k : v ∈ Lk}.

Then νL satisfies the following properties:

νL(xv) = eνF (x) + νL(v) for x ∈ F×, v ∈ V ;

νL(v + w) ≥ inf(νL(v), νL(w)) for v, w ∈ V ;

νL(v) = ∞ ⇐⇒ v = 0.

(3.1.1) Definition An oF -basis of L is a basis {v1, . . . , vN} of V which splits
νL, in the sense that

νL(
N∑

i=1

xivi) = inf
1≤i≤n

νL(xivi).

This is not the usual definition of an oF -basis, as in [BK] (1.1.7), but is somewhat
weaker. Indeed, for 0 ≤ i ≤ e − 1, let {vij : 1 ≤ j ≤ dimkF

Li/Li+1} be a basis for
Li/Li+1, and choose v̂ij ∈ V such that v̂ij +Li+1 = vij . Then {v̂ij} is an oF -basis
of L in the sense of [BK].

(3.1.2) Lemma With notation as above, {v̂ij} is an oF -basis of L in the sense
of (3.1.1).

Proof: Let v =
∑

xij v̂ij and let l = inf νL(xij v̂ij). Then certainly νL(v) ≥ l.
Let {(ik, jk) : 1 ≤ k ≤ r} be the set of indices for which νL(xij v̂ij) = l. Since
0 ≤ νL(v̂ij) ≤ e − 1 for all i, j, we have

νL(v̂i1j1) = · · · = νL(v̂irjr
);

νF (xi1j1) = · · · = νF (xirjr
).
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So we may assume νF (xikjk
) = 0 and l = νL(v̂ikjk

) for 1 ≤ k ≤ r. However,
by definition, the v̂ikjk

+ Ll+1 are linearly independent over kF so v 6∈ Ll+1 and
νL(v) = l. ¥

Conversely, an oF -basis {v1, . . . , vN} of L in the sense of (3.1.1) is an oF -basis in
the sense of [BK] if and only if 0 ≤ νL(vi) ≤ e − 1, for 1 ≤ i ≤ N .

(3.1.3) Definition Let L be an oF -lattice chain in V . A residual subspace of L

is a family V = {Vk : k ∈ Z} such that
(i) Vk is a kF -subspace of Lk/Lk+1 for each k ∈ Z
(ii) for any x ∈ F× with valuation ν = νF (x), we have xVk = Vk+eν , where
e = e(L).

Since, by definition, the Vk are kF -subspaces, it is enough to verify (ii) for πF ,
rather than every x ∈ F×. It is easy to produce these residual subspaces. Let W
be an F -subspace of V , and define

L(W )k =
W ∩ Lk

W ∩ Lk+1
=

(W ∩ Lk) + Lk+1

Lk+1
, k ∈ Z.

The family {L(W )k : k ∈ Z} is then surely a residual subspace of L.

(3.1.4) Proposition Let {Vk : k ∈ Z} be a residual subspace of the lattice chain
L. Then:
(i) there exists a subspace W of V such that L(W )k = Vk for all k ∈ Z;
(ii) for any subspace W satisfying (i), we have

dimF (W ) =

e−1∑

i=0

dimkF
(Vi);

(iii) let W 1, W 2 be subspaces of V . Then L(W 1)k = L(W 2)k, for all k ∈ Z, if
and only if there exists x ∈ U1(A) such that W 2 = xW 1.

Proof: For each i, 0 ≤ i ≤ e− 1, choose a basis {vij} of Vi and let v̂ij ∈ V be such
that v̂ij + Li+1 = vij . Let W be the F -span of the v̂ij . Then {v̂ij} is part of an
oF -basis of L so Vi = L(W )i and we have proved (i).

(ii) comes from the fact that, for any subspace W of V , dimF (W ) = dimkF

W∩L0

W∩Le
.

(iii) If x ∈ U1(A) then xW 1 ∩ Lk = x(W 1 ∩ Lk) and x acts as the identity on
Lk/Lk+1 so L(W 1)k = L(xW1)k. Conversely, suppose L(W 1)k = L(W 2)k for all
k ∈ Z. Choose a basis {wk

ij} for W k such that {wk
ij} (mod Li+1) is a basis of

L(W k)i, for 0 ≤ i ≤ e − 1, k = 1, 2. There exists a subset B of V such that
B ∪{wk

ij} is an oF -basis of L for both values of k. There exists x ∈ AutF (V ) such

that xw1
ij = w2

ij and such that xb = b for b ∈ B. Then x stabilises each Li and

acts as the identity on each quotient Li/Li+1 so x ∈ U1(A). ¥

In particular, the dimension of a residual subspace V is well defined: dimkF
V =∑e−1

i=0 dimkF
(Vi), which is the dimension of any subspace W of V such that V =

L(W ).
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(3.1.5) Proposition Let L be a lattice chain in V , with residual subspaces V1,
V2, such that

Li/Li+1 = (V1)i ⊕ (V2)i

for all i ∈ Z. Let V 1, V 2 be subspaces of V such that (Vk)i = L(V k)i for all i, k.
Then V = V 1 ⊕ V 2, and the pair (L(V 1)i,L(V 2)i) determines the pair (V 1, V 2)
up to translation by an element of U1(A).
Further, for any such pair (V 1, V 2), we have

Lk = (Lk ∩ V 1) ⊕ (Lk ∩ V 2), k ∈ Z

Proof: Choose bases {vk
ij} of Vk

i , for 0 ≤ i ≤ e − 1, k = 1, 2 and let v̂k
ij ∈ Li be

such that v̂k
ij + Li+1 = vk

ij . Let V k be the F -span of the v̂k
ij , for k = 1, 2. Then

{v̂k
ij : k = 1, 2} is an oF -basis of L so Vk = L(V k), for k = 1, 2 and V = V 1 ⊕ V 2.

The uniqueness up to translation by an element of U1(A) follows as in (3.1.4).

We clearly have (Lk ∩ V 1) ⊕ (Lk ∩ V 2) ⊂ Lk for k ∈ Z. The converse holds since
{v̂k

ij : k = 1, 2} is an oF -basis of L. ¥

(3.1.6) Proposition Let L = {Lk : k ∈ Z} be a self-dual lattice chain in V . Let

d ∈ Z be the unique integer such that L#
k = Ld−k for all k ∈ Z, given by (1.1.2).

Then for each i ∈ Z, h induces a nondegenerate kF -sesquilinear pairing

(3.1.7) hi :
Li

Li+1
×

Ld−i−1

Ld−i
→ kF

Proof: For i ∈ Z, x ∈ Li, y ∈ Ld−i−1, we have πF x ∈ Li+1 so h(πF x, y) ∈ pF .
Hence h(x, y) ∈ oF and we can reduce modulo pF to get the pairing hi. For
nondegeneracy we need that if y ∈ Ld−i−1 satisfies h(Li, y) ⊂ pF then y ∈ Ld−i,
which is immediate, and symmetrically. ¥

Now let V = {Vi} be a residual subspace of our self-dual lattice chain L. We say
that V is nondegenerate if the pairing

Vi × Vd−i−1 → kF

induced by (3.1.7) is nondegenerate. Irrespective of this condition, given a residual
subspace V, we can define its orthogonal complement V⊥ = {V⊥

i : i ∈ Z} by

V⊥
i = {x ∈ Li/Li+1 : hi(x, v) = 0, v ∈ Vd−i−1}.

Then V⊥ is indeed a residual subspace of L and we have the identity

V⊥⊥ = V.

In the usual way, V is nondegenerate if and only if V∩V⊥ = {0}, or, more precisely,

Li/Li+1 = Vi ⊕ V⊥
i ,

for all i.
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(3.1.8) Proposition (i) Let V be a nondegenerate residual subspace of the self-
dual lattice chain L. Let W be a subspace of V such that L(W ) = V. Then h|W×W

is nondegenerate.
(ii) Let W be any subspace of V such that L(W ) is nondegenerate. Then L(W⊥)
is nondegenerate and

L(W⊥) = L(W )⊥.

Proof: (i) Let w ∈ W be such that νL(w) = i; so w ∈ Li but w 6∈ Li+1. By
hypothesis there exists w′ ∈ W ∩Ld−i−1 such that hi(w +Li+1, w

′ +Ld−i−1) 6= 0.
Hence h(w,w′) 6∈ pF and, in particular, h(w,w′) 6= 0.

(ii) We certainly have L(W⊥)i ⊂ L(W )⊥i for all i ∈ Z. The result then follows by
comparing dimensions. ¥

(3.1.9) Corollary Let V1, V2 be nondegenerate residual subspaces of L such that
Li/Li+1 = V1

i ⊥ V2
i for i ∈ Z. Then there exist subspaces V 1, V 2 of V such that

V = V 1 ⊥ V 2 and L(V k) = Vk for k = 1, 2.

(3.1.10) Lemma Let W be a totally isotropic subspace of V . Then L(W⊥) =
L(W )⊥.

Proof: The proof is the same as (3.1.8)(ii). ¥

We call a residual subspace V of L totally isotropic if hi(Vi,Vd−i−1) ≡ 0, for all
i ∈ Z.

(3.1.11) Proposition Let W be a totally isotropic subspace of L. Then there
exists a totally isotropic subspace W of V such that W = L(W ).

Proof: Put n = dimkF
W. The idea of the proof is to split W into (totally

isotropic) one-dimensional residual subspaces, contained in mutually orthogonal
nondegenerate two-dimensional subspaces Xi of V , 1 ≤ i ≤ n. Hence we reduce
to the case dimkF

W = 1 and dimF V = 2.

We choose a non-zero w1 ∈ Wr1 , for some r1 ∈ Z. By the nondegeneracy of hr1 ,
there exists v1 ∈ Vd−r1−1 such that hr1(w1, v1) = 1. Let Y1, Z1 be the residual
subspaces given by

Y1
k =

{
π̃F

s〈w1〉kF
if k = r1 + se;

0 otherwise,

Z1
k =

{
π̃F

s〈v1〉kF
if k = d − r1 − 1 + se;

0 otherwise,

where e = e(L) is the oF -period of L, 〈v〉kF
= kF v is the kF -span of v and π̃F

is the kF -linear isomorphism Lk/Lk+1 → Lk+e/Lk+e+1 induced by multiplication
by πF (see (3.3) for more details). We put X 1 = Y1 + Z1. The residual subspace
X 1 is nondegenerate so, by (3.1.8), there exists a subspace X1 of V such that
L(X1) = X 1 and hX1×X1 is nondegenerate.

Replacing V by X1⊥ and W by W∩X 1⊥, we may repeat the above to obtain, for
1 ≤ i ≤ n, residual vectors wi, vi and nondegenerate subspaces Xi of V such that
Xi ⊥ Xj , for i 6= j, dimF Xi=2 and W is generated by 〈w1, ...wn〉kF

and π̃F .
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For each i we will find ŵi ∈ Xi such that ŵi+Lri+1 = wi and such that h(ŵi, ŵi) =
0. Then we put W = 〈ŵi : 1 ≤ i ≤ n〉F and we are done.

We drop the subscript i. Let x ∈ X be such that x + Lr+1 = w. Let s ∈ Z be
such that r + se ≥ d − r − 1 > r + (s − 1)e so

Lr+se+1 ⊆ L#
r $ Lr+(s−1)e+1.

Suppose first that r + se > d − r − 1; then πs
F x ∈ Lr+se ⊆ L#

r so h(x, x) ∈ p1−s
F .

Otherwise, r + se = d − r − 1; then πs
F x ∈ Ld−r−1. Then h(πs

F x, x) + pF =
hd−r−1(π̃F

s
w,w) = 0 so h(x, x) ∈ p1−s

F in this case also.

For n ∈ N we find, by induction xn ∈ X such that w = xn + Lr+1, xn+1 − xn ∈
Lr+(n−1)e+1 and h(xn, xn) ∈ pn−s

F . Then we put ŵ = limn→∞ xn and we are done.

We may take x1 = x so assume we have found xn as required. If h(xn, xn) ∈ pn+1−s
F

then we may take xn+1 = xn so assume h(xn, xn) ∈ pn−s
F \pn+1−s

F ; say h(xn, xn) =
αnπn−s

F , αn ∈ o×0 , πn−s
F ∈ F0. By the nondegeneracy of hr : Vr × Vd−r−1 → kF ,

there exists yn ∈ Ld−r−1 such that h(xn, yn) + pF = 1
2αn. Then h(yn, yn) ∈

ps
F since Ld−r−1 ⊂ Lr+(s−1)e+1 = πs−1

F L#
d−r−1 and πn−s

F yn ∈ Ld−r−1+(n−s)e ⊂

Lr+(s−1)e+1+(n−s)e = L(n−1)e+r+1. Then we put xn+1 = xn−πn−s
F yn and we have

h(xn+1, xn+1) = h(xn, xn) − πn−s
F h(xn, yn) − πn−s

F h(yn, xn) + π
2(n−s)
F h(yn, yn)

= αnπn−s
F −

1

2
αnπn−s

F + O(pn+1−s
F )

−
1

2
αnπn−s

F + O(pn+1−s
F ) + O(p2n−s

F )

∈ pn+1−s
F , since n ≥ 1.

¥

(3.2) Splittings of self-dual lattice chains

We continue with the notation of the previous section; in particular h is a nonde-
generate ε-hermitian form on V . Let L be a self-dual lattice chain in V .

(3.2.1) Definition A splitting of L is a decomposition of V

V = V∞ ⊕ V−r ⊕ · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vr

into F -subspaces such that the following hold:
(i) For all k ∈ Z we have Lk =

⊕
ω∈Ω Lk ∩ Vω, where Ω is the set of ω ∈

{∞,−r, . . . − 1, 0, 1, . . . , r} such that Vω 6= 0;
(ii) Lω := {Lk ∩ Vω : k ∈ Z is a lattice chain of period 1, for ω ∈ Ω;
(iii) V ⊥

ω =
⊕

v 6=−ω Vv for all ω ∈ Ω (with the understanding that −∞ = ∞).

(3.2.2) Proposition Let L be a self-dual lattice chain in V . Then there exists a
splitting of L.

Proof: Let d = 0 or −1 be the integer such that L#
k = Ld−k for k ∈ Z, given by

(1.1.2), and let e = e(L) be the oF -period of the lattice chain. Define residual
subspaces V(i), for i ∈ Z, by

V
(i)
k =

{
Lk/Lk+1 i ≡ k (mod e)

0 otherwise.
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Then h induces a duality V(i) ↔ V(d−i−1) by (3.1.6). Set W(j) = V(j−1) + V(d−j)

for j ∈ Z; this is a direct sum if 2j 6≡ d + 1(mod g), while V(j−1) = V(d−j)

otherwise.

(3.2.3) Lemma The residual subspaces W(j) are nondegenerate.

Proof: We have to show that the pairing

W
(j)
k ×W

(j)
d−k−1 → kF

is nondegenerate. But if W
(j)
k 6= 0 then, without loss of generality, V

(d−j)
k =

Lk/Lk+1 6= 0 so k ≡ d − j (mod g). Then d − k ≡ j (mod g) so W
(j)
d−k = V

(j)
d−k =

Ld−k/Ld−k+1. Then by (3.1.6) the pairing is nondegenerate. ¥

Set f = [ e+1−d
2 ]; then Lk/Lk+1 = W

(d+1)
k ⊕W

(d+2)
k ⊕ · · · ⊕W

(d+f)
k for all k ∈ Z.

The residual subspaces W(d+1), . . . ,W(d+f) are orthogonal so, by (3.1.9), there
exist subspaces W (d+1), . . . ,W (d+f) of V such that

V = W (d+1) ⊥ · · · ⊥ W (d+f)

and W(j) = L(W (j)) for d+1 ≤ j ≤ d+f . So we can write h = hd+1 ⊥ · · · ⊥ hd+f

with hj a nondegenerate ε-hermitian form on W (j).

(3.2.4) Lemma Lj = {Lk ∩ W (j) : k ∈ Z} is a self-dual lattice chain in W (j),
d + 1 ≤ j ≤ d + f . Moreover,

ej = e(Lj) =

{
1 if 2j ≡ d + 1 (mod e)

2 otherwise.
Proof: That Lj is a lattice chain of period ej in W (j) is clear. For all k ∈ Z,

(Lk∩W (j))# = L#
k +(W (j))# = Ld−k +W (1)+ · · ·+W (j−1)+W (j+1)+ · · ·+W (f).

Restricting the duality operation to W (j), this says that (Lk ∩ W (j))# is the
projection in W (j) of Ld−k, which is Ld−k ∩ W (j). ¥

Note that all but at most 2 of the Lj have period 2. If d = −1 then ed+1 = 1 and
put Vd+1 = W (d+1), otherwise Vd+1 = 0. If 2f = e + 1− d then ed+f = 1 and put
V∞ = W (d+f), otherwise V∞ = 0.

Now consider the case ej = 2. Then V(j−1) and V(d−j) are totally isotropic
residual subspaces of Lj so, by (3.1.11), there are totally isotropic subspaces Vj

and V−j of W (j) such that L(Vj) = V(j−1) and L(V−j) = V(d−j). Then clearly
W (j) = Vj ⊕ V−j .

Altogether we have

V = V∞ ⊕ V−r ⊕ · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vr

as required, e = 2r, 2r + 1 or 2r + 2. So this completes the proof of (3.2.2). ¥

We think of Ω ⊂ {∞,−r, ..., r} as an ordered set of indices. Also, Z/eZ acts on Ω
by cyclic permutation. For ω ∈ Ω, i ∈ Z, we will write ω + i for the translate by
i + eZ of ω.
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We can push this further. We choose oF -bases for V∞ ∩ Ld−r−1, V−j ∩ Ld−j for
r ≥ j ≥ 1, and V0 ∩ Ld and oF -bases for Vj ∩ Lj−1 for 1 ≤ j ≤ r. Then, with
respect to this basis B, h has matrix




J∞ 0 · · · · · · 0
0 0 · · · · · · 0 I
...

... . .
.

. .
.

0

I . .
. ...

J0
... . .

.
εI

... 0 . .
.

. .
. ...

0 εI 0 · · · · · · 0




where I =




1

. .
.

1


 ,

Jω is the matrix of h|Vω×Vω
, for ω = ∞, 0, and A = A(L) has the form

(3.2.5)




oF oF · · · oF oF

pF oF
. . . oF

...
. . .

. . .
. . .

...
pF pF oF oF

pF pF · · · pF oF




.

So we have chosen a basis of L in the sense of [BK] (1.1.7). Note that the above
matrices are n-block matrices, where n = (n∞, n−r, . . . , nr) is a vector of positive
integers and nω = dimVω, for ω ∈ Ω.

Putting A(ωω′) = Hom(Vω′ , Vω), for ω, ω′ ∈ Ω, we get a block decomposition A =∐
ω,ω′ A(ωω′) with respect to which A has the form above. Then, for a ∈ A(ωω′),

we have h(Vv′ , aVv) = h(aVv′ , Vv) which is non-zero if and only if v′ = ω′ and
v = −ω. Hence a ∈ A(−ω′,−ω). In particular, the involution on A fixes diagonal
“bands” of blocks in A.

We now define a set of representatives for the cosets Pm/Pm+1, for any integer
m, as in [BK] (2.5.5). We define integers l, k by

(3.2.6) 0 ≤ l = m − ek ≤ e − 1.

Consider the set Bl = Bl(A) of e-tuples of matrices

b = (bω : ω ∈ Ω)

where bω has entries in oF and dimensions nω × nω+l. For b ∈ Bl, we define an
n-block matrix rm(b) over F by

rm(b)ω,ω′ =





πk
F bω if ω ≤ r − l and ω = ω′ − l,

πk+1
F bω if ω > r − l and ω = ω′ − l,

0 otherwise.
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Then the map b → rm(b) induces a bijection between Bl(A) (modulo pF ) and
Pm/Pm+1.

Moreover, since the involution fixes bands of blocks, rm(b) = rm(b′), for some
b′ ∈ Bl(A). Then we can define an involution on Bl(A) by putting b = b′. (Note
that, in the case F 6= F0, the involution on Bl(A) is dependent on m.)

(3.2.7) Definition Let [A, n, n − 1, b] be a stratum in A. It is in band form if
b = r−n(b), for some b ∈ Bl(A), where l, k ∈ Z are such that 0 ≤ l = −n − ek ≤
e − 1.

Any stratum is equivalent to a stratum in band form and further, since the involu-
tion on A fixes bands of blocks, any skew stratum is equivalent to a skew stratum
in band form.

It will sometimes be more convenient to choose a slightly different basis, which is
a basis for L in the sense of (3.1.1). We can choose bases for V∞ and V0 such that

(3.2.8) J∞ =




π−1
F I

K∞

επ−1
F I


 , J0 =




I
K0

εI


 ,

where Kω is the matrix of the anisotropic part of h|Vω×Vω
, ω = ∞, 0. Then,

rearranging the bases for V∞, V−r, . . . , Vr, the form h has matrix

(3.2.9)




K∞

I
K0

εI


 .

Moreover, the matrix

K =

(
K∞

K0

)

is at most 2 × 2 since the anisotropic part of V with respect to h is at most
2-dimensional. From [M1] (1.8), the only possibilities for K are

K = ( δ ) , ( δε ) or

(
−δε

δ

)

where ε ∈ F0, ε 6∈ NF/F0
(F ) and δ = 1, if h is hermitian, δ ∈ F−, if h is skew-

hermitian.

(3.3) Residual maps

In this section we look at maps between residual subspaces.

Let L be an oF -lattice chain in V and A the associated hereditary order in A. Let
x ∈ A be such that νA(x) = n. Then x induces maps

x̃k : Lk/Lk+1 → Lk+n/Lk+n+1

v + Lk+1 7→ xv + Lk+n+1
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for k ∈ Z. Let V be the residual subspace L(V ) of L, so Vk = Lk/Lk+1, for k ∈ Z.
Then we say that x̃ : V → V is of degree n.

(3.3.1) Lemma Let A be a hereditary oF -order in A. Then x ∈ K(A) if and only
if x̃k is an isomorphism for all k ∈ Z.

Proof: Suppose x ∈ K(A) and put n = νA(x); then νA(x−1) = −n so x−1 induces

a map of degree −n, x̃−1 : V → V. Then, for k ∈ Z, we see that (x̃−1)k+n ◦ x̃k is
the identity on Lk/Lk+1, since x̃k(v + Lk+1) = xv + Lk+n+1 = x(v + Lk+1).

Conversely, suppose x 6∈ K(A) and put n = νA(x). We have that xLk $ Lk+n, for
some k ∈ Z. Then x̃k is not surjective; in particular, it is not an isomorphism. ¥

In particular, πF induces an isomorphism π̃F : V → V of degree e = e(L), the oF -
period of L. Indeed, if W is any residual subspace of L then (π̃F )kWk = Wk+e,
for all k ∈ Z, so we have an isomorphism π̃F : W → W.

Let W1, W2 be residual subspaces of L and let % : W1 → W2 be of degree n. i.e.
% is a set of kF -linear maps {%k : k ∈ Z}, where %k : W1

k → W2
k+n. Then we say %

is a residual map if % ◦ π̃F = π̃F ◦ %, i.e. for all k ∈ Z

%k+e ◦ (π̃F )k = (π̃F )k+n ◦ %k.

(3.3.2) Lemma Let % : V → V be a residual map of degree n. Then there exists
x ∈ A, νA(x) = n such that % = x̃.

Proof: We may assume that 0 ≤ n ≤ e − 1 by scaling by π̃F . For 0 ≤ k ≤ e − 1
choose a basis {vik : 1 ≤ i ≤ di} of Vk and choose v̂ik ∈ V such that v̂ik + Lk+1 =
vik. Taking the index k modulo e, we have

%(vik) =
∑

1≤i≤dn+k

%ikvi,n+k

for some %ik ∈ kF . Choose xik ∈ oF such that xik + pF = %ik for each i, k and
define x by

xv̂ik =
∑

1≤i≤dn+k

xikv̂i,n+k.

Clearly x ∈ A, νA(x) = n and x̃ = %. ¥

We write Endn
kF

V for the kF -module of residual maps of degree n.

(3.3.3) Corollary For each n ∈ Z, the natural map Pn → Endn
kF

V : x 7→ x̃
induces an isomorphism of kF -spaces Pn/Pn+1 → Endn

kF
V.

Proof: The natural map is surjective by (3.3.2) and clearly the kernel is Pn. ¥

Note also that if % is a residual isomorphism (i.e. %k is an isomorphism for each
k ∈ Z) then x ∈ K(A).

Let now h : V × V → F be an ε-hermitian form as before and let L be a self-dual
lattice chain in V . Then, by (3.1.6) we have nondegenerate sesquilinear forms
hk : Vk × Vd−k−1 → kF for all k ∈ Z.
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Let % : V → V be a residual map of degree n. Then we define the adjoint residual
map %, also of degree n, by

hk+n(%kv, v′) = hk(v, %d−k−1−nv′)

for v ∈ Vk, v′ ∈ Vd−k−1−n. This is well-defined as hk is nondegenerate for all
k ∈ Z.

(3.3.4) Lemma Let x ∈ A; then x̃ = x̃.

Proof: Put n = νA(x) and choose any v ∈ Vk, v′ ∈ Vd−k−1−n. Choose also
v̂, v̂′ ∈ V such that v̂ + Lk+1 = v and v̂′ + Ld−k−n = v′. Then

hk+n(x̃v, v′) = h(xv̂.v̂′) + pF

= h(v̂, xv̂′) + pF

= hk(v, x̃v′). ¥

A residual map % is called skew if % = −%.

(3.3.5) Lemma Let % be a skew residual map of degree n. Then there exists
x ∈ A−, νA(x) = n, such that % = x̃.

Proof: Let y ∈ A, νA(y) = n be such that ỹ = %, by (3.3.2). Then (̃−y) = −ỹ = %
so, by (3.3.3), −y ∈ y + P1+n. Then, by (1.2.2), there exists u ∈ P1+n such that
y + y = u + u and we put x = y − u. ¥

(3.3.6) Corollary Writing Endn
kF ,−V for the skew residual maps of degree n, we

have an isomorphism Pn
−/Pn+1

− → Endn
kF ,−V.

Put A = End0
kF

V. Then the map

A →
e−1∏

i=0

EndkF
Li/Li+1

% 7→ (%0, . . . , %e−1)

is an isomorphism of kF -algebras since %re+i = π̃F
r
%iπ̃F

−r
for all r ∈ Z, 0 ≤

i ≤ e − 1. So we have notions of minimal polynomial (over kF ) and Jordan
decomposition in A.
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4
REFINEMENTS

In this chapter, h is an alternating form, i.e. this chapter is only for the symplectic
group.

In this chapter we look at the refinement process for skew simple strata (cf. [BK]
(2.2)). In order to do this we must first adapt the notion of a (W,E)-decomposition
[BK] (1.2) to our situation. We now recall this.

Let E/F be a subfield of A and write A(E) = EndF (E), B = EndE(V ). Let W
be the F -span of an E-basis of our vector space V . Then the choice of W induces
an embedding of algebras ιW : A(E) ↪→ A and an isomorphism

(4.0.1) A(E) ⊗E B ' A

of (A(E), B)-bimodules ([BK] (1.2.6)). Moreover, if A is a hereditary order in A
normalised by E then, by [BK] (1.2.8) we can choose W such that the isomorphism
of (4.0.1) restricts to an isomorphism

(4.0.2) A(E) ⊗oE
B,

where A(E) is the unique hereditary oF -order in A normalised by E ([BK] (1.2.7))
and B = A ∩ B.

In our situation, E/F is a subfield of A stable under the involution but not fixed
pointwise by it. Then E, considered as an F -vector space, has a nondegenerate
alternating form on it (indeed we will need two different forms in general). Then
A(E) has an involution and we would like A(E)− to be embedded in A− by ιW .
In general, we will need to take not the space A(E)− but the space of elements
skew according to both involutions (induced from the two different forms on E).

This will allow us to prove that if [A, n, r, β] is a skew simple stratum and b ∈ P−r
−

such that [B, r, r−1, s(b)] is equivalent to a skew simple stratum then the stratum
[A, n, r − 1, β + b] is equivalent to a skew simple stratum (cf. [BK] (2.2.8)).

(4.1) (W ,E)-decomposition

Let E/F be a subfield of A such that E = E and let E0 be the fixed field of the
involution, E0 6= E. Let e = e(E|F ) be the ramification degree of E/F and let
D−1 be the inverse different of E/F . Let B = EndEV be the A-centraliser of E
so B = B. There exists a hermitian form f : V × V → E by

h(ev, w) = trE/F (δef(v, w)) for all e ∈ E, v, w ∈ V

for some δ ∈ pE
e−1D−1, δ 6∈ pE

e+1D−1, such that δ + δ = 0. This is well-defined
as trE/F is nondegenerate, and f itself is nondegenerate by the nondegeneracy of
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h. Then f determines an adjoint involution on B, which is in fact the involution
on A restricted to B since, for x ∈ B and v, w ∈ V , e ∈ E, we have

trE/F (δef(xv,w)) = h(exv, w) = h(xev, w)

= h(ev, xw) = trE/F (δef(v, xw)).

As a direct consequence of this we have:

(4.1.1) Lemma The centraliser in G of E, B ∩ G, is the unitary group of E-
automorphisms of V which fix the hermitian form f .

From the theory of hermitian forms (see [Sch] (1.5.11), (7.1)), V then has a Witt
decomposition as an E-space, V = V an ⊥ V sp where f |V an×V an is anisotropic,
dimEV an ≤ 2, and f |V sp×V sp is split (i.e. it is a sum of hyperbolic planes).

Let A be an oF -order in A, normalised by E, such that A = A and let L = L(A)
be the self-dual oF -lattice chain associated to it. Let B = A ∩B and Q = P ∩B,
where P is the Jacobson radical of A, as usual. Then L is in fact a self-dual
oE-lattice chain in B since, for L ∈ L,

L# = {v ∈ V : h(x, L) ⊂ pF } = {v ∈ V : δf(v, L) ⊂ D−1pF }

=

{
{v ∈ V : f(v, L) ⊂ pE} if δ 6∈ pe

ED−1;

{v ∈ V : f(v, L) ⊂ oE} if δ ∈ pe
ED−1.

Then by [M1] (1.7) we can choose a basis for the lattice chain such that, with
respect to this basis, the hermitian form f has matrix:




C1 0 0 0
0 0 0 I
0 0 C2 0
0 I 0 0


 , where I =




0 1

. .
.

1 0


 and C =

(
C1 0
0 C2

)

and C is the matrix of f |Van×Van
.

The possibilities for C are:

dimV an = 1 C = ( 1 ) or ( ε ) ;

dimV an = 0 C =

(
−ε 0
0 1

)
;

where ε ∈ E0, ε 6∈ NE/E0
(E). (In fact, in the case dimV an = 1, we may always

assume C = (1) by changing δ to δε and choosing a basis for the form given by
this.) Note also that we may change ε by any norm so we will choose it carefully.

(4.1.2) Lemma In the situation above there exists ε ∈ E0, ε 6∈ NE/E0
(E) such

that εn ∈ F for some n ∈ Z, (n, p) = 1.

Proof: We first consider the case E/E0 ramified. Then let ε be a root of unity
in E0 which is not a square. Then εm = 1 for some m ∈ Z, (m, p) = 1. Then
this ε will do. For suppose ε is a norm; then any element of o×0 is a norm since
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ε generates the group of roots of unity while every element of U1(o0) is a square
as p 6= 2. Further π0 is also a norm, for some prime element π0, since E/E0 is
ramified. So every element of E0 is a norm, which is absurd.

Now consider the case E/E0 unramified. Let Etr be the maximal tamely ramified
extension of F contained in E0 and let m = e(Etr|F ) be the ramification degree
of Etr/F , (m, p) = 1. Then we can choose a uniformizer πtr of Etr such that
πm

tr = ξπF , for ξ a (p prime) root of unity in Etr. We let ε = πtr and observe that
νE(ε) is a power of p, since E0/Etr is wildly ramified, which is odd. However, all
norms have even valuation so ε cannot be a norm. ¥

So we will choose ε according to (4.1.2) and fix it.

Let W be the F -subspace of V spanned by the given E-basis so that V ∼= E⊗F W .
Let W1 be the subspace of W spanned by the vector v in the basis such that
f(v, v) = ±ε (if it exists, W1 = 0 otherwise) and let W2 be the subspace spanned
by the remaining basis vectors. Set Vi = E ⊗F Wi, i = 1, 2. Then, for i = 1, 2, we
define symmetric bilinear forms fi : Wi × Wi → F by

f1(v1, w1) = ε−1f(v1, w1) for v1, w1 ∈ W1

f2(v2, w2) = f(v2, w2) for v2, w2 ∈ W2.

We also define two skew-symmetric bilinear forms gi : E × E → F , i = 1, 2 by

g1(e, e
′) = trE/F εδee′ for e, e′ ∈ E

g2(e, e
′) = trE/F δee′ for e, e′ ∈ E

giving rise to involutions ˜1 and ˜2 on A(E) = EndF (E) respectively. These
involutions both restrict to on E for E ↪→ A(E). Note that, in general, the two
involutions are not the same, i.e. there exists a ∈ A(E) such that ã1 6= ã2. In fact,

for a ∈ A(E), ˜̃a1
2

= εaε−1.

Now define
⊕2

i=1 gi ⊗ fi : V × V → F by

2⊕

i=1

gi⊗fi(e⊗(w1 +w2), e
′⊗(w′

1 +w′
2)) = g1(e, e

′) f1(w1, w
′
1)+g1(e, e

′) f2(w2, w
′
2)

for e, e′ ∈ E, wi, w
′
i ∈ Wi, i = 1, 2. Then

2⊕

i=1

gi ⊗ fi(e⊗(w1 + w2), e
′ ⊗ (w′

1 + w′
2))

= trE/F (εδee′) f1(w1, w
′
1) + trE/F (δee′) f2(w1, w

′
1)

= trE/F δee′[εf1(w1, w
′
1) + f2(w2, w

′
2)]

= trE/F δee′f(w1 + w2, w
′
1 + w′

2), since W1 ⊥ W2,

= h(e ⊗ (w1 + w2), e
′ ⊗ (w′

1 + w′
2)).

So
⊕2

i=1 gi ⊗ fi = h.
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Let Aij = Hom(Vi, Vj), i, j = 1, 2, so A =
⊕

i,j Aij . Let ιi : A(E) ↪→ Aii =
A(E) ⊗F EndF (Wi) be the embedding given by ιi(a) = a ⊗ 1, as in [BK] (1.2.5),
and let ι : A(E) ↪→ A11 ⊕ A22 ⊂ A be given by ι(a) = ι1(a) + ι2(a). Then for
a ∈ A(E) we have

h(ι(a)(e(w1 + w2)), e
′(w′

1 + w′
2)) = g1(ae, e′)f1(w1, w

′
1) + g2(ae, e′)f2(w2, w

′
2)

= g1(e, ẽ′
1
)f1(w1, w

′
1) + g2(e, ẽ′

2
)f2(w2, w

′
2)

= h(e(w1 + w2), (ι1(ã
1) + ι2(ã

2))(e′(w′
1 + w′

2))).

So ι(a) = ι1(ã
1) + ι2(ã

2).

We also have, from (4.0.1), that the isomorphism V ∼= E ⊗F W gives rise to an
isomorphism of (A(E), B)-bimodules,

(4.1.3) A(E) ⊗E B ∼= A

and, as in [BK2] (5.3), this restricts to isomorphisms

(4.1.4) A(E) ⊗oE
B ∼= A and A(E) ⊗oE

Qn ∼= Pn for n ∈ Z

where A(E) = End0
oE

{pi
E : i ∈ Z} is the unique hereditary oF -order in A(E)

normalised by E and P(E) is its radical.

(4.1.5) Lemma The lattice chain {pi
E : i ∈ Z} is self-dual with respect to both

alternating forms, g1 and g2. So Ã(E)
1

= Ã(E)
2

= A(E).

Proof: Consider the form g1 (for g2 it will be similar and simpler). Then

(pi
E)# = {x ∈ E : g1(x, pi

E) ⊂ pE} = {x ∈ E : trE/F δεxpi
E ⊂ pF }

= {x ∈ E : δεxpi
E ⊂ D−1pF }

=

{
ε−1oE if δ 6∈ pe

ED−1

ε−1pE if δ ∈ pe
ED−1

so {pi
E : i ∈ Z} is self-dual. The second assertion now follows from (1.1.2). ¥

In particular, we will be able to look at the exact sequences of (2.1). First we
must check that the tame corestriction found in (2.1.1) will commute with both
involutions.

(4.1.6) Lemma Let s0 be a tame corestriction on A(E) relative to E/F which
commutes with ˜1. Then it also commutes with ˜2.

Proof: We have s(ã2) = s(εã1ε−1) = εs(ã1)ε−1, since ε ∈ B(E) = E, so s(ã2) =

εs̃(a)
1
ε−1 = s̃(a)

2
. ¥

(4.1.7) Proposition (cf. [BK] (1.3.9)) Let s0 be a tame corestriction on
A(E) relative to E/F which commutes with the involutions on A(E). Then the
map s = s0 ⊗ 1B is a tame corestriction on A relative to E/F which commutes
with the involution on A.
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Proof: By [BK] (1.3.9), s is certainly a tame corestriction on A relative to E/F .
Moreover, for a ∈ A(E), b ∈ B, we have

s(a ⊗ b) = s(ι(a)b) = s(b ι(a))

= bs(ι1(ã
1) + ι2(ã

2)) = b(ι1(s0(ã
1)) + ι2(s0(ã

2)))

= b(ι1(s̃0(a)
1
) + ι2(s̃0(a)

2
)) = b(ι(s0(a)))

= b(s(ι(a))) = s(ι(a))b = s(ι(a)b) = s(a ⊗ b).
¥

Note then that any tame corestriction s on A relative to E/F which commutes
with the involution on A takes the form s0 ⊗ 1B as above, since s and s0 are
uniquely determined up to multiplication by u ∈ o×E such that u = u.

Now let E1/E be a subfield of B such that E1 = E1. Then, as above, we have two
involutions on A(E1), ˜1 and ˜2, and elements δ1, ε1 ∈ E1.

(4.1.8) Lemma Let s′ be a tame corestriction on A(E1) relative to E/F which
commutes with ˜1. Then it also commutes with ˜2.

Proof: Since ε1 ∈ E1 ⊂ EndE(E1), the proof is the same as for (4.1.5). ¥

(4.1.9) Lemma Let s be a tame corestriction on A relative to E/F which
commutes with . Then s = s′ ⊗ 1B1 for some tame corestriction s′ on A(E1)
relative to E/F which commutes with ˜1 and ˜2.

Proof: As in the proof of [BK] (2.2.8), for s′ as above s′⊗1B1 is a tame corestriction
on A relative to E/F and, as in (4.1.7), it commutes with the involution. Then,
changing s′ by some u ∈ o×E such that u = u, we have s = s′ ⊗ 1B1 . ¥

Now let β ∈ A− be such that E = F [β] is a field and put B = EndE(V ) as usual.
Let c ∈ B− be such that E1 = E[c] is a field. Let ˜1, ˜2 be the involutions on

A(E1) = EndF (E1) as above; recall that ˜̃a1
2

= ε1aε−1
1 , where ε1 satisfies ε1 = ε1

and εn1 ∈ F for some n1 ∈ Z, (n1, p) = 1. Then, writing σ1(a) = ˜̃a1
2
, we have

σn1
1 ≡ 1. Set Γ1 = 〈σ1〉, the cyclic group generated by σ1.

The extension E/F is a subfield of A(E1) so we may consider B(E1), the centraliser
of E in A(E1). Then the tame corestriction s′ on A(E1) relative to E/F given by
(2.1.1) commutes with σ1 by (4.1.8), as does aβ since σ1(β) = β.

Recall that A(E1) is the unique hereditary order in A(E1) normalised by E1,
with Jacobson radical P(E1). We put B(E1) = A(E1) ∩ B(E1) and Q(E1) =
P(E1) ∩ B(E1), the Jacobson radical of the hereditary oE-order B(E1). Put
Nk = Nk(β,A(E1)). Then the exact sequence (from [BK] (1.4.10))

0 → Q(E1)
mNk/Q(E1)

m → P(E1)
m+k → Q(E1)

m+k → 0, k ≥ k0(β,A(E1)),

is Γ1-equivariant. So we have a long exact sequence in cohomology

0 → (Q(E1)
mNk/Q(E1)

m)Γ1 → (P(E1)
m+k)Γ1 → (Q(E1)

m+k)Γ1

→ H1(Γ1,Q(E1)
mNk/Q(E1)

m) → H1(Γ1,P(E1)
m+k) → . . .
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Since |Γ1| = n1 and (n1, p) = 1, we have H1(Γ1,Q(E1)
mNk/Q(E1)

m) = 0, by
[Bn] (10.2), and hence an exact sequence

(4.1.10) (P(E1)
m+k)Γ1 → (Q(E1)

m+k)Γ1 → 0

in AΓ1 = {a ∈ A(E1) : ã1 = ã2}. Set

AΓ1
− = {a ∈ AΓ1 : ã1 = −a}

AΓ1
+ = {a ∈ AΓ1 : ã1 = a}.

Then AΓ1 = AΓ1
− ⊕ AΓ1

+ and (4.1.10) splits into two sequences to give

(4.1.11) (P(E1)
m+k)Γ1

− → (Q(E1)
m+k)Γ1

− → 0

Note that c ∈ E1 ↪→ A(E1) satisfies c̃1 = c̃2 = c = −c so c ∈ AΓ1
− .

(4.2) Refinements

Let [A, n, r, β] be a skew simple stratum in A. As usual we write E = F [β], B
for the A-centraliser of E, B = A ∩ B, and Q = P ∩ B, the Jacobson radical of
B. We also fix a tame corestriction s on A relative to E/F such that s commutes
with the involution on A, as in (2.1.1). As in [BK] (2.2), a refinement of our given
stratum is a stratum of the form [A, n, r − 1, β + b], where b ∈ P−r. We can then
form the derived stratum [B, r, r − 1, s(b)], which is stratum in B.

A skew refinement is a refinement where we also have b + b = 0. Then the derived
stratum is a skew stratum.

(4.2.1) Lemma (cf. [BK] (2.2.1)) Let [A, n, r, β] be a skew simple stratum in
A. Let [A, n, r − 1, β + b], [A, n, r − 1, β + b′] be skew refinements of it. Write k =
k0(β,A), N = Nk(β,A). Then the derived strata [B, r, r−1, s(b)], [B, r, r−1, s(b′)]
in B are equivalent if and only if there exists y ∈ (Q−(r+k)N)− such that

[A, n, r − 1, C(y)−1(β + b)C(y)] ∼ [A, n, r − 1, β + b′].

Proof: We have [B, r, r−1, s(b)] ∼ [B, r, r−1, s(b′)] if and only if s(b−b′) ∈ Q1−r
− .

By (2.1.5), this happens if and only if there exists y ∈ (Q−(r+k)N)− such that
b − b′ ≡ aβ(y) (mod P1−r

− ). Then, since −(r + k) ≥ 1, we have

C(y)−1(β + b)C(y) ≡ β + b + aβ(y) (mod P1−r),

since (C(y) − y − 1) ∈ Q−2(r+k)N so aβ(C(y) − y − 1) ∈ P−(r+k)−r ⊂ P1−r. ¥

(4.2.2) Proposition (cf. [BK] (2.2.8)) Let [A, n, r, β] be a skew simple stratum
in A. Let B be the A-centraliser of E = F [β] and B = A ∩ B. Let b ∈ A
with νA(b) = −r and let s be a tame corestriction on A relative to E/F which
commutes with the involution on A. Suppose that the stratum [B, r, r − 1, s(b)] is
equivalent to a skew simple stratum [B, r, r − 1, c] in B. Then [A, n, r − 1, β + b]
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is equivalent to a skew simple stratum [A, n, r − 1, β1]. Moreover, k0(β1,A) =
max{k0(β,A), k0(c,B)}.

Proof: We follow the proof of [BK] (2.2.8). Let E1 = F [β, c], so E1 = E1, and
let B1 denote the A-centraliser of the field E1, B1 = A ∩ B1. Then we have a
decomposition

A = A(E1) ⊗oE1
B1

as in (4.1.4). By (4.1.9) our tame corestriction s on A relative to E/F takes
the form s′ ⊗ 1B1 for some tame corestriction s′ on A(E1) relative to E/F , which
commutes with the involutions on A(E1).

Let C denote the hereditary oE-order A(E1) ∩ EndE(E1). Then we have decom-
positions A(E1) = A(E) ⊗oE

C and B = C ⊗oE1
B1.

Put e1 = e(B1|oE1). Then the strata [A(E1), n/e1, r/e1, β], [C, r/e1, r/e1 − 1, c]
are simple and k0(β,A(E1)) = k0(β,A)/e1 by [BK] (1.4.13). Now c ∈ A(E1)

Γ1
−

so, by (4.1.11), choose b1 ∈ A(E1)
Γ1
− with νA(E1)(b1) = −r/e1 such that s′(b1) = c.

By [BK] (2.2.3), the stratum [A(E1), n/e1, r/e1 − 1, β + b1] is simple. Consider
the stratum [A, n, r − 1, ι(β + b1)]; this is a skew refinement of [A, n, r, β], since

ι(β + b1) = ι1(β̃ + b1

1

)+ ι2(β̃ + b1

2

) = ι1(−(β + b1))+ ι2(−(β + b1)) = −ι(β + b1),
and

[B, r, r − 1, ι(s(b1))] = [B, r, r − 1, c]

as in [BK] (2.2.8). Then, by(4.2.1), we can find a conjugate of [A, n, r−1, ι(β+b1)]
equivalent to [A, n, r− 1, β + b]. The rest of the proof is exactly the same as [BK]
(2.2.8). ¥

(4.2.3) Remark If E1 = E[c] is a maximal subfield of B then we can use [BK]
(2.2.2) to deduce that [B, r, r − 1, s(b)] is itself simple, with E[s(b)] a maximal
subfield of B, and [BK] (2.2.3) to conclude that [A, n, r− 1, β + b] is itself simple.
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5
STANDARD FORM

The main result of this chapter is the following (cf. [BK] (2.4.1)), which we prove
in (5.4):

Let [A, n, n − 1, β] be a skew pure stratum in A. Then it is equivalent to a skew
simple stratum.

This then allows us to use induction “along β” (i.e. on k0(β,A)) as in [BK] to
define simple characters and prove results concerning them (see chapter 6).

In order to prove this result we need several results in the generality of unitary
groups attached to a hermitian form so h will be:

ε-hermitian in sections (5.1–2);

skew-hermitian in section (5.3).

(5.1) Lifting

In this section h : V × V → F will be an ε-hermitian form.

Let A be a maximal order associated to a self-dual lattice chain L = {Li : i ∈ Z}
in V and we put P =radA, as usual. Let V = L(V ) be the standard residual
subspace of L and put A = End0

kF
V (' A/pF A by (3.3.2)). For each k ∈ Z,

V inherits from V a nondegenerate ε-sesquilinear form hk : Vk × Vd−k−1 → kF

as in (3.1.6), where d is the unique integer such that L#
k = Ld−k for all k ∈ Z.

Then we have an adjoint involution on A so we can define A−,A+ to be the
skew elements, the symmetric elements respectively. In fact A± ' A±/(pF A)± by
(1.2.5).

(5.1.1) Lemma Let η = ± be a sign. The natural map Aη → Aη is surjective.

For f(X) ∈ F [X], f(X) = anXn + · · · + a0, define f(X) ∈ F [X] to be the
polynomial f(X) = anXn + · · · + a0. Also, for f(X) ∈ oF [X], f(X) = anXn +

· · · + a0, define f̃(X) ∈ kF [X] to be the polynomial obtained by reducing the
coefficients modulo pF .

(5.1.2) Lemma Let γ, γ′ ∈ U(A). Suppose γ, γ′ have the same minimal polyno-
mial, that the reduction modulo pF of this minimal polynomial is irreducible and
that γ ≡ γ′(mod Pn). Then there exists v ∈ Un(A) such that γ = vγ′v−1.

Proof: The elements γ, γ′ generate unramified extensions over F ; in particular,
they are minimal over F . Write Bγ for the centralizer of γ in A and Bγ = A∩Bγ .

By [BH1] (1.6), there exists u ∈ U(A) such that γ = uγ′u−1. Since γ − γ′ ∈ Pn,
we have γu−uγ ∈ Pn. i.e. u ∈ Nn(γ,A). But γ is minimal so Nn(γ,A) = B+Pn.
Hence u = wv, for w ∈ U(B) and v ∈ Un(A), and γ = vγ′v−1 as required. ¥
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We fix an irreducible polynomial φ(X) ∈ kF [X] of degree N , φ(X) 6= X. The
following is a Hensel’s Lemma-type result.

(5.1.3) Proposition Let η = ± be a sign and let % ∈ Aη. Suppose % has
irreducible characteristic polynomial φ(X) ∈ kF [X]. Let Φ(X) ∈ oF [X] be a

polynomial such that Φ̃(X) = φ(X) and such that Φ(ηX) = Φ(X). Then there
exists γ ∈ Aη such that γ̃ = % and Φ(γ) = 0.

Proof: By Hensel’s Lemma, there exists γ1 ∈ U(A) such that γ̃1 = % and Φ(γ1) = 0.
Also, γ1 ≡ ηγ1 (mod P) since γ̃1 ∈ Aη.

For n ≥ 1, we will find, by induction, γn ∈ U(A) such that γ̃n = %, γn is conjugate
to γ1 (in particular, Φ(γn) = 0), γn ≡ ηγn (mod Pn) and γn ≡ γn−1 (mod Pn−1).
Granting this, let γ be the limit of the sequence {γn}. Then γ̃ = %, γ = ηγ and
Φ(γ) = 0 as required.

We have already found γ1 so assume we have found γn as required, for some n ≥ 1.

We have that Φ(γn) = 0 and also Φ(ηγn) = Φ(ηγn) = Φ(γn) = 0 so γn and ηγn

are conjugate. Moreover, γn ≡ ηγn (mod Pn) hence ηγn = unγnu−1
n , for some

un ∈ Un(A), by (5.1.2).

Write un = 1 + xn, xn ∈ Pn, so that ηγn ≡ γn + xnγn − γnxn (mod P2n). We
put yn = xn+xn

2 and vn = 1 + yn ∈ Un(A); then vn = vn and ηγn ≡ vnγnv−1
n

(mod P2n). By (1.2.4)(ii), there exists wn ∈ Un(A) such that vn = wnwn. Then
we put γn+1 = wnγnw−1

n . ¥

We finish this section with some results which will prove important later.

(5.1.4) Lemma Let η = ± be a sign. Let γ, γ′ ∈ A×
η be such that γ ≡ γ′

mod Pr, r ≥ 1. Then there exists u ∈ Ur(A) such that γ ≡ uγ′u (mod P2r).

Proof: Let a = γ − γ′ ∈ Pr and put u = (1 + 1
2aγ′−1

). ¥

(5.1.5) Proposition With hypotheses as in (5.1.4), there exists u ∈ Ur(A) such
that γ = uγ′u.

Proof: We find, by induction, un ∈ Ur(A) such that

(5.1.6) γ ≡ unγ′un (mod Prn)

and un+1 ≡ un (mod Prn). Then {un} converges to u ∈ Ur(A) such that γ =
uγ′u.

We can take u1 = 1 so suppose we have found un ∈ Ur(A) satisfying (5.1.6). Then
γ and unγ′un satisfy the conditions of (5.1.4) (with r replaced by rn). So there
exists u′ ∈ Urn(A) such that γ ≡ u′unγ′unu′ mod P2rn and, in particular, this
congruence holds (mod P(r+1)n) since r ≥ 1. So we set un+1 = u′un. ¥

(5.1.7) Lemma Let Φ(X) ∈ oF [X] be an irreducible polynomial of degree N such

that Φ(X) = Φ(X) and such that its reduction modulo pF , Φ̃ is also irreducible.
Let γ ∈ U(A) have characteristic polynomial Φ(X). Let ∂ : A → A be the map
given by ∂(x) = xγ − γx, for x ∈ A. Suppose y ∈ Im (∂) ∩ P−; then there exists
ξ ∈ P+ such that y = ∂(ξ).
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Proof: We need only show that for y ∈ Im (∂) ∩ P there exists ξ ∈ P such that
y = ∂(ξ), since ∂ maps A+ to A− and vice versa.

Let E/F be a splitting field for Φ(X) and let ∂E : A ⊗oF
oE → A ⊗oF

oE be the
extended map. The result then holds for ∂ if and only if it holds for ∂E .

Let λi, i = 1, ..., n, be the eigenvalues of γ in E; these are also the eigenvalues of γ.
Further, the λi are distinct modulo pF since γ generates a maximal extension of
F in A. Hence the non-zero eigenvalues of ∂E , which are λi−λj for 1 ≤ i 6= j ≤ n,
are 6≡ 0 (mod pF ) and the result follows. ¥

(5.1.8) Proposition Let α, β ∈ U(A) ∩ A+ be such that γ := αβ generates a
maximal (unramified) extension of F in A. Let φ(X) ∈ kF [X] be the reduction
modulo pF of the characteristic polynomial of γ and suppose that φ(X) = φ(X).

Let Φ(X) ∈ oF [X] be such that Φ(X) = Φ(X) and such that Φ̃(X) = φ(X). Let
γ′ ∈ U(A) be such that γ′ ≡ γ (mod pF ) and such that Φ(γ′) = 0. (There exists
such a γ′ by Hensel’s Lemma.) Then there exist α′ ∈ α + P+, β′ ∈ β + P+ such
that γ′ = α′β′.

Proof: Write γ′ = γ + δ with δ ∈ P. Note that αγ = αβα = γα and also that γ′

generates a maximal unramified extension of F .

We have αγ′ − γ′α = αδ − δα ∈ P− so, by (5.1.7), there exists ξ ∈ P+ such that

ξγ′ − γ′ξ = αγ′ − γ′α. Then we put α′ = α − ξ and β′ = α′−1
γ′. ¥

(5.2) Jordan form

Let V be an N -dimensional kF -vector space, equipped with a nondegenerate ε-
hermitian form h : V × V → kF . We put A = EndkF

V. Recall also that k0 is the
residue class field of F0.

For W a subspace of V we define its orthogonal complement to be

W⊥ = {v ∈ V : h(v,W) ≡ 0}.

Then, by the nondegeneracy of h, W⊥⊥ = W.

(5.2.1) Lemma Let W be a totally isotropic residual subspace of L. Then h

induces an ε-hermitian form h′ on W⊥/W which is nondegenerate.

Proof: For v ∈ W⊥, v′ ∈ W⊥, we define h′ by h′(v+W, v′+W) = h(v, v′). This is
well defined since v, v′ ∈ W⊥ and W is totally isotropic. Suppose now there exists
v ∈ W⊥ such that h′(v + W,W⊥/W) ≡ 0; then h(v,W⊥) ≡ 0 so v ∈ W⊥⊥ = W
as required. ¥

Let y ∈ A be such that y = ηy, η = ±. Let the characteristic polynomial of y
be φ(X)t ∈ kF [X], with φ(X) irreducible of degree N/t. Let y = yss + ynp be
the Jordan decomposition of y. Then, by uniqueness of the decomposition, we
have yss = ηyss and ynp = ηynp. Then yss is elliptic with irreducible minimal
polynomial φ(X) and l = kF [yss] is a field with ynp, y ∈ EndlV. We also set
l0 = {l ∈ l : l = l}; note that l = l0 if, and only if, kF = k0 and η = +. As trl/kF

49



and h are nondegenerate, there exists a nondegenerate form f : V × V → l such
that, for v, v′ ∈ V,

h(lv, v′) = trl/kF
(l f(v, v′)), for all l ∈ l.

The adjoint involution on EndlV defined by f is precisely that defined by h.

If l = l0 then f is ε-bilinear while if l 6= l0 then f is ε-hermitian. In either case,
V = Vsp ⊥ Van, where f |Van×Van is anisotropic and f |Vsp×Vsp is split. In fact,
if l = l0 and ε = −1 then f is split so dimlV

an = 0; if l = l0 and ε = +1 then
dimlV

an ≤ 2; while if l 6= l0 then Nl/l0
is surjective so dimlV

an ≤ 1.

(5.2.2) Lemma (i) With notation as above, there exists a flag of l-subspaces of
V, V = V0 ⊃ V1 ⊃ · · · ⊃ Vs = 0 such that Vq⊥ = Vs−q and ynpV

q−1 ⊂ Vq and
such that, moreover, dimlV

q/Vq+1 = 1 for all q (so s = t) except in the case l = l0,
ε = +1 and t even when, possibly, dimlV

t/2−1/Vt/2 = 2 and s = t − 1.
(ii) Given such a flag, there exist l-subspaces Wq, 1 ≤ q ≤ s, of V such that
Vq−1 =

⊕s
j=q W

j and Wq⊥ =
⊕

j 6=s−q+1 W
j for 1 ≤ q ≤ s.

Proof: (i) We proceed by induction on t, the cases t = 0 and t = 1 being obvious.
So assume t ≥ 2 and that we have the result for t− 2. Since ynp is nilpotent there
exists v ∈ V such that ynpv = 0. Then for v′ ∈ V, f(ynpv

′, v) = ηf(v′, ynpv) = 0
so ynpV ⊂ 〈v〉⊥

l
.

Suppose first there exists such a v such that f(v, v) = 0; then let Vs−1 = 〈v〉l,
V1 = 〈v〉⊥

l
. Then, replacing V with V1/Vs−1 we have, by the inductive hypothesis,

a flag

V1/Vs−1 = V ′0 ⊃ V ′1 ⊃ · · · ⊃ V ′s−2
= 0

which we can lift to a flag as required. (Note that the form induced by f on
V1/Vs−1 is indeed nondegenerate by (5.2.1).)

Now suppose that for all v ∈ V such that ynpv = 0 we have f(v, v) 6= 0. Since
ynpV ⊂ 〈v〉⊥

l
and t ≥ 2, there exists v′ ∈ 〈v〉⊥

l
such that ynpv

′ = 0.

We deal first with the case l 6= l0. Since Nl/l0
l = l0, we may assume f(v, v) =

−f(v′, v′) = 1. But then ynp(v + v′) = 0 and f(v + v′, v + v′) = 0, contradicting
our assumption.

Suppose now l = l0; then, since f(v, v) 6= 0, we must have ε = +1. If t = 2
then we put V0 = V, V1 = 0 and we are done. Otherwise we have, as before,
that ynpV ⊂ 〈v, v′〉⊥

l
so there exists v′′ ∈ 〈v, v′〉⊥

l
such that ynpv

′′ = 0. But then

f(v′′, v′′) = −l2f(v, v)− l′
2
f(v′, v′) for some l, l′ ∈ l so, putting w = lv + l′v′ + v′

we have f(w,w) = 0 but ynpw = 0, contradicting the assumption.

(ii) We proceed by induction on s. If s = 1 we are done, putting W1 = V so we
assume s ≥ 2. Choose a non-zero v1 ∈ Vs−1 and w ∈ V such that f(v1, w) = 1.
Put w1 = w − 1

2f(w,w)v1; then we put W1 = 〈w1〉l and Ws = 〈v1〉l.

Suppose now that we have chosen Wj for 1 ≤ j ≤ q − 1, s − q + 2 ≤ j ≤ s. If
s− q +2 = q then we are done. Otherwise, choose v ∈ Vs−q−1 such that v 6∈ Vs−q.
We then put vq = v −

∑q−1
j=1 f(v, wj)vj and set Ws−q+1 = 〈vq〉l. If s − q + 1 = q

then we are done. Otherwise, choose w ∈ Vq such that f(vq, w) = 1. Put w′ =

w − 1
2f(w,w)vq and wq = w′ −

∑q−1
j=1 f(w′, wj)vj . Then we put Wq = 〈wq〉l. ¥
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Before continuing, we examine the case dimlW
t/2−1 = 2 of (5.2.2) in more detail.

So kF = k0, η = +, ε = +1.

Choose u′, u′′ ∈ Wt/2−1 such that f(u′, u′′) = 0 and put U ′ = 〈u′〉l, U
′′ = 〈u′′〉l;

then we have

U ′⊥ = U ′′ ⊕
⊕

i 6= t
2−1

Wi, ynpU
′ ⊂

⊕

i> t
2−1

Wi;

U ′′⊥ = U ′ ⊕
⊕

i 6= t
2−1

Wi, ynpU
′′ ⊂

⊕

i> t
2−1

Wi.

Now suppose V = V1 ⊕ V2, where V1,V2 are maximal isotropic subspaces of V; in
particular, f is split. Suppose further that yVi ⊂ Vi, for i = 1, 2; then yss and ynp

also fix Vi, i = 1, 2. Also, we can write t = 2t′, for t′ ∈ Z.

Let b ∈ A be such that bV1 = V2, bV2 = 0, b = −b, and b commutes with y. Then
b also commutes with yss and ynp so b ∈ EndlV.

(5.2.3) Lemma (i) With notation as above, there exist flags of l-subspaces

V1 = V0
1 ⊃ V1

1 ⊃ · · · ⊃ Vs
1 = 0

V2 = V0
2 ⊃ V1

2 ⊃ · · · ⊃ Vs
2 = 0

such that (Vq
1 ⊕V2)

⊥ = Vs−q
2 , bVq

1 = Vq
2 and ynpV

q−1
1 ⊂ Vq

1 for 1 ≤ q ≤ s and such

that, moreover, dimlV
q
1/Vq+1

1 = 1 for all q (so s = t′) except in the case l = l0,

ε = −1, and t′ even when, possibly dimlV
t′/2−1
1 /V

t′/2
1 = 2 and s = t′ − 1.

(ii) Given such flags, there exist residual l-subspaces Wq
i , 1 ≤ q ≤ s, of Vi,

i = 1, 2, such that Vq−1
i =

⊕s
j=q W

j
i , W

q
1
⊥

= V1 ⊕
⊕

j 6=s−q+1 W
j
2 and Wq

2 = bWq
1

for 1 ≤ q ≤ s, i = 1, 2.

Proof: We define a nondegenerate −ε-hermitian form f ′ on V1 by f ′(v, v′) =
f(v, bv′). Then we apply (5.2.2) to (V1,f

′) and put Vq
2 = bVq

1 . ¥

We now examine the case dimlW
t′/2−1
1 = 2 of (5.2.3) in more detail. So kF = k0,

η = +, ε = −1.

Choose u′, u′′ ∈ W
t′/2−1
1 such that f(bu′, u′′) = 0 and put U ′ = 〈u′〉l, U

′′ = 〈u′′〉l;
then we have

U ′⊥ = V1 ⊕ bU ′′ ⊕
⊕

i 6= t′

2 −1

Wi
2, ynpU

′ ⊂
⊕

i> t′

2 −1

Wi
1;

U ′′⊥ = V1 ⊕ bU ′ ⊕
⊕

i 6= t′

2 −1

Wi
2, ynpU

′′ ⊂
⊕

i> t′

2 −1

Wi
1.
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(5.3) Non-split fundamental strata

In this section, h will be a skew-hermitian form.

Let [A,m,m − 1, b] be a stratum in A and set

y = yb = π
m/g
F be/g ∈ A

where e = e(A) is the oF -period of A and g = (m, e).

Let Φ(X) ∈ oF [X] be the characteristic polynomial of y and let φb(X) ∈ kF [X] be
its reduction modulo pF . This polynomial φb(X) depends only on the equivalence
class of the stratum, since it is also the characteristic polynomial of y considered
as an element of A/P, and is called the characteristic polynomial of the stratum.

(5.3.1) Definition Let [A,m,m−1, b] be a stratum in A, φb(X) its characteristic
polynomial.
(i) The stratum is called fundamental if φb(X) is not a power of X.
(ii) The stratum is called split if φb(X) has (at least) two distinct prime factors.

In particular, a non-split fundamental stratum has characteristic polynomial φ(X)t

for φ(X) ∈ kF [X] an irreducible monic polynomial of degree N/t, φ(X) 6= X.

Now let [A,m,m − 1, b] be a skew non-split fundamental stratum in A. We recall
that πF is a fixed uniformizer of F such that πF = πF if F/F0 is unramified, while
πF = −πF if F/F0 is ramified. In particular, we have y = ηy, for η = ±, and
φ(ηX) = φ(X).

The main result of this section is the following:

(5.3.2) Theorem (cf. [BK] (2.3.4)) Let [A,m,m − 1, b] be a skew non-split
fundamental stratum in A. Then there exists a skew simple stratum [A′,m′,m′ −
1, b′] in A such that

b + P1−m ⊂ b′ + P′1−m′

.

Moreover, m′/e(A′) = m/e(A) and the lattice chain defining A′ contains that which
defines A. In particular, [A′,m′,m′ − 1, b] is a skew stratum and it is equivalent
to [A′,m′,m′ − 1, b′].

Proof: Put e = e(A), g = (m, e) and y = π
m/g
F be/g, as above; so y = ηy, η = ±.

Let φ(X) ∈ kF [X] be the unique (monic) irreducible factor of the characteristic

polynomial of the stratum [A, n, n−1, b]. Let Φ(X) ∈ oF [X] be such that Φ̃(X) =
φ(X) and such that Φ(ηX) = Φ(X). Then we will show that we can choose b′

such that the element y′ = π
m/g
F b′

e/g
has minimal polynomial Φ(X).

We now reduce to the case where the stratum takes a standard form (see (5.3.10)
below).

Let L = {Lk : k ∈ Z} be the (self-dual) lattice chain associated to A and, after

renumbering, let d = 0 or −1 be the integer such that L#
k = Ld−k for all k ∈ Z,

given by (1.1.2). We define residual subspaces W(i) of L, 0 ≤ i ≤ g − 1, by

W
(i)
k =

{
Lk/Lk+1 if k ≡ i (mod g)

0 otherwise
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Let f = [ g+1−d
2 ]; for 1 ≤ j ≤ f , set

V(j) = W(j+d−1) + W(g−j)

Note that if 2j 6≡ 1−d (mod g) then the sum is direct, while if 2j ≡ 1−d (mod g)
then V(j) = W(j+d−1). Set

gj =

{
1 if 2j ≡ 1 − d (mod g)

2 otherwise.

(5.3.3) Lemma The residual subspaces V(j) are nondegenerate.

Proof: This is identical to (3.2.3). ¥

The residual subspaces V(j) are clearly orthogonal and Lk/Lk+1 = V
(1)
k ⊕· · ·⊕V

(f)
k

for all k so we can apply (3.1.9) to get an orthogonal decomposition

V = V (1) ⊥ · · · ⊥ V (f)

such that V(j) = L(V (j)) for 1 ≤ j ≤ f . Then h decomposes as h = h1 ⊥ · · · ⊥ hf ,
where hj is a nondegenerate ε-hermitian form on V (j), 1 ≤ j ≤ f .

Write L
(j)
k = Lk ∩ V (j) for k ∈ Z, 1 ≤ j ≤ f .

(5.3.4) Lemma The set L(j) = {L
(j)
k : k ∈ Z} is a self-dual lattice chain in V (j),

1 ≤ j ≤ f . Moreover, the oF -period ej = e(L(j)) is e
g gj.

Proof: This is identical to (3.2.4). ¥

Putting A(ij) = Hom(V (j), V (i)), we get a “block decomposition”:

A =
∐

1≤i,j≤f

A(ij).

Write 1(j) for the projection V → V (j) with kernel
∐

i 6=j V (i) so that 1(j) is

in fact the identity element of the algebra A(jj) and A(ij) = 1(i).A.1(j). Then

1(j)Lk = L
(j)
k ⊂ Lk for all k ∈ Z so we have 1(j) ∈ A, 1 ≤ j ≤ f .

We denote j the adjoint involution on A(jj) induced by the form hj , 1 ≤ j ≤ f .

Then set A
(jj)
− = {x ∈ A(jj) : xj = −x}.

(5.3.5) Lemma Write b =
∑

bij with bij ∈ A(ij). Then

(i) bjj ∈ A
(jj)
− for 1 ≤ j ≤ f ;

(ii) P−m ∩ A(ij) = P1−m ∩ A(ij) for i 6= j;
(iii) b ≡

∑
bjj (mod P1−m).

Proof: (i) Let w,w′ ∈ V (j). Then we have

hj(bjjw,w′) = h(bw,w′) = h(w,−bw′) = hj(w,−bjjw
′)

so bjj
j

= −bjj .
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(ii) Let x ∈ P−m ∩ A(ij), i 6= j so xL
(j)
k ⊂ L

(i)
k−m. Note that

L
(j)
k 6= L

(j)
k+1 if and only if L

(j)
k−m 6= L

(j)
k−m+1

and L
(j)
k 6= L

(j)
k+1 implies L

(i)
k = L

(i)
k+1

for k ∈ Z. Then if L
(j)
k 6= L

(j)
k+1 we have x(L

(j)
k ) ⊂ L

(i)
k−m = L

(i)
k−m+1 while if

L
(j)
k = L

(j)
k+1 then x(L

(j)
k ) = x(L

(j)
k+1) = L

(i)
k−m+1. So x ∈ P1−m ∩ A(ij).

(iii) is immediate from (ii). ¥

Let A(j) = A(L(j)) be the hereditary oF -order in A(jj) corresponding to L(j).

(5.3.6) Lemma With the notation above, we have A(j) = A ∩ A(jj).

Proof: Let x ∈ A ∩ A(jj); then xLk ⊂ Lk for k ∈ Z so xL
(j)
k ⊂ L

(j)
k . i.e.

x ∈ A(j). Conversely, let x ∈ A(j); then xL
(j)
k ⊂ L

(j)
k . But x = 1(j)x1(j) so

xLk = 1(j)x1(j)Lk = 1(j)xL
(j)
k ⊂ L

(j)
k ⊂ Lk. ¥

Let P(j) be the Jacobson radical of A(j).

(5.3.7) Lemma (i) P ∩ A(jj) = P(j);
(ii) P−m ∩ A(jj) = (P(j))−

m
g

gj ;
(iii) P1−m ∩ A(jj) = (P(j))1−

m
g

gj .

Proof: The proof of (i) is similar to (5.3.6), as are the proofs of (ii) and (iii),

having observed that L
(j)
k 6= L

(j)
k+1 if and only if k ≡ −j or j + d − 1 (mod g), so

that

(P(j))gj L
(j)
k = L

(j)
k+g for k ∈ Z;

(P(j))1+gj L
(j)
k = L

(j)
k+g+1 for k ≡ −j or j + d − 1 (mod g).

¥

In particular, we have νA(j)(bjj) = −m
g gj = −mj . We consider the stratum

[A(j),mj ,mj − 1, bjj ] in A(jj). Set yj = π
mj/gj

F b
ej/gj

jj = π
m/g
F b

e/g
jj . Then we have

y ≡
∑

j

yj (mod P)

from(5.3.5)(iii), since bjjbii = 0 for i 6= j. The characteristic polynomial of y as an
element of A/P =

∐
A(j)/P(j) is the product of the characteristic polynomials of

the yj as elements of A(j)/P(j). In particular, [A(j),mj ,mj − 1, bjj ] is a non-split
skew fundamental stratum with characteristic polynomial a power of φ(X).

Each lattice chain L(j) is given by

· · · % π−1
F L(j)

rj
⊃ L(j)

rj

# % · · · % L
(j)
0

# ⊃ L
(j)
0 % · · · % L(j)

rj
= πF L(j)

rj

# % . . .

so ej = 2rj , 2rj + 1 or 2rj + 2. Note further that if gj = 2 then, for k = j + d− 1,

(L
(j)
k )# = L

(j)
d−k = L

(j)
−j+1 = L

(j)
k as −j + 1 > −j. So if we renumber the lattices

of Lj then (L
(j)
0 )# = L

(j)
0 .
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Putting this together, we split the possibilities into five cases:

(5.3.8) (i) (ej ,mj) = 2, L
(j)
0 = L

(j)
0

# and L
(j)
rj = πF L

(j)
rj

#; so ej = 2rj;

(ii) (ej ,mj) = 1, L
(j)
0 6= L

(j)
0

# and L
(j)
rj = πF L

(j)
rj

#; so ej = 2rj + 1;

(iii) (ej ,mj) = 1, L
(j)
0 6= L

(j)
0

# and L
(j)
rj 6= πF L

(j)
rj

#; so ej = 2rj + 2;

(iv) (ej ,mj) = 1, L
(j)
0 = L

(j)
0

# and L
(j)
rj 6= πF L

(j)
rj

#; so ej = 2rj + 1;

(v) (ej ,mj) = 1, L
(j)
0 = L

(j)
0

# and L
(j)
rj = πF L

(j)
rj

#; so ej = 2rj + 1.

Suppose, in each of these cases, we can find a stratum [A′(j),m′
j ,m

′
j − 1, b′jj ] such

that A′(j) ⊂ A(j), y′
jj = π

m′

j/g′

j

F b′
e′

j/g′

j

jj has minimal polynomial Φ(X) and

bjj + (P(j))1−mj ⊂ b′jj + (P′(j))1−m′

j .

Then put b′ =
∑

b′j , m′ =
∑

m′
j and e′ =

∑
e′j . Set

L′ = {oF -lattices L ∈ V : Li ⊇ L ⊇ Li+1 for some i ∈ Z and,

for 1 ≤ j ≤ f, L ∩ V (j) = L′(j)
kj

for some kj ∈ Z}.

(5.3.9) Lemma With notation as above, L′ is a self-dual lattice chain in V and

we have e(L′) = e′ and b′A′ = P′m
′

, where A′ = A(L′) and P′ is the radical of A′.

Proof: For each i ∈ Z there exists a unique j, 1 ≤ j ≤ f , such that L
(j)
i 6= L

(j)
i+1.

Hence L′ is a lattice chain and e(L′) = e′. It is self-dual since each L′(j) is. ¥

Then F [b′] = F [b′jj ] for any j, 1 ≤ j ≤ f since b′iib
′
jj = 0 for i 6= j so F [b′] is a

field and b′ is minimal over F . In particular, [A′,m′,m′ − 1, b′] is a skew simple
stratum in A. Moreover, we have

b + P1−m =

f∐

j=1

(bjj + P(j)1−mj

)
∐

i 6=j

P1−m ∩ A(ij)

⊂

f∐

j=1

(b′jj + P′(j)
1−m′

j

)
∐

i 6=j

P′1−m′

∩ A(ij) = b′ + P′1−m′

,

since P1−m ∩A(ij) = P′1−m′

∩A(ij), for i 6= j, by counting lattices. Hence we are
done.

Before completing the proof in the cases (i–v) of (5.3.8) we describe what we mean
by standard form. We choose a splitting of L, V∞⊕V−r⊕· · ·⊕V−1⊕V0⊕V1⊕· · ·⊕Vr

(see (3.2.2)) with, possibly, V∞ = 0 and/or V0 = 0. Let Ω be the set of indices
ω ∈ {∞,−r, ..., r} such that Vω is non-trivial; then, as in (3.2), Z/eZ acts on Ω
by translation in the obvious way. For ω ∈ Ω, i ∈ Z, we will write ω + i for the
translate by i + eZ of ω. We also choose a basis B as in (3.2.5), such that the
matrices J∞, J0 take the form described in (3.2.8). Put δ = deg φ(X).
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(5.3.10) Definition Let [A,m,m − 1, b] be a non-split fundamental stratum in
band form, b = r−m(b), where b = (bω : ω ∈ Ω).
(a) Suppose first we are in one of (i–v) of (5.3.8). Then the stratum [A,m,m−1, b]
is in standard form with respect to B if the following holds:
Each bω is block diagonal (in blocks of size δ × δ or, in cases (iv), (v), possibly
one middle block of size 2δ × 2δ), except for the following which are upper block
triangular modulo pF :

case (i) b1 and b−1−m;
case (ii) b[ e

2 ]m;
case (iii) b∞ and b∞−m;
case (iv) b∞+[ e

2 ]m;
case (v) b e−m+1

2
.

(b) Suppose otherwise. Then the stratum [A,m,m− 1, b] is in standard form with
respect to B if each of the strata [A(j),mj ,mj − 1, bjj ] (as described above) is in
standard form.

(5.3.11) Proposition Let [A,m,m − 1, b] be a non-split fundamental stratum
which takes the form of one of cases (i–v) of (5.3.8) and is in band form, b =
r−m(b), where b = (bω : ω ∈ Ω). Then there exists a self-dual basis B which
matches the splitting such that [A,m,m − 1, b] is in standard form with respect to
B.

Proof: We treat the five cases separately, although there are many similarities.

Case (i)

The maps b̃k and (π̃F )k are isomorphisms for all k ∈ Z by (3.3.1) so, in partic-
ular, we have dimkF

Vk = dimkF
Vk+2 for all k ∈ Z. Further, duality via h gives

dimkF
Vk = dimkF

V−1−k for all k ∈ Z, so dimkF
Vk = N

e for all k ∈ Z.

Form y = π
m/2
F be/2 and consider ỹ0, an automorphism of V0. It has characteristic

polynomial φ(X)t, for some t, so, using Jordan canonical form, we can find a flag
of kF -subspaces

V0 = V0
0 ⊃ V1

0 ⊃ · · · ⊃ Vs
0 = 0

such that φ(ỹ0)V
q−1
0 ⊂ Vq

0 for 1 ≤ q ≤ s = t and which is stable under ỹ0. So,
as an automorphism of Vq

0/Vq+1
0 , ỹ0 has (irreducible) characteristic polynomial

φ(X).

Then we obtain a flag in each Vk by translation by b̃, π̃F and by duality:

Vk = V0
k ⊃ V1

k ⊃ · · · ⊃ Vs
k = 0

with

Vq
k =

{
π̃u

F b̃νVq
0 k ≡ 0 (mod 2)

π̃u
F b̃ν(Vs−q

0 )⊥ k ≡ 1 (mod 2),

where u, ν ∈ Z are such that

k =

{
ue + νm if k ≡ 0 (mod 2)

ue + νm − 1 if k ≡ 1 (mod 2)
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Note that this is well defined since the flags are ỹ-stable and that (Vq
k)⊥ = Vs−q

−1−k.

Now we must lift this structure from the residual level to V . Choose a de-
composition V0 =

⊕s
j=1 W

j
0 such that Vq−1

0 =
⊕s

j=q W
j
0 for 1 ≤ q ≤ s. Put

Wq
−1 =

⋂
j 6=s−q+1(W

j
0)⊥ for 1 ≤ q ≤ s; then Vq−1

−1 =
⊕s

j=q W
j
−1. Then for

i = 0,−1, 1 ≤ q ≤ s, let Wi,q be the residual subspace of L given by

(Wi,q)k =

{
π̃F

uWq
i if k = ue + i

0 otherwise.

Recall that we have a splitting V−r ⊕ · · · ⊕ V−1 ⊕ V1 ⊕ · · · ⊕ Vr of L (so Ω =
{−r, . . . ,−1, 1, . . . , r} in this case). For 1 ≤ q ≤ s, there exist (totally isotropic)
subspaces W q

1 of V1 such that

L(W q
1 ) = W0,q.

We also put

L(W q
−1) =

⋂

j 6=s−q+1

(W q
1 )⊥;

then L(W q
−1) = W−1,q and (W q

1 )⊥ ∩ V−1 =
⊕

j 6=s−q+1 W j
−1.

Now, for 1 ≤ ν ≤ e
2 − 1 and 1 ≤ q ≤ s, we put

W q
1−νm = bνW q

1 ,

W q
−1+νm = b−νW q

−1,

so that Vω = W 1
ω ⊕· · ·⊕W q

ω for all ω ∈ Ω. Then bω is block diagonal for all ω ∈ Ω,
except b1 and b−1−m which are upper block triangular modulo pF since y is.

Case (ii)

As in case (i), dimkF
Vk = N

e for all k ∈ Z.

Form y = πm
F be and consider ỹ−1 as an automorphism of V−1. It has characteristic

polynomial φ(X)t, for some t. We also have the nondegenerate form h−1 : V−1 ×
V−1 → kF and, for the involution associated to h−1, we have ỹ−1 = ±ỹ−1. By
(5.2.2)(i), applied to (V−1,h−1), we can find a flag of kF -subspaces

V−1 = V0
−1 ⊃ V1

−1 ⊃ · · · ⊃ Vs
−1 = 0

such that (Vq
−1)

⊥ = Vs−q
−1 for 0 ≤ q ≤ s = t, φ(ỹ−1)V

q−1
−1 ⊂ Vq

−1 for 1 ≤ q ≤ s and
which is stable under ỹ−1.

From this flag we can obtain a flag in each Vk by translating by b̃ and π̃F :

Vk = V0
k ⊃ V1

k ⊃ · · · ⊃ Vs
k = 0

with
Vq

k = π̃u
F b̃νVq

−1

where u, ν ∈ Z are such that k + 1 = ue + νm. Note that this is well defined as
the flag is ỹ-stable and that (Vq

k)⊥ = Vs−q
−2−k.
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By (5.2.2)(ii), there exists a decomposition V−1 =
⊕s

j=1 W
j
−1 such that Vq−1

−1 =⊕s
j=q W

j
−1 and (Wj

−1)
⊥ =

⊕
j 6=s−q+1 W

j
−1, for 1 ≤ q ≤ s. Then for 1 ≤ q ≤ s, let

W−1,q be the residual subspace of L given by

(W−1,q)k =

{
π̃F

uWq
i if k = ue − 1

0 otherwise.

Recall that we have a splitting V−r ⊕ · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vr of L (so
Ω = {−r, . . . , 0, . . . , r}). For 1 ≤ q ≤ s, we will now choose subspaces W q

0 of V0

such that L(W q
0 ) = W−1,q.

If s is odd then W−1,[ s+1
2 ] is a nondegenerate residual subspace so there exists a

nondegenerate subspace W
[ s+1

2 ]
0 of V0 such that L(W

[ s+1
2 ]

0 ) = W−1,[ s+1
2 ]. Then we

replace V0 with (W
[ s+1

2 ]
0 )⊥ ∩ V0 to reduce to the case where s is even.

If s is even then we first choose totally isotropic subspaces W 1
0 ,W s

0 of V0 such
that L(W q

0 ) = W−1,q, for q = 1, s. The subspace W 1
0 ⊕W s

0 is nondegenerate and,
replacing V0 by (W 1

0 ⊕W s
0 )⊥ ∩V0, we may continue inductively to choose W q

0 , for
1 ≤ q ≤ s.

With these choices, W q
0 is totally isotropic if, and only if, W−1,q is and, further,

(W q
0 )⊥ ∩ V0 =

⊕
j 6=s−q+1 W j

0 .

Now, for 1 ≤ ν ≤ [ e
2 ] and 1 ≤ q ≤ s, we put

W q
0−νm = bνW q

0 ,

W q
0+νm = b−νW q

0 ,

so that Vω = W 1
ω ⊕· · ·⊕W q

ω for all ω ∈ Ω. Then bω is block diagonal for all ω ∈ Ω,
except bm[ e

2 ], which is upper block triangular modulo pF .

Case (iii)

We proceed as in case (ii) to obtain the kF -spaces Vq
k , 1 ≤ q ≤ s, k ∈ Z, and

hence subspaces W q
0 of V0. (Note that here the splitting of L takes the form

V∞ ⊕ V−r ⊕ · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vr, so Ω = {∞,−r, . . . , 0, . . . , r}.) Again,
for 1 ≤ ν ≤ e

2 − 1 and 1 ≤ q ≤ s, we put

W q
0−νm = bνW q

0 ;

W q
0+νm = b−νW q

0 .

(Note that we have not yet chosen subspaces of V∞.) Then bω is block diagonal
for ω ∈ Ω \ {∞,∞− m}.

Now we must choose subspaces W q
∞ of V∞ such that b∞ is upper block triangular

modulo pF ; for then b∞−m must also be upper block triangular modulo pF , since y
is. (In fact, b∞−m = (π−1

F J−1
∞ I) †b∞, where J∞, I are as in (3.2.5) and † represents

transposition in the off-diagonal; so b∞−m is upper block triangular modulo pF if,
and only if, b∞ is also, regardless of the element y.)

We consider the kF -space Vr, with form h′
r : Vr × Vr → kF given by h′

r(v, v′) =

hr(v, π̃F
−1

v′), for v, v′ ∈ Vr. This form is still skew-hermitian if F/F0 is unrami-
fied, but is symmetric if F/F0 is ramified.
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We have subspaces Vq
r ⊂ Vr such that (Vq

r )⊥ = π̃F
−1Vs−q

r (for ⊥ relative to
hr). So, for ⊥ relative to the form h′

r, we have (Vq
r )⊥ = Vs−q

r . We may now
apply (5.2.2)(ii) to obtain subspaces Wq

r of Vr such that Vq−1
r =

⊕s
j=q W

j
r and

(Wj
r )⊥ =

⊕
j 6=s−q+1 W

j
r , for 1 ≤ q ≤ s.

Now we define residual subspaces Wr,q as for W−1,q and find subspaces W q
∞ of

V∞ as for W q
0 in case (ii). Then, since b̃r+mVq

r+m = Vq
r , for 1 ≤ q ≤ s, we have

that b∞ : V∞+m → V∞ is upper block triangular modulo pF , as required.

Case (iv)

We treat this case as case (ii) except that we take Vr instead of V−1, with form

h′
r : Vr × Vr → kF given by h′

r(v, v′) = πF
−1h(v, v′) + pF (= hr(v, π̃F

−1
v′)) for

v, v′ ∈ Vr. As in case (iii), this form is skew-hermitian if F/F0 is unramified, but
symmetric if F/F0 is ramified.

The rest is effectively identical to case (ii), with V0 replaced by V∞, although it is
possible to have a double-sized block from (5.2.2)(i) (in the case F/F0 ramified,
m odd and t even). As in case (ii), there is only one bω which is upper block
triangular modulo pF , namely b∞+m[ e

2 ].

Case (v)

As in case (i), dimVk = N
e for all k ∈ Z. Note that −m must be odd so we put

−m = 2l + 1; then b induces the map b̃−l−1 : V−l−1 → Vl.

Form y = πm
F be and consider ỹ as an automorphism of V−l−1⊕Vl, where V−l−1 and

Vl are maximal isotropic subspaces. It has characteristic polynomial φ(X)2t, some
t. We also have the form h′ on V−l−1 ⊕ Vl, given by h′(v−l−1 + vl, v

′
−l−1 + v′

l) =
h−l−1(v−l−1, v

′
l) + hl(vl, v

′
−l−1), which is nondegenerate, since hl is, and skew-

hermitian. For the involution associated to this form, we have ỹ = ±ỹ. By
(5.2.3)(i), applied to (V−l−1 ⊕ Vl,h

′), we can find flags of kF -subspaces

V−l−1 = V0
−l−1 ⊃ V1

−l−1 ⊃ · · · ⊃ Vs
−l−1 = 0

Vl = V0
l ⊃ V1

l ⊃ · · · ⊃ Vs
l = 0

such that (Vq
−l−1)

⊥ = Vs−q
l , b̃Vq

−l−1 = Vq
l , each flag is ỹ-stable and φ(ỹ)Vq−1

l ⊂ Vq
l

for 1 ≤ q ≤ s, s = t or t − 1. (Note that s = t − 1 can only occur if F = F0; for
it occurs only if kF = k0 and, if F 6= F0, then F/F0 must be ramified. But then
y = (−1)m/g(−1)e/gy = −y so η = −.)

From this flag we can obtain a flag in each Vk by translating by b̃ and π̃F :

Vk = V0
k ⊃ V1

k ⊃ · · · ⊃ Vs
k = 0

with
Vq

k = π̃u
F b̃νVq

−1

where u, ν ∈ Z are such that k + l + 1 = ue + νm. Note that this is well defined
as the flag is ỹ-stable and that (Vq

k)⊥ = Vs−q
−1−k.

By (5.2.3)(ii) there exist decompositions Vi =
⊕s

j=1 W
j
i , i = −l − 1, l, such that

Vq−1
i =

⊕s
j=q W

j
i , (Wq

−l−1)
⊥ = V−l−1 ⊕

⊕
j 6=s−q+1 W

j
l and Wq

l = b̃Wq
−l−1 for
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1 ≤ q ≤ s,i = −l − 1, l. Then for i = −l − 1, l, 1 ≤ q ≤ s, let Wi,q be the residual
subspace of L given by

(Wi,q)k =

{
π̃F

uWq
i if k = ue + i

0 otherwise.

Recall that we have a splitting V−r ⊕ · · · ⊕ V−1 ⊕ V1 ⊕ · · · ⊕ Vr of L (so Ω =
{−r, . . . ,−1, 1, . . . , r}). Then there exist (totally isotropic) subspaces W q

−l−1 of
V−l−1 such that

L(W q
−l−1) = W−l−1,q.

We also put

W q
l+1 =

⋂

j 6=s−q+1

(W j
−l−1)

⊥;

then L(W q
l+1) = W l,q and (W q

l+1)
⊥ ∩ V−l−1 =

⊕
j 6=s−q+1 W j

−l−1.

Now, for 1 ≤ ν ≤ e
2 − 1 and 1 ≤ q ≤ s, we put

W q
l+1−νm = bνW q

l+1,

W q
−l−1+νm = b−νW q

−l−1,

so that Vω = W 1
ω ⊕· · ·⊕W q

ω for all ω ∈ Ω. Then bω is block diagonal for all ω ∈ Ω,
except b e+m−1

2
which is upper block triangular modulo pF .

This completes the proof of (5.3.11) in all cases. ¥

(5.3.12) Remark In cases (i), (ii), (iii), (iv), it is possible for us to choose the
bases for the W q

ω such that all the bω are diagonal with 1s and −1s on the diagonal,
excepting those blocks which are upper triangular by blocks modulo pF . In case (v),
we may choose the bases for the W q

ω such that all the bω are 1 or −1, excepting
b e+m−1

2
and b 1−m

2
.

We now prove a result similar to [BK] (2.5.8) about the shapes of the blocks of a
stratum in standard form which is equivalent to a simple stratum.

(5.3.13) Proposition Let [A,m,m − 1, b] be a non-split fundamental stratum
which takes the form of one of cases (i–v) of (5.3.8) and is in band form, b =
r−m(b), where b = (bω : ω ∈ Ω). Suppose [A,m,m− 1, b] is equivalent to a simple
stratum. Then there exists a self-dual basis B which matches the splitting such
that [A,m,m− 1, b] is in standard form with respect to B and bω is block diagonal
modulo pF for all ω ∈ Ω.

Proof: Put y = π
m/g
F be/g as usual; then y = r0(y), for some y = (yω) ∈ B0(A).

By [BK] (2.5.8), y (mod pF ) is semisimple so yω is block diagonal (mod pF ), for all
ω ∈ Ω. Then, cases (ii), (iv), (v), where only one bω is upper triangular modulo
pF , we are done, as indeed we are in case (i) since 1 and −1 are incongruent
modulo 2 in Ω.
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Consider now case (iii) where b∞ and b∞+m are upper block triangular modulo
pF . Write

b∞ =




α β γ
0 θ ζ
0 0 ξ


 (mod pF ),

where the block sizes are [ s
2 ]δ, 0 (respectively δ), [ s

2 ]δ if s is even (respectively odd)
and we have chosen a self-dual basis matching the decomposition (as in (3.2.9)).
We also have that α and ξ are upper block triangular modulo pF .

A simple matrix calculation shows that

b∞+m =




ξ∗ −ζ∗K −γ∗

0 −θ∗K −β∗

0 0 −α∗


 (mod pF ),

where x∗ is the conjugate transpose of x (for transposition in the off-diagonal) and
K is the central block of IJ∞ (notation as in (3.2)).

Let u = r0(u), with u = (uω) ∈ B0(A), be the unipotent block diagonal matrix
all of whose blocks are the identity except u∞ which is given by




1 (ζξ−1)∗K 1
2 (ζξ−1)∗Kζξ−1

0 1 ζξ−1

0 0 1


 .

Then (u−1bu)∞ has matrix




α β′ γ′

0 θ 0
0 0 ξ


 (mod pF ),

for some β′, γ,. So, changing the basis B, we may assume ζ = 0.

We have y = r0(y), with y = (yω) ∈ B0(A), and

y∞+m =




ξ∗α ξ∗β ξ∗γ − γ∗ξ
0 −δ∗Kδ −β ∗ ξ
0 0 −α∗ξ


 Z (mod pF ),

where Z ∈ GL(sd, oF ) is block diagonal. Since y∞+m is block diagonal modulo
pF , we have −ξ∗β ≡ 0 (mod pF ) and ξ∗γ − γ∗ξ ≡ 0 (mod pF ). In particular,
β ≡ 0 (mod pF ) and (γξ−1)∗ ≡ γξ−1 (mod pF ).

Put y = 1
2 (γ∗ξ + ξ∗γ). Let u′ = r0(u

′), with u′ = (u′
ω) ∈ B0(A), be the unipotent

block diagonal matrix all of whose blocks are the identity except u′
∞ which is given

by 


1 0 y
0 1 0
0 0 1


 .
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Then (u′−1
bu′)∞ has matrix




α 0 0
0 θ 0
0 0 ξ


 (mod pF ).

Hence, again changing the basis B, we may assume β = 0 and γ = 0.

Let u′′ = r0(u
′′), with u′′ = (u′′

ω) ∈ B0(A), be the block diagonal matrix all of
whose blocks are the identity except u∞ which is given by




α−1 0 0
0 1 0
0 0 (α−1)∗


 .

Then (u′′−1
bu′′)∞ has matrix




1 0 0
0 θ 0
0 0 (α−1)∗ξ


 (mod pF ).

So, changing the basis B, we may assume α = 1; then ξ must be block diagonal
modulo pF since y is. ¥

(5.3.14) Corollary Let [A,m,m−1, b] be a non-split fundamental stratum in band
form, b = r−m(b), where b = (bω : ω ∈ Ω). Suppose [A,m,m−1, b] is equivalent to
a simple stratum. Then there exists a self-dual basis B which matches the splitting
such that [A,m,m − 1, b] is in standard form with respect to B and bω is block
diagonal modulo pF for all ω ∈ Ω.

We now return to the proof of (5.3.2), in cases (i–v) of (5.3.8), using notation
from the proof of (5.3.11). We first define a self-dual lattice chain L′, using the
residual subspaces Vq

k in the proof of (5.3.11).

In all cases we have a flag of kF -subspaces in each Vk and they satisfy the relation

(Vq
k)⊥ = Vs−q

d−k−1.

Then for each k ∈ Z, 0 ≤ q ≤ s − 1 there exists a unique lattice L′
sk+q such that

L′
sk+q/Lk+1 = Vq

k .

Then L′ = {L′
i; i ∈ Z} is a lattice chain in V , of period e′ = es.

(5.3.15) Lemma The lattice chain L′ is self-dual.

Proof: We show that (L′
sk+q)

# = L′
s(d−k)−q.

Since Lk ⊃ L′
sk+q ⊃ Lk+1, we have Ld−k ⊂ (L′

sk+q)
# ⊂ Ld−k−1. Then, for

v ∈ Ld−k−1, we have

h(v, L′
sk+q) ⊂ pF ⇐⇒ h(v + Ld−k,Vq

k) ≡ 0

⇐⇒ v + Ld−k ⊂ (Vq
k)⊥ = Vs−q

d−k−1

⇐⇒ v ∈ L′
s(d−k−1)+(s−q) = L′

s(d−k)−q.
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¥

Let A′ = A(L′); then A′ ⊂ A and A′ = A′.

(5.3.16) Lemma With notation as above, we have bA′ = P′−m′

, where m′ = ms.

Proof: We have b ∈ K(A) by [BK] (2.5.6) so Lk−m = bLk ⊃ bL′
sk+q ⊃ bLk+1 =

Lk−m+1. Then, for v ∈ Lk−m, we have

v ∈ bL′
sk+q ⇐⇒ v + Lk−m+1 ∈ b̃Vq

k = Vq
k−m

⇐⇒ v ∈ L′
s(k−m)+q.

So b ∈ K(A′) and bA′ = P′−ms
. ¥

Now we find an element b′ ∈ b + P′1−m′

such that Φ(b′) = 0. We take a splitting
for L′,

V = V ′
∞ ⊕ V ′

−r′ ⊕ · · · ⊕ V ′
−1 ⊕ V ′

0 ⊕ V ′
1 ⊕ · · · ⊕ V ′

r′

with possibly V ′
∞ = 0 and/or V ′

0 = 0 and which is subordinate to the chosen
splitting for L. We also put Ω′ = {ω′ : V ′

ω′ 6= 0}.

We have dimF V ′
ω′ = δ or 2δ for all ω′ ∈ Ω′, where δ = deg φ(X). Moving to

stratum equivalent to [A′,m′,m′ − 1, b], we may assume b is in band form, b =

r−m′(b) for b ∈ B−m′(A′). Then y = π
m′/g′

F be′/g′

is of the form y = r0(y),
y = (yω′) ∈ B0(A

′), with

yω′ = bω′bω′−m . . . bω′−(e′/g′−1)m′ ∈ Hom(V ′
ω′ , V ′

ω′).

Let C be a set of representatives for the equivalence classes of Ω′ under the action
of Z/g′Z, so card(C) = g′. If V ′

0 6= 0 then we require that 0 ∈ C; if V ′
∞ 6= 0 and

∞ 6≡ 0 (mod g′), then we require that ∞ ∈ C. Also, if we are in case (v) and m′

is odd, then we require that 1−m′

2 ∈ C. Then we have four cases:

(a) ω′ 6= 0,∞, 1−m′

2 ;
(b) ω′ = 0;
(c) ω′ = ∞;

(d) ω′ = 1−m′

2 .

Case (a)

In this case we have dimV ′
ω′ = δ.

By Hensel’s Lemma, there exists xω′ ≡ yω′ (mod pF ) such that Φ(xω′) = 0. Then
xω′ = uω′yω′ for some uω′ ≡ 1 (mod pF ).

Case (b)

In this case we have dimV ′
0 = δ.

By(5.1.3) there exists xω′ ∈ A
(ω′ω′)
− such that xω′ ≡ yω′ (mod pF ) and Φ(xω′) = 0.

Then, by (5.1.5), there exists uω′ ≡ 1 (mod pF ) such that xω′ = uω′yω′uω′ .

63



Case (c)

If dimV ′
∞ = δ then this is identical to case (b). So suppose we are in the case

dimV ′
∞ = 2δ.

By the discussion following (5.2.2), we have L(V ′
∞)−r′−1 = U ′ ⊥ U ′′, with

ỹ−r′−1U
′ = U ′ and ỹ−r′−1U

′′ = U ′′. Let U ′, U ′′ be orthogonal subspaces of V ′
∞

such that L(U ′)−r′−1 = U ′ and L(U ′′)−r′−1 = U ′′. Then y∞ ≡ y′
∞ + y′′

∞ (mod
pF ), where y′

∞ ∈ Hom(U ′, U ′) and y′′
∞ ∈ Hom(U ′′, U ′′). Moving to an equivalent

stratum if necessary, we assume that y∞ = y′
∞ + y′′

∞.

The spaces U ′, U ′′ are equipped with nondegenerate skew-hermitian forms (by
restriction of h). Then we apply case (b) to find x′

∞, x′′
∞ and u′

∞, u′′
∞. Then

we put x∞ = x′
∞ + x′′

∞ and u∞ = u′
∞ + u′′

∞. In particular, we have Φ(x∞) =
Φ(x′

∞) + Φ(x′′
∞) = 0 and u∞ ≡ 1 (mod pF ).

Case (d)

Following the remark (5.3.12), we assume that bυ′ = ±1 for υ′ ≡ ω′ (mod g′),
υ′ 6= ω′, ω′ − r′ − 1.

We first treat the case dimV ′
ω′ = δ.

Write α = bω′ and β = bω′−r′−1. A simple matrix calculation shows that b+ b = 0
if and only if α = α∗ and β = β∗, where x∗ is the conjugate transpose of x, for
x ∈ M(δ, F ) (for transposition in the off-diagonal). The map x 7→ x∗ is the adjoint
involution of a hermitian form on M(δ, F ).

By Hensel’s Lemma, there exists xω′ ≡ yω′ (mod pF ) such that Φ(xω′) = 0.
By (5.1.8), there exist α′ ≡ α (mod pF ), β′ ≡ β (mod pF ) such that α′∗ = α′,
β′∗ = β′ and xω′ = α′β′. By (5.1.5), there exist uω′ , uω′−r′−1 ≡ 1 (mod pF ) such
that α′ = uω′αu∗

ω′ and β′ = uω′−r′−1βu∗
ω′−r′−1.

Now consider the case dimV ′
ω′ = 2δ

By the discussion following (5.2.3), we have L(V ′
ω′)ω′−1 = U ′ ⊕ U ′′ such that

L(V ′
ω′−r′−1)ω′−r′−1 = b̃U ′ ⊕ b̃U ′′ and h(̃bU ′,U ′′) ≡ 0. Let U ′ be a subspace of

Vω′ ⊕ Vω′−r′−1 such that L(U ′)ω′−1 = U ′ and L(U ′)ω′−r′−1 = b̃U ′. Put U ′′ =

U ′⊥ ∩ (Vω′ ⊕ Vω′−r′−1).

The spaces U ′, U ′′ are equipped with nondegenerate skew-hermitian forms (by
restriction of h). Then we apply the case dimV ′

ω′ = δ to find x′
ω′ , x′′

ω′ and u′
ω′ , u′′

ω′

and u′
ω′−r′−1, u

′′
ω′−r′−1. Then we put xω′ = x′

ω′ + x′′
ω′ , uω′ = u′

ω′ + u′′
ω′ and

uω′−r′−1 = u′
ω′−r′−1+u′′

ω′−r′−1. In particular, we have Φ(xω′) = Φ(x′
ω′)+Φ(x′′

ω′) =
0, uω′ ≡ 1 (mod pF ) and uω′−r′−1 ≡ 1 (mod pF ).

We set uω′ = 1, if u′
ω is not defined, and put u = r0(u) where u = (uω′) ∈ B0(A

′).

Put b′ = ubu and y′ = π
m′/g′

F b′
e′/g′

= r0(y
′). Then y′ = (yω′), with y′

ω′ a
conjugate of xυ′ , where υ′ ∈ C is such that ω′ ≡ υ′ (mod g′). In particular, we
have Φ(y′) = 0.

(5.3.17) Proposition [A′,m′,m′ − 1, b′] is a skew simple stratum in A with

b + P1−m ⊂ b′ + P′1−m′

.
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Proof: y′ generates an unramified field extension over F and has normalized valu-
ation 0 with respect to this extension. So, by [Br2] (3.2.11), [A′,m′,m′ − 1, b′] is

simple. Then b′ is skew, A′ = A′ and b + P1−m ⊂ b′ + P′1−m′

by construction. ¥

This completes the proof of (5.3.2). ¥

(5.4) Pure is equivalent to simple

We first recall an important result from [BK] (2.4).

(5.4.1) Theorem [BK (2.4.1)] (i) Let [A, n, r, β] be a pure stratum in A. There
exists a simple stratum [A, n, r, γ] in A such that

[A, n, r, γ] ∼ [A, n, r, β].

For any simple stratum [A, n, r, γ] satisfying this condition, e(F [γ]|F ) divides
e(F [β]|F ) and f(F [γ]|F ) divides f(F [β]|F ).
In particular, among all the pure strata [A, n, r, β′] equivalent to the given stratum
[A, n, r, β], the simple ones are precisely those for which the field extension F [β′]/F
has minimal degree.
(ii) Let [A, n, r, γ1], [A, n, r, γ2] be simple strata in A which are equivalent to each
other. Then

(a) k0(γ1,A) = k0(γ2,A);
(b) e(F [γ1]|F ) = e(F [γ2]|F ) and f(F [γ1]|F ) = f(F [γ2]|F );
(c) Let s1 be a tame corestriction on A relative to F [γ1]/F . Then there

exists δ ∈ F [γ1] such that

s1(γ1 − γ2) ≡ δ (mod P1−r)

where P = rad(A).
(iii) Let [A, n, r, β] be a pure stratum in A with r = −k0(β,A). Let [A, n, r, γ] be a
simple stratum in A which is equivalent to [A, n, r, β], let sγ be a tame corestriction
on A relative to F [γ]/F , let Bγ be the A-centralizer of γ, and Bγ = A∩Bγ. Then
[Bγ , r, r − 1, sγ(β − γ)] is equivalent to a simple stratum in Bγ .

Let h be a skew-hermitian form.

(5.4.2) Theorem Let [A, n, n− 1, b] be a skew non-split fundamental stratum in
band form. Suppose also that it is equivalent to some simple stratum. Then it is
equivalent to a skew simple stratum.

Proof: We first choose a basis for V such that b is in standard form. By (5.3.13),
each bj,j−n is block diagonal (mod pF ). Let b′ be block diagonal such that [A, n, n−
1, b] is equivalent to [A, n, n− 1, b′]. Then, as in the discussion preceding (5.3.17),
we can perturb to make b′ minimal. ¥

(5.4.3) Corollary Let [A, n, n−1, b] be a skew pure stratum. Then it is equivalent
to a skew simple stratum.
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Proof: Let [A, n, n − 1, b′] be a skew equivalent stratum in band form. Then the
result follows immediately from (5.4.2). ¥

We now return to the case where h is an alternating form, as in chapter 4.

(5.4.4) Proposition Let [A, n, r, β] be a simple stratum with β minimal and with
β + β ∈ P−r. Then it is equivalent to a skew simple stratum [A, n, r, γ].

(5.4.5) Remark The element γ given by (5.4.4) will in fact be minimal by
(5.4.1)(ii)(a).

Proof: We prove by induction that for t ≥ r there exists a skew simple stratum
[A, n, t, γt] equivalent to [A, n, t, β].

The case t = n − 1 is given by (5.4.2) so assume we have a stratum [A, n, t, γt] as
required, t > r. We drop the index t. Let Eγ = F [γ], let Bγ be the A-centralizer
of γ, Bγ = A ∩ Bγ , Qγ = P ∩ Bγ and let sγ be a tame corestriction relative to
Eγ/F which commutes with the involution.

By (5.4.1)(ii), there exists δ ∈ Eγ such that sγ(β − γ) ≡ δ (mod Q1−t
γ ). Now

γ +γ = 0 and β +β ∈ P−r ⊂ P1−t so δ +δ ∈ Q1−t
γ . Let ε = 1

2 (δ +δ) ∈ Q1−t
γ ∩Eγ ;

then δ − ε is skew. Setting b = β − γ, we have sγ(b) ≡ δ − ε (mod Q1−t
γ ). Then

[Bγ , t, t − 1, sγ(b)] is equivalent to [Bγ , t, t − 1, δ − ε] which is skew simple since
k0(δ − ε,A) = −∞. Then, by (4.2.2), there exists γt−1 such that γt−1 + γt−1 = 0
and [A, n, t − 1, γt−1] is simple and equivalent to [A, n, t − 1, β]. ¥

(5.4.6) Proposition Let [A, n, r, β] be a simple stratum with k0(β,A) = −s and
β + β ∈ P−r. Then there exists an equivalent skew simple stratum [A, n, r, γ].

Proof: We proceed by induction on s. The case s = n is (5.4.4) so we assume we
have the result for k0(β,A) ≤ −(s + 1).

By (5.4.1)(i), there exists a simple stratum [A, n, s, β′] equivalent to the pure
stratum [A, n, s, β]. Further, β′ + β′ ∈ P−s and k0(β

′,A) ≤ −(s + 1) so, by the
induction hypothesis, there exists γ′ ∈ A− such that [A, n, s, γ′] is simple and
equivalent to [A, n, s, β′] and hence to [A, n, s, β].

Let Eγ′ = F [γ′], let Bγ′ be the A-centralizer of γ′, Bγ′ = A∩Bγ′ , Qγ′ = P∩Bγ′

and let sγ′ be a tame corestriction relative to Eγ′/F .

By (5.4.1)(iii), [Bγ′ , s, s − 1, sγ′(β − γ′)] is equivalent to a simple stratum. Let

b = β − γ′ so b + b ∈ P−r ⊂ P1−s. Hence sγ′(b) + sγ′(b) ∈ Q1−s
γ′ . So [Bγ′ , s, s −

1, sγ′(β − γ′)] is equivalent to a skew simple stratum by (5.4.2). Then, by (4.2.2),
there exists γo ∈ A− such that [A, n, s−1, γo] is simple and equivalent to [A, n, s−
1, γ′ + b] = [A, n, s − 1, β].

We now prove, by induction on t, that for s− 1 ≥ t ≥ r there exists a skew simple
stratum [A, n, t, γt] equivalent to [A, n, t, β]. This will then complete the induction
on s and the proof.

We have just done the case t = s − 1 and the rest of the proof is identical to that
of (5.4.4). ¥

(5.4.7) Theorem Let [A, n, r, β] be a skew pure stratum in A. Then there exists
a skew simple stratum [A, n, r, γ] equivalent to it.
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Proof: By (5.4.1)(i) there exists a simple stratum [A, n, r, γ′] which is equivalent
to [A, n, r, β]. Then γ′ + γ′ ≡ 0 (mod P−r) and k0(γ

′,A) = −s for some s > r.
So, by (5.4.6), there exists a skew simple stratum [A, n, r, γ] as required. ¥
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6
SIMPLE CHARACTERS

From this chapter onwards, h is an alternating form, i.e. we consider only the
symplectic group. In particular, N is even.

In this chapter we define some orders H(β,A), J(β,A) in A associated to a skew
simple stratum [A, n, 0, β] and hence some subgroups Hm+1

− (β,A), Jm+1
− (β,A) of

G. We then define a set C−(A,m, β) of characters of Hm+1
− (β,A), called simple

characters. These are defined analogously to the GLN (F ) case ([BK] (3.2)) and,
in fact, the simple characters for G will be precisely the restrictions to G of simple
characters for the groups Hm+1(β,A) in GLN (F ).

This chapter relies heavily on [BK] chapter 3; many results are proved using the
analogous results there.

(6.1) The orders H and J

Throughout this section [A, n, 0, β] will be a skew simple stratum in A and we set
r = −k0(β,A).

(6.1.1) Definition ([BK] (3.1.7)) (i) Suppose β is minimal over F ; put

H(β) = H(β,A) = Bβ + P[ n
2 ]+1.

(ii) Suppose that r < n and let [A, n, r, γ] be a skew simple stratum equivalent to
[A, n, r, β]; put

H(β) = H(β,A) = Bβ + H(γ,A) ∩ P[ r
2 ]+1.

Note that, by [BK] (3.1.9), this inductive definition is independent of the choice
of γ such that [A, n, r, γ] is a skew simple stratum equivalent to [A, n, r, β].

(6.1.2) Lemma Let [A, n, 0, β] be a skew simple stratum in A; then we have
H(β,A) = H(β,A)

Proof: We proceed by induction along β. If β is minimal then H(β) is the sum of
Bβ and P[ n

2 ]+1, both of which are invariant under the involution. If r < n and
[A, n, r, γ] is a skew simple stratum equivalent to [A, n, r, β] then H(β)) is the sum
of Bβ and H(γ,A)∩P[ r

2 ]+1, both of which are invariant under the involution, the
latter by induction. ¥

(6.1.3) Definition ([BK] (3.1.8)) (i) Suppose β is minimal over F ; put

J(β) = J(β,A) = Bβ + P[ n+1
2 ].

(ii) Suppose that r < n and let [A, n, r, γ] be a skew simple stratum equivalent to
[A, n, r, β]; put

J(β) = J(β,A) = Bβ + J(γ,A) ∩ P[ r+1
2 ].
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Again, this definition is independent of the choice of γ and, exactly as in (6.1.2)
we have:

(6.1.4) Lemma Let [A, n, 0, β] be a skew simple stratum in A; then we have
J(β,A) = J(β,A)

So we can define H(β)− = H(β) ∩ A− and J(β)− = J(β) ∩ A−.

We now set

Hk
−(β) = H(β)− ∩ Pk, Jk

−(β) = J(β)− ∩ Pk, k ≥ 0.

In particular, as in [BK] (3.1), we get that for β minimal over F ,

Hk
−(β) =

{
Qk

β + P
[ n
2 ]+1

− for 0 ≤ k ≤ [n
2 ]

Pk
− for k ≥ [n

2 ] + 1,

and that in the general case

Hk
−(β) =

{
Qk

β + H
[ r
2 ]+1

− (γ) for 0 ≤ k ≤ [ r
2 ]

Hk
−(γ) for k ≥ [ r

2 ] + 1,

where [A, n, r, γ] is a skew simple stratum equivalent to [A, n, r, β]. Similar remarks
apply to J.

Now, as in [BK] (3.1.14), we define two families of compact open subgroups of
GLN (F ) by

Hm(β,A) = H(β,A) ∩ Um(A)

Jm(β,A) = J(β,A) ∩ Um(A)

}
for m ≥ 0.

Then we define two families of compact open subgroups of G by

Hm
− (β,A) = Hm(β,A) ∩ G

Jm
− (β,A) = Jm(β,A) ∩ G

}
for m ≥ 0.

Then, by (1.2.4) we have a bijection between Hm
− (β) and Hm

− (β) given by the
Cayley map.

(6.1.5) Proposition (cf. [BK] (3.1.15)) (i) For 0 ≤ m ≤ [ r
2 ] + 1, we have

Hm
− (β) = Pm(Bβ)H

[ r
2 ]+1

− (β),

and, for 0 ≤ m ≤ [ r+1
2 ],

Jm
− (β) = Pm(Bβ)J

[ r+1
2 ]

− (β).

(ii) For m ≥ 0, the groups Hm
− (β), Jm

− (β) are normalized by K(Bβ) ∩ G.

(iii) Jm
− (β) ⊃ Hm

− (β) and Hm+1
− (β) is a normal subgroup of J−(β), for all m ≥ 1.

(iv) For k, l ≥ 1, [Jk
−(β), J l

−(β)] ⊂ Hk+l
− (β).
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Proof: By [BK] (3.1.15), Hm
− (β) = Um(Bβ)H [ r

2 ]+1β) ∩ G. But Um(Bβ) ∩

H [ r
2 ]+1(β) = 1 + Qm

β ∩ H[ r
2 ]+1(β) so, by (1.2.7) we have Um(Bβ)H [ r

2 ]+1β) ∩ G =

Pm(Bβ)H [ r
2 ]+1(β). The same argument for J completes (i). Then (ii), (iii) and

(iv) follow directly from [BK] (3.1.15). ¥

(6.1.6) Lemma (cf. [BK] (3.1.19)) For m ≥ −1, we have

(Hm+1
− (β))∗ = aβ(J

[ r+1
2 ]

− ) + P−m
− .

Proof: By [BK] (3.1.19) and (1.2.6). ¥

We now choose a tame corestriction sβ on A relative to F [β]/F .

(6.1.7) Proposition (cf. [BK] (3.1.16)) For −1 ≤ m ≤ r − 1, we have an
exact sequence

(Qr−m
β N(β))− + J

[ r+1
2 ]

− (β)
a−

β

−−→ (Hm+1
− (β))∗

s−

β

−→ Q−m
β → 0.

Proof: By [BK] (3.1.16) and (1.2.6). ¥

(6.1.8) Corollary For 0 ≤ m ≤ [ r
2 ] + 1, we have an exact sequence

0 → Q
[ r+1

2 ]

β → J
[ r+1

2 ]
− (β)

a−

β

−−→ (Hm+1
− (β))∗

s−

β

−→ Q−m
β → 0.

There are similar results for J (see [BK] (3.1.21), (3.1.22)).

(6.2) Simple characters

(6.2.1) Definition (cf. [BK] (3.2.1)) Let β be skew and minimal over F ,
E = F [β]. For 0 ≤ m ≤ n − 1 let C−(A,m, β) denote the set of characters θ of
Hm+1

− (β) such that
(i) θ|

Hm+1
−

(β)∩P [ n
2

]+1(A)
= ψβ

(ii) θ|Hm+1
−

(β)∩(Bβ∩G) factors through detBβ
: Bβ ∩ G → N1(E)

where N1(E) = {e ∈ E : ee = 1}.

(6.2.2) Proposition In the situation of (6.2.1) we have
(i) C−(A,m, β) = {ψβ} for [n

2 ] ≤ m ≤ n − 1;
(ii) for all θ ∈ C−(A,m, β) there exists θ′ ∈ C(A,m, β) such that θ′|Hm+1

−
(β) = θ;

(iii) every θ ∈ C−(A,m, β) is normalized by K(Bβ) ∩ G.

Proof: (i) is clear from the definition and (iii) will follow from (ii) and [BK]
(3.2.2)(ii).

If m ≥ [n
2 ] then θ = ψβ which extends to the character ψβ ∈ C(A,m, β).

Suppose then that m < [n
2 ] and take θ ∈ C−(A,m, β); then θ|Hm+1

−
(β)∩(Bβ∩G)

= θ|P m+1(Bβ) = χ ◦ detBβ
, for some character χ of the closed subgroup
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detBβ
(Pm+1(Bβ)) of N1(E). By the observation following [BK] (3.2.1), the char-

acter ψβ of U [ n
2 ]+1(Bβ) also factors through the determinant, ψβ = χ1 ◦ detBβ

and, moreover, χ1|detP [ n
2

]+1(Bβ)
= χ|detP [ n

2
]+1(Bβ)

since θ|
P [ n

2
]+1(Bβ)

= ψβ . Then

we define a character χ′ of detBβ
(Pm+1(Bβ)U [ n

2 ]+1(Bβ)) by

χ′(pu) = χ(p)χ1(u) p ∈ detBβ
(Pm+1(Bβ)), u ∈ detBβ

(U [ n
2 ]+1(Bβ)).

Extend this to a character of E×, also denoted χ′. Now Hm+1
− (β) = Pm+1(Bβ).

P [ n
2 ]+1(A), where the first factor normalizes the second, and further Hm+1(β) =

Um+1(Bβ).U [ n
2 ]+1(A). So we define θ′ by

θ′(uh) = χ′(detBβ
(u)).ψβ(h), u ∈ Um+1(Bβ), h ∈ U [ n

2 ]+1(A).

Since Um+1(Bβ) normalizes ψβ on U [ n
2 ]+1(A) by [BK] (3.2.2) and χ′ ◦ detBβ

,

ψβ agree on U [ n
2 ]+1(Bβ), this defines a character of Hm+1(β) and clearly θ′ ∈

C(A,m, β). ¥

(6.2.3) Remark The fibres of the restriction map C(A,m, β) → C−(A,m, β) are
of the form θ.X where θ ∈ C(A,m, β) and X is the group of characters of the finite
group Um+1(Bβ)/

(
Pm+1(Bβ)U [ n

2 ]+1(Bβ)
)

which factor through detBβ
.

(6.2.4) Definition (cf. [BK] (3.2.3)) Let [A, n, r, γ] be a skew simple stratum
equivalent to the skew pure stratum [A, n, r, β]. Then, for 0 ≤ m ≤ r − 1, let
C−(A,m, β) be the set of characters θ of Hm+1

− (β) such that
(i) θ|Hm+1

−
(β)∩(Bβ∩G) factors through detBβ

;

(ii) θ is normalized by K(Bβ) ∩ G;
(iii) if m′ = max{m, [ r

2 ]}, the restriction θ|
Hm′+1

−
(β)

is of the form θ0ψc for some

θ0 ∈ C−(A,m′, γ), c = β − γ.

For m ≥ r we set C−(A,m, β) = C−(A,m, γ).

(6.2.5) Proposition (cf. [BK] (3.2.4)) For m ≥ [n
2 ] we have C−(A,m, β) =

{ψβ}.

(6.2.6) Proposition In the situation of (6.2.4), for all θ ∈ C−(A,m, β) there
exists θ′ ∈ C(A,m, β) such that θ′|Hm+1

−
(β) = θ.

Proof: We proceed by induction along β. The case where β is minimal is just
(6.2.2)(ii). Let [A, n, r, γ] be a skew simple stratum equivalent to [A, n, r, β].

If m ≥ [ r
2 ] then θ = θ0ψc for some θ0 ∈ C−(A,m, γ). By induction, there exists

θ′0 ∈ C(A,m, γ) such that θ′0|Hm+1
−

(γ) = θ′0|Hm+1
−

(β) = θ0; also ψc extends to the

character ψc of Hm+1(β). Then, by [BK] (3.3.18), θ′ = θ′0ψc is as required.

If m < [ r
2 ] then θ|

Hm′+1
−

(β)
= θ0ψc for some θ0 ∈ C−(A, [ r

2 ], γ). Then, by induc-

tion, there exists θ′0 ∈ C(A, [ r
2 ], γ) such that θ′0|H[ r

2
]+1

−
(γ)

= θ0. Now Hm+1
− (β) =

Pm+1(Bβ).H
[ r
2 ]+1

− (β), with the first factor normalising the second, and also
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Hm+1(β) = Um+1(Bβ).H [ r
2 ]+1(β). Then θHm+1

−
(β)∩(Bβ∩G) = θ|P m+1(Bβ) = χ ◦

detBβ
for some character χ of the closed subgroup detBβ

(Pm+1(Bβ)) of N1(E).
Further, θ′0ψc ∈ C(A, [ r

2 ], β) by [BK] (3.3.18) so θ′0ψc|U [ r
2
]+1(Bβ)

= χ1 ◦ detBβ
for

some character χ1 of detBβ
(U [ r

2 ]+1(Bβ)). Moreover, we have χ1|detP [ r
2
]+1(Bβ)

=

χ|detP [ r
2
]+1(Bβ)

since θ0ψc|P [ r
2
]+1(Bβ)

= θ. Then we define a character χ′ of

detBβ
(Pm+1(Bβ)U [ r

2 ]+1(Bβ)) by

χ′(pu) = χ(p)χ1(u) p ∈ detBβ
(Pm+1(Bβ)), u ∈ detBβ

(U [ r
2 ]+1(Bβ)).

Extend this to a character of E×, also denoted χ′. Then we define θ′ by

θ′(uh) = χ′(detBβ
(u)).θ′0(h)ψc(h), u ∈ Um+1(Bβ), h ∈ H [ r

2 ]+1(β).

Then Um+1(Bβ) normalizes θ′0ψc on H [ r
2 ]+1(β) = H [ r

2 ]+1(γ) since, as above,
θ′0ψc ∈ C(A, [ r

2 ], β) and χ′ ◦ detBβ
, θ′0ψc agree on U [ n

2 ]+1(Bβ) so this defines a
character of Hm+1(β) and θ′ ∈ C(A,m, β). ¥

(6.2.7) Corollary (cf. [BK] (3.2.5)) For 0 ≤ m ≤ [ r
2 ], restriction induces a

surjective map
C−(A,m, β) → C−(A, [ r

2 ], β).

Note that, as in the proof of [BK] (3.2.5), the fibres are of the form θ.X for
θ ∈ C(A,m, β) and X is the group of characters of Pm+1(Bβ)/P [ r

2 ]+1(Bβ) which
factor through detBβ

.

By (6.2.6) we could have defined C−(A,m, β) to be the set C(A,m, β) of char-
acters of Hm+1(β) restricted to Hm+1

− (β). Indeed, from now on we will use this
description.

(6.2.8) Corollary In the situation of (6.2.4), C−(A,m, β) is independent of the
choice of the element γ.

Proof: By [BK](3.2.20)(i), C(A,m, β) is independent of the choice of γ and
C−(A,m, β) = {θ|Hm+1

− (β) : θ ∈ C(A,m, β)}. ¥

We now generalize(6.2.3) to describe the fibres of the restriction map C(A,m, β) →
C−(A,m, β) in all cases. First we give a result concerning the surjectivity of the
determinant map.

We put P (oE) = N1(E) ⊂ U(oE), Pn(oE) = Un(oE) ∩ N1(E) for n ≥ 1.

(6.2.9) Lemma For n ≥ 0, we have detB/EPn+1(B) = P [ n
e
]+1(oE).

Proof: We have detB/EUn+1(B) = U [ n
e
]+1(oE) by [BF2](2.8.3). Then certainly

detB/EPn+1(B) ⊂ P [ n
e
]+1(oE) since detB/E commutes with the involution . Sup-

pose now we have X ∈ P [ n
e
]+1(oE); then, by (1.2.4)(i), X = UU

−1
for some

U ∈ U [ n
e
]+1(oE). But we know U = detB/Eu for some u ∈ Un+1(B). Then,

putting x = uu−1, we have x ∈ Pn+1(B) and detB/Ex = X as required. ¥
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(6.2.10) Proposition Let [A, n, 0, β] be a skew simple stratum with r = −k0(β,A)
and let [A, n, r, γ] be a skew simple stratum equivalent to [A, n, r, β]. Let 0 ≤ m ≤
r − 1. Then restriction induces a surjective map C(A,m, β) → C−(A,m, β). If
m ≥ [ r

2 ] then the fibres are in bijection with the fibres of C(A,m, γ) → C−(A,m, γ);
if m < [ r

2 ] then the fibres are of the form Θ.X ◦ detBβ/Eβ
, where X is the group

of characters of U [ m
e

]+1(oEβ
)/

(
P [ m

e
]+1(oEβ

)U [
[ r
2
]

e
]+1(oEβ

)
)

and Θ is a fibre of
C(A, [ r

2 ], γ) → C−(A, [ r
2 ], γ).

Proof: As usual, we will work by induction along β. For β minimal this follows
from (6.2.3) and (6.2.8).

First we look at the case m ≥ [ r
2 ]. Let θ′ ∈ C(A,m, β); then θ′ = θ′0ψc, for

θ′0 ∈ C(A,m, γ), c = β − γ and the result is clear.

Now suppose m < [ r
2 ] and let θ′ ∈ C(A,m, β); then θ′|

H[ r
2
]+1(β)

= θ′0ψc, for

θ′0 ∈ C(A, [ r
2 ], γ), c = β − γ. Then the result follows from (6.2.3) and the case

m = [ r
2 ]. ¥

We recall here a result of Glauberman ([G] or see [BH2] §A2). Let M be a finite
group and let Γ be a subgroup of AutM such that |M |, |Γ| are relatively prime.
We write ΓM for the semi-direct product Γ n M . The group Γ acts on the set
Irr(M) of equivalence classes of irreducible representations of M ; we denote the
set of fixed points by Irr(M)Γ.

Let ρ ∈ Irr(M)Γ. Then, by [G] Theorem 1, there exists a unique (up to equiva-
lence) representation ρ̃ of ΓM such that ρ̃|M ' ρ and detρ̃(γ) = 1 for all γ ∈ Γ.

(6.2.11) Proposition ([G] Theorem 3) Suppose, with notations as above, that
the group Γ is cyclic. There is a canonical bijection

gΓ : Irr(M)Γ
'
−→ Irr(MΓ),

where MΓ is the centralizer of Γ in M . Explicitly, for ρ ∈ Irr(M)Γ, the represen-
tation ζ = gΓ(ρ) is given as follows. There is a sign ε = ε(ρ,Γ) such that

tr ζ(x) = εtr ρ̃(γx),

for all generators γ of Γ and x ∈ MΓ, where ρ̃ is the extension of ρ to ΓM as
above.

We now apply this to our situation. Let [A, n, 0, β] be a skew simple stratum. All
simple characters θ ∈ C(A,m, β) are trivial on the group Un+1(A) so they are,
essentially, characters of the finite p-group Hm+1(β,A)/Un+1(A).

Let σ : A× → A× be the involution given by σ(x) = x−1. Then σ acts on
the group Hm+1(β,A)/Un+1(A), since both groups in this quotient are fixed by
the involution . We put Γ = 〈σ〉, a cyclic group of order 2. Then we have
Hm+1(β,A)Γ = Hm+1

− (β,A) and Un+1(A)Γ = Pn+1(A); in particular, we have

(Hm+1(β,A)/Un+1(A))Γ = Hm+1
− (β,A)/Pn+1(A).

Since p is not 2, we apply Glauberman’s correspondence (6.2.11) to the groups
M = Hm+1(β,A)/Un+1(A), Γ; this gives us a bijection between those equivalence
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classes of representations of Hm+1(β,A)/Un+1(A) which are stable by σ and the
equivalence classes of irreducible representations of Hm+1

− (β,A)/Pn+1(A). More-
over, the relationship between the characters of these representations implies that
we have a bijection

(6.2.12) C(A,m, β)Γ
'
−→ C−(A,m, β),

given by restriction of characters. (Note that the character of Hm+1(β,A) corre-
sponding to a given simple character of Hm+1

− (β,A) is indeed a simple character,
since we can construct it explicitly as in (6.2.2)(ii),(6.2.6).)

(6.3) Intertwining

(6.3.1) Proposition Let θ ∈ C−(A,m, β), 0 ≤ m ≤ r − 1 and let j ∈ J−(β).
Then θ(jhj−1) = θ(h) for all h ∈ Hm+1

− (β).

Proof: [BK] (3.3.1). ¥

(6.3.2) Theorem (cf. [BK] (3.3.2)) Let [A, n, 0, β] be a skew simple stratum
in A, r = −k0(β,A). Let 0 ≤ m ≤ r − 1 and θ ∈ C−(A,m, β). Then

IG(θ|Hm+1
− (β))

= (1 + Qr−m
β N(β) + J[ r+1

2 ](β)) ∩ G . Bβ ∩ G . (1 + Qr−m
β N(β) + J[ r+1

2 ](β)) ∩ G

(6.3.3) Remark We can write

(1 + Qr−m
β N(β) + J[ r+1

2 ](β)) ∩ G =
(
(1 + Qr−m

β N(β)) . J [ r+1
2 ](β)

)
∩ G

= Qr−m . J
[ r+1

2 ]
− .

Moreover, when m ≤ [ r
2 ], Qr−m

β N(β) ⊂ J[ r+1
2 ] so the Theorem says

IG(θ|Hm+1
− (β)) = J

[ r+1
2 ]

− (β) . Bβ ∩ G . J
[ r+1

2 ]
− (β)

Proof: We proceed by induction along β, following the proof of [BK] (3.3.2). The

case r = ∞ is trivial so we begin with r = n. Then β is minimal so J[ n+1
2 ] = P[ n+1

2 ]

and Qn−m
β N(β) = Pn−m. Let m′ = max{m, [n

2 ]}; so (1+Qr−m
β N(β)+J[ r+1

2 ](β))∩

G = Pn−m′

(A). Then

IG(θ|Hm+1
− (β)) ⊂ IG(θ|Pm′+1(A)) = IG[A, n,m′, β]

= Pn−m′

(A) . Bβ ∩ G . Pn−m′

(A)

by (2.2.3). But we also have

IG(θ|Hm+1
− (β)) ⊃ IGL2N

(θ|Hm+1(β)) ∩ G

= Un−m′

(A)B×
β Un−m′

(A), by [BK] (3.3.2),

= Pn−m′

(A) . Bβ ∩ G . Pn−m′

(A), by (2.2.3),
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so we in fact have the equality required.

Now we look at the general case where r < n. Let [A, n, r, γ] be a skew simple
stratum equivalent to [A, n, r, β] and put s = −k0(γ,A). We look first at the case
m ≥ [ r

2 ]. Thus Hm+1
− (β) = Hm+1

− (γ) and, for θ ∈ C−(A,m, β), we have IG(θ) ⊂

IG(θ|Hr+1
− (β)). Then, as in [BK] (3.3.2), the restriction of θ to Hr+1

− (β) =

Hr+1
− (γ) lies in C(A, r, γ). Put Ir(γ) = IG(θ|Hr+1) so, by induction,

Ir(γ) = (1+Qs−r
γ N(γ)+J[ s+1

2 ](γ))∩G . Bγ ∩G . (1+Qs−r
γ N(γ)+J[ s+1

2 ](γ))∩G

We define another set

I−m(β) = {x ∈ G : x−1(β + Hm+1
− (β)∗)x ∩ (β + Hm+1

− (β)∗) 6= ∅},

i.e. the formal intertwining of the coset β + Hm+1
− (β)∗. Note that this is just

I+
m(β)∩G, where I+

m(β) is the formal GLN -intertwining of the coset β+Hm+1(β)∗,
as in [BK].

(6.3.4) Lemma (cf. [BK] (3.3.5)) IG(θ) = I−m(β) ∩ Ir(γ).

Proof: We first show that

J
[ r+1

2 ]
− (β) . I−m(β) . J

[ r+1
2 ]

− (β) = I−m(β).

We clearly have the containment ⊃. But

J
[ r+1

2 ]
− (β) . I−m(β) . J

[ r+1
2 ]

− (β) ⊂ J [ r+1
2 ](β) . I+

m(β) . J [ r+1
2 ](β) ∩ G

= I+
m(β) ∩ G, by [BK] (3.3.6),

= I−m(β).

We now take x ∈ Ir(γ); then, as all the sets are bi-invariant by J
[ r+1

2 ]
− (β), we

may assume that x ∈ (1 + Qs−r
γ N(γ)) ∩ G . Bγ ∩ G . (1 + Qs−r

γ N(γ)) ∩ G. Let

h ∈ x−1Hm+1
− (β)x ∩ Hm+1

− (β); then, as in [BK] (3.3.5),

θx(h)θ−1(h) = ψx−1βx−β(h).

So x intertwines θ if and only if ψx−1βx−β(h) = 1 for all h ∈ x−1Hm+1
− (β)x ∩

Hm+1
− (β), i.e. if and only if x intertwines ψβ |H

m+1
− (β). But this is if and only

if x−1βx − β ∈ (x−1Hm+1
− (β)x ∩ Hm+1

− (β))∗ = x−1(Hm+1
− )∗x + (Hm+1

− )∗. i.e
x ∈ I−m(β). ¥

Now, as in [BK] (3.3.10), we have

I−m(β) ⊃ (1+Qr−m
β N(β)+J[ r+1

2 ](β))∩G . Bβ∩G . (1+Qr−m
β N(β)+J[ r+1

2 ](β))∩G.

Then, for x ∈ I−m(β), we have

x−1(β + (Hm+1
− )∗)x ∩ (β + (Hm+1

− )∗) 6= ∅
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so there exist δ1, δ2 ∈ (Hm+1
− )∗ such that

(6.3.5) x−1(β + δ1 + P−m
− )x ∩ (β + δ2 + P−m

− ) 6= ∅.

(6.3.6) Lemma (cf. [BK] (3.3.12)) Let δ ∈ (Hm+1
− (β))∗. Then there exists

y ∈ J
[ r+1

2 ]
− (β) such that

C(y)−1(β + δ + P−m
− )C(y) = β + P−m

− .

Proof: We show that for k ∈ Z, δ ∈ (Hm+1
− (β)∗ ∩ Pk

−) + P−m
− , there exists

y ∈ J
[ r+1

2 ]
− (β) such that

C(y)−1(β + δ)C(y) ≡ β (mod (Hm+1
− (β)∗ ∩ Pk+1

− ) + P−m
− )

and the result will follow by induction. Let δ ∈ (Hm+1
− (β)∗ ∩ Pk

−) + P−m
− . By

(6.1.6), there exists y ∈ J
[ r+1

2 ]
− (β) such that δ + aβ(y) ∈ P−m

− ; then aβ(y) ∈

(Hm+1
− (β)∗ ∩ Pk

−) + P−m
− . We have C(y) = 1 + y′ for some y′ ∈ J[ r+1

2 ] so, as in
the proof of [BK] (3.3.12),

C(y)−1δC(y) ≡ δ (mod (Hm+1(β)∗ ∩ Pk+1) + P−m).

Further C(y)−1βC(y) = β +(1+ y′)−1aβ(y′). Now y′ is given by a power series in

y and, for n ≥ 2, aβ(yn) =
∑n

i=0 yiaβ(y)yn−i ∈ J[ r+1
2 ](Hm+1(β)∗ ∩Pk) + P−m) +

(Hm+1(β)∗∩Pk)+P−m)J[ r+1
2 ] ⊂ Hm+1(β)∗∩Pk+1 +P−m. Hence aβ(y′) ≡ aβ(y)

(mod (Hm+1(β)∗∩Pk+1)+P−m). Then (1+y′)−1 = 1+y′′, for some y′′ ∈ J[ r+1
2 ],

so

(1 + y′)−1aβ(y′) ≡ aβ(y) + y′′aβ(y) ≡ aβ(y) (mod (Hm+1(β)∗ ∩ Pk+1) + P−m).

Then altogether we have

C(y)−1(β + δ)C(y) ≡ β + δ + aβ(y) (mod (Hm+1(β)∗ ∩ Pk+1) + P−m)

≡ β (mod (Hm+1(β)∗ ∩ Pk+1) + P−m).

Then, since the elements on both sides of this congruence are skew, we have the
assertion. ¥

Then we can write in (6.3.5)

β + δi + P−m
− = C(yi)

−1(β + P−m
− )C(yi), i = 1, 2,

for some y1, y2 ∈ J
[ r+1

2 ]
− (β). Thus, if z = C(y1)xC(y2)

−1, we have

z−1(β + P−m
− )z ∩ (β + P−m

− ) 6= ∅.
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Then, by (2.2.3), z ∈ (1 + Qr−m
β N(β)) ∩ G . Bβ ∩ G . (1 + Qr−m

β N(β)) ∩ G and
so x lies in

(1 + Qr−m
β N(β) + J[ r+1

2 ](β)) ∩ G . Bβ ∩ G . (1 + Qr−m
β N(β) + J[ r+1

2 ](β)) ∩ G

Finally we prove
I−m(β) ⊂ Ir(γ)

and this, together with (6.3.4), will conclude the proof of the theorem in the case

m ≥ [ r
2 ]. Since Ir(γ) is bi-invariant under multiplication by J

[ r+1
2 ]

− (β) = J
[ r+1

2 ]
− (γ)

it is enough to show that

Ir(γ) ⊃ (1 + Qr−m
β N(β)) ∩ G . Bβ ∩ G . (1 + Qr−m

β N(β)) ∩ G.

This is just the formal intertwining of β + P−m
− so it is contained in the formal

intertwining of β + P−r
− = γ + P−r

− , which is (1 + Qs−r
γ N(γ)) ∩G . Bγ ∩G . (1 +

Qs−r
γ N(γ)) ∩ G and this is certainly contained in Ir(γ).

Now we assume that m ≤ [ r
2 ]. Note that

Q
r−[ r

2 ]

β N(β) = Q
[ r+1

2 ]

β N(β) ⊂ J[ r+1
2 ](β)

by [BK] (3.1.10) so the assertion is

IG(θ) = J
[ r+1

2 ]
− (β) . Bβ ∩ G . J

[ r+1
2 ]

− (β), m < [ r
2 ].

We certainly have

IG(θ) ⊂ IG(θ|H
[ r
2 ]+1

− ) = J
[ r+1

2 ]
− (β) . Bβ ∩ G . J

[ r+1
2 ]

− (β),

by the case m = [ r
2 ] above. But also

IG(θ|Hm+1
− ) ⊃ IGL2N

(θ|Hm+1) ∩ G = J [ r+1
2 ](β)B×

β J [ r+1
2 ](β) ∩ G

⊃ J
[ r+1

2 ]
− (β) . Bβ ∩ G . J

[ r+1
2 ]

− (β)

So we in fact have equality and we have completed the proof of (6.3.2). ¥

(6.3.7) Corollary (of the proof) In the situation of (6.3.2) let 0 ≤ m ≤ [ r
2 ].

Then
Jm(β).B×

β .Jm(β) ∩ G = Jm
− (β) . Bβ ∩ G . Jm

− (β).

(6.4) Heisenberg Representations

(6.4.1) Theorem (cf. [BK] (3.4.1)) Let 1 ≤ m ≤ r and let θ ∈ C−(A,m−1, β).
The pairing

kθ : (j, k) 7→ θ[j, k] j, k ∈ Jm
− (β)

induces a nondegenerate alternating bilinear form

Jm
− (β)/Hm

− (β) × Jm
− (β)/Hm

− (β) → C×.
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Proof: We have [Jm
− (β), Jm

− (β)] ⊂ H2m
− (β) ⊂ Hm

− (β). Moreover, Jm
− (β) normal-

izes θ so ker(θ) is a normal subgroup of Jm
− (β) and Hm

− (β)/ker(θ) is central in
Jm
− (β)/ker(θ). So kθ defines an alternating bilinear form on Jm

− (β)/Hm
− (β). For

nondegeneracy, we need

θ[j, k] = 1 for all k ∈ Jm
− (β) if and only if h ∈ Hm

− (β).

The implication ⇐ is immediate.

We deal first with the case m = [ r+1
2 ]. Let j, k ∈ J

[ r+1
2 ]

− (β), so j = C(x) = 1 + x′,

k = C(y) = 1 + y′ for some x, y ∈ J
[ r+1

2 ]
− (β) and x′, y′ ∈ J[ r+1

2 ](β). Then, by [BK]
(3.2.12),

θ[j, k] = ψ(1+x′)−1β(1+x′)−β(1 + y′).

We also have (1+x′)−1β(1+x′)−β = aβ(x′)− (1+x′)−1x′aβ(x′), and x′aβ(x′) ∈

J[ r+1
2 ](H[ r

2 ]+1)∗ by [BK] (3.1.17) and this is contained in (J[ r+1
2 ])∗. Also, as in the

proof of (6.3.6), aβ(x′) − aβ(x) ∈ J[ r+1
2 ](H[ r

2 ]+1)∗ + (H[ r
2 ]+1)∗J[ r+1

2 ] ⊂ (J[ r+1
2 ])∗.

Altogether, we have

(1 + x′)−1β(1 + x′) − β ≡ aβ(x) (mod (J[ r+1
2 ])∗)

and, since both sides are skew, this is in fact (mod (J
[ r+1

2 ]
− )∗). So θ[C(x), C(y)] =

1, for all y ∈ J[ r+1
2 ], if and only if aβ(x) ∈ (J[ r+1

2 ])∗, which, by [BK] (3.1.22), is if

and only if x ∈ (Bβ + H[ r
2 ]+1) ∩ J[ r+1

2 ] ∩ A− = H
[ r+1

2 ]
− .

Now suppose m < [ r+1
2 ] so Jm

− (β) = Pm(Bβ).J
[ r+1

2 ]
− (β). Since Pm(Bβ) normalizes

θ, the commutator subgroups [Pm(Bβ), Pm(Bβ)] and [Pm(Bβ), J
[ r+1

2 ]
− (β)] are

both contained in ker(θ). Take j = uj′ ∈ Jm
− (β) with u ∈ Pm(Bβ), j′ ∈ J

[ r+1
2 ]

− .
Then θ[j, Jm

− ] = 1 if and only if θ[j′, Jm
− ] = 1 which, by the first part, implies

j′ ∈ H
[ r+1

2 ]
− . Then j ∈ Pm(Bβ).H

[ r+1
2 ]

− = Hm
− (β).

Now suppose m > [ r+1
2 ]. If β is minimal over F , this means m ≥ [ r

2 ]+1 and Jm
− =

Hm
− = Pm(A) so the assertion is trivial. Otherwise, let [A, n, r, γ] be a skew simple

stratum equivalent to [A, n, r, β]. We have [Jm
− (β), Jm

− (β)] ⊂ H2m
− (β) by (6.1.5)

and H2m
− (β) = H2m

− (γ). Moreover, 2m ≥ r + 1 so θ|H2m
− (β) ∈ C−(A, 2m − 1, β).

The result now follows by induction along β, since Hm
− (γ) = Hm

− (γ). ¥

(6.4.2) Proposition (cf. [BK] (5.1.1)) Let [A, n, 0, β] be a skew simple stra-
tum in A, θ ∈ C−(A, 0, β). There exists a unique irreducible representation η(θ)
of J1

−(β,A) such that η(θ)|H1
−(β,A) contains θ. Moreover, η(θ)|H1

−(β,A) is a
multiple of θ and

dim(η(θ)) = (J1
−(β,A) : H1

−(β,A))
1
2 .

The G-intertwining of η(θ) is J1
−(β,A).B ∩ G.J1

−(β,A).

Proof: Given (6.4.1), the proof is identical to that of [BK] (5.1.1). ¥
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7

A SPECIAL CASE

In this chapter we look at the case where the element β in our skew simple stratum
[A, n, 0, β] generates a maximal field extension E = F [β] over F in A. In this case
we are able to complete the construction of the type and construct supercuspidal
representations of G. In the case where E/F is wildly ramified, these are new
supercuspidals.

(7.1) Construction of types

Let [A, n, 0, β] be a skew simple stratum in A such that E = F [β] is a maximal
field extension of F in A. Then the centralizer B of E in A is just the field E itself
and B ∩ G = P (oE) = N1(E) is the group of norm-1 elements of E (for the norm
NE/E0

, where E0 is the fixed field of the involution) and B = A ∩ B = oE .

Put r = −k0(β,A) and let [A, n, r, γ] be a skew simple stratum equivalent to
[A, n, r, β]. Then we have

H1
−(β) = P 1(oE)H

[ r
2 ]+1

− (γ);

J1
−(β) = P 1(oE)J

[ r+1
2 ]

− (γ);

J−(β) = P (oE)J
[ r+1

2 ]
− (γ).

In particular, J−(β) = P (oE)J1
−(β) and J−(β)/J1

−(β) ' P (oE)/P 1(oE) is a finite
cyclic group. (It is isomorphic to P (kE) = {x ∈ k×

E : xx = 1}, where is the
involution on kE induced by the involution on oE . If E/E0 is ramified, this is just
Z/2Z; if E/E0 is unramified, this is Z/(q0 + 1)Z, where q0 = #kE0 .)

Let θ ∈ C−(A, 0, β) be a simple character and let η be the Heisenberg representation
of J1

−(β) containing θ given by (6.4.2). Hence the intertwining of η is IG(η) =
J1
−(β).B ∩ G.J1

−(β) = P (oE)J1
−(β) = J−(β).

Now J−(β)/J1
−(β) is cyclic so we can extend η to a representation κ of J−(β);

indeed, all such extensions take the form κ⊗χ, for χ a character of P (oE)/P 1(oE).

(7.1.1) Theorem With notation as above, put π = IndG
J−

κ ,where J− = J−(β).
Then π is an irreducible supercuspidal representation of G. Moreover, (J−, κ) is
a [G, π]G-type

Proof: J− is a compact open subgroup of G so certainly compact mod centre and
we clearly have IG(κ) ⊂ IG(η) = J−. Then, by [Ca] (1.5), π is irreducible and
supercuspidal. Finally, (J−, κ) is a [G, π]G-type by [BK2] (5.4). ¥
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(7.2) Transfer

We recall from (6.2) that we have the involution σ : A× → A× given by σ(x) =
x−1. We put Γ = 〈σ〉, a cyclic group of order 2. Then, for 0 ≤ m ≤ n − 1, we
have a bijection C(A,m, β)Γ

∼
−→ C−(A,m, β), given by restriction of characters, as

in (6.2.12).

Let [A, n, 0, β] be a skew simple stratum such that E = F [β] is a totally ramified
maximal field extension of F in A. We fix a simple character θ ∈ C(A, 0, β)Γ and
write θ− = θ|H1

−
(β,A).

By [BK] (5.1.1), there exists a unique irreducible representation η of J1 = J1(β,A)
which contains θ. Further, there exist precisely two extensions of η to J(β,A)
which are fixed by σ; they are κ1

θ, given by

κ1
θ(ξj) = η(j), for ξ ∈ µ′

p(F ), j ∈ J1,

where µ′
p(F ) is the group of roots of unity in F of order prime to p; and κ2

θ, given
by

κ2
θ(ξj) = χ(ξ)η(j), for ξ ∈ µ′

p(F ), j ∈ J1,

where χ is the character of µ′
p(F ) given by

χ(ξ) =

{
1 if ξ is a square in F ;

−1 if ξ is a non-square in F.

The situation in the symplectic group is similar. By (6.4.2), there exists a unique
irreducible representation η− of J1

− = J1
−(β,A) which contains θ−. (In fact, this

is just the unique irreducible component of the restriction of η to J1
−.) Further,

there exist precisely two extensions of η− to J−(β,A); they are κ1
θ,−, given by

κ1
θ,−(ξj) = η(j), for ξ = ±1, j ∈ J1

−;

and κ2
θ,−, given by

κ2
θ,−(ξj) = ξη(j), for ξ = ±1, j ∈ J1

−.

Now let π be an irreducible supercuspidal representation of GLN (F ) = A×. Then
π contains a simple type (J, λ) which is unique up to conjugacy in GLN (F ). This
type is built from a simple character θ, which again is unique up to conjugacy in
GLN (F ). Suppose that there is a skew simple stratum [A, n, 0, β] in A such that
θ ∈ C(A, 0, β) and such that E = F [β] is a totally ramified maximal extension of
F in A. Then λ = κ, a β-extension of the unique irreducible representation η of
J1 = J1(β,A) which contains θ.

Suppose that the (equivalence class of the) representation κ is fixed by the invo-
lution σ. In particular, this implies that θ ∈ C(A, 0, β)Γ. Then by the discussion
above, κ = κi

θ, for i = 1 or 2; this is determined by the restriction of the central
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character ωπ of π to µ′
p(F ). We put i(π) = 1 if ωπ is trivial on µ′

p(F ), i(π) = 2

otherwise; then κ = κ
i(π)
θ .

Put θ− = θ|H1
−

(β,A). This character is not (in general) determined up to conjugacy

in G, or even up to intertwining. Hence, in order to describe the representations
of G obtained from π, we must consider all the simple types contained in π.

Let K be the set of κ such that (J, κ) is a simple type contained in π, κ is fixed by
σ and κ is built from a skew simple stratum [A, n, 0, β]. Let Θ be the set of simple
characters θ such that θ is contained in κ, for some κ ∈ K. We put Θ− to be the
set of restrictions θ|H1

−

for θ ∈ Θ. The group G acts on Θ− by conjugation. Let

ϑ be a set of representatives for this action.

We now put k = {κ
i(π)
θ,− : θ− ∈ ϑ}. Each κ− ∈ k induces to an irreducible su-

percuspidal representation πκ−
of G, by (7.1.1). Note that the representations

πκ−
are not necessarily inequivalent, since we do not have an intertwining implies

conjugacy theorem.

Finally, we put Π = Π(π) = {πκ−
: κ− ∈ k}. Hence we have associated to π a set

of irreducible supercuspidal representations of G.
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[Bn] K.S.Brown, Cohomology of Groups, GTM 87, Springer-Verlag, New York,
1982.

[Br1] P.Broussous, Extension du formalisme de Bushnell et Kutzko au cas d’une
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