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ABSTRACT

Let F' be a non-archimedean local field and let G = G(F) be the F-points of a
reductive group defined over F'. Bushnell and Kutzko have described a strategy to
classify the representations of G via the theory of types, which associates to each
inertial class in the Bernstein spectrum a pair (K, p) consisting of a compact open
subgroup K of G and an irreducible representation p of K.

We impose the restriction that the residual characteristic of F' not be 2.

In this thesis we begin the construction of types associated to certain discrete
series (in particular, to supercuspidal) representations of G = Sp, (F') by trans-
ferring Bushnell and Kutzko’s construction for GLay (F') to our situation. Certain
objects in the construction, in particular the simple characters, transfer simply by
restriction.

In a certain case, we complete the construction of the type (K, p) and hence con-
struct new supercuspidal representations in the wildly ramified case. In this case,
we are also able to describe a (tentative) transfer map from certain supercuspidal
representations of GLay (F') to supercuspidal representations of Spyy (F'), which
associates to each representation m of GLay(F) a set II(m) of representations of

Span (F)
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INTRODUCTION

The aim of this thesis is to begin the systematic examination of the admissible dual
of the symplectic group Sp,y(F) over a non-archimedean local field, of residual
characteristic not 2, via the theory of types (see below).

Let F' be a non-archimedean local field and let G be a reductive group defined over
F. Let G = G(F) be the F-points of G and let 2R(G) be the category of smooth
representations of G.

For ¢ = 1,2, let M; be a Levi subgroup of G and let o; be an irreducible su-
percuspidal representation of M;. We say that the pairs (M;, o;) are inertially
equivalent if there exist ¢ € GG and y an unramified quasicharacter of My such
that M; = gMsg™"! and 09 ® Y ~ Uf. We write s = [My,01]g for the inertial
equivalence class of (M7, 01) with respect to this equivalence relation and write B
for the set of such equivalence classes (called the Bernstein spectrum).

For each inertial equivalence class s = [M, 0], we can define a subcategory R°(G)
of R(G), which is the full subcategory of representations m of G such that any
irreducible subquotient of 7 is equivalent to an irreducible subquotient of the
parabolically induced representation Indfy pT, for some (L,7) € 5, P a parabolic
subgroup of G with Levi factor L. Then we have the Bernstein decomposition
R(G) = [[,ep R (G) ([B] or see [BK2]).

In [BK2], Bushnell and Kutzko describe a strategy for classifying the represen-
tations of the group G via types: these are pairs (K, p) consisting of a compact
open subgroup K and an irreducible representation p of K. The pair (K, p) is
then called an s-type, for s = [M,0]|g, if, for m any irreducible representation of
G, 7 contains p (i.e. Homg (p,m) # 0) if, and only if, 7 € |R*(G)|. If this is the
case, then we have an equivalence of categories

M, : R*(G) —— H(G, p)-Mod,

where H(G, p) is the spherical Hecke algebra and H(G, p)-Mod is the category of
left modules over H(G, p).

So the strategy is first to construct types for each inertial equivalence class s
and then to describe H(G, p)-Mod. This has been done for G = GLy(F') (see
[BK], [BK1]) and, partially, for G' a division algebra over F' (see [Brl]) and for
G = SLy(F) (see [BK3], [BK4]).

If s = [M,0]g and M is a proper Levi subgroup of G then [BK2] §8 describes a
method for approaching the construction of an s-type via covers, if you already
have an [M, o]y -type (i.e. a type for the decomposition of R(M)). This has
been used to construct types for certain classical groups (see [Bl], [Au]) and, in
this way, types have been constructed for every [M,o|g, M < G = Sp,(F) if
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the residual characteristic is not 2 ([BB]). Types have also been constructed for
principal series representations of split groups ([Ro]).

For s = [G,0]g (i.e. for supercuspidal representations of G), types have been
constructed in the tame case ([Ad], [Kim], [M2], [M3]).

In this thesis we look at the case G = Spyn(F), for F' of residual characteristic
not 2, and take some steps toward the construction of types in the arbitrarily
ramified case. The construction procedure follows closely [BK] and we often call
upon results from there. It would also be possible to extend the results here to all
unitary groups (indeed, many of the results are given in this generality), a work
which is postponed to a later date.

At this point, we should remark that, in the recent paper [Ka], Kariyama gen-
eralizes the methods of Carayol (in [Ca]) to the symplectic group, for arbitrarily
ramified tori. We shall discuss the similarities and differences with this work at
the end of this introduction.

Let F' be a non-archimedean local field of residual characteristic not 2 and V a 2/N-
dimensional F-vector space, equipped with a nondegenerate alternating form h.
This form then induces an adjoint involution ~on A = Endg (V). The symplectic
group GG can then be seen as the set of g € A such that gg = 1 and the symplectic
Lie algebra g = A_ as the set of x € A such that x +7 = 0.

A skew stratum in A is a quadruple [, n,r, 3] which is a stratum in the sense of
[BK] (1.5) (i.e. 2 is a hereditary op-order in A, n > r are integers and (5 € P~",
where B is the Jacobson radical of 2() subject to the additional conditions that 2
is stable under the involution and 5 € A_.

In the case of a stratum of the form [A,n,n — 1,8] for GLy(F'), the stratum
corresponds to a character 15 of the group U™(2) which is trivial on U™ (2l),
where U" (), r € Z is the standard filtration (by powers of the Jacobson radical) of
the parahoric subgroup 2A* of GLx (F'). If a representation 7 of GLx (F') contains
the representation 13 then we say that m contains the stratum.

For the symplectic group G the situation is similar, with the parahoric subgroup
P =2ANG and the standard filtration P"(A) = U™ () N G. In fact, the character
g of P () is just the restriction of the character 13 of U™ ().

The construction procedure for simple types begins with a skew simple stratum
[2(,n,0, ] (see chapter 2 or [BK] (1.5.5) for the definition). These skew simple
strata have the property that their intertwining is, in some sense, as small as
possible. We then construct some special characters (called simple characters,
see chapter 6 for definitions) of certain compact open subgroups H™(3,2) C
PmHL(A), for 0 < m < n — 1. In fact, these turn out to be nothing other than
the restrictions of simple characters for GLan (F) ([BK] (3.2)). These simple
characters also have a “good” intertwining formula.
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Given a simple character § of H! (3,2l), there exists a unique irreducible (Heisen-
berg) representation 1 of another compact open subgroup J!(3,%) > HL(3,)
which contains 6. This representation also has a “good” intertwining formula.

The final step then consists in extending the representation 7 to a representation
x of a compact open subgroup J_(3,21) D J* (3,2) which also has “small” inter-
twining (for GLan (F'), such a & is called a (-extension of n). We complete this
step in the case where the field extension F[§]/F is maximal in A (i.e. it is of
degree 2N).

The simple characters and the groups H* (3,2), J*(3,2) are defined by an in-
ductive process. For [, n,0, 3] a (skew) simple stratum, there exists an integer
r such that the stratum [, n,r — 1, 3] is simple but [, n,r, 8] is not - it is only
pure (see chapter 2 or [BK] (1.5.5)).

The main result in [BK] which allows the induction procedure to be set up says
that there is an element v such that the stratum [, n, r, v] is simple and equivalent
to [2,n,r ] ([BK] (2.4.1)). Then the objects for the stratum [, n,0, ] are
defined in terms of those for [, n,0,].

In our case, we must prove the analogous result: for [2(, n, r, 5] a skew pure stratum
there exists an element v € A_ such that the stratum [2(,n,r, ] is skew simple
and equivalent to [, n,r, 8] (see (5.4.7)).

This construction procedure will not produce all types for Sp,y(F) and we now
discuss the reasons for this.

The idea for GLy (F') is that, given a positive level representation 7w of GLy (F),
we can find a stratum which is contained in 7 and is fundamental (nondegenerate
in [MP]). i.e. the coset 3+ PB1~" contains no nilpotent elements.

However, for the symplectic group (the situation is similar for other reductive
groups) the results of Moy and Prasad ([MP]) require us to use more than just
the standard filtrations of parahoric subgroups in order to obtain a similar result -
in general the filtrations come from self-dual lattice functions (see [Br3]). Recent
work [PY] has shown that for the symplectic group the only filtrations which are
really needed are the standard ones and Morris’s “C-chain” filtrations (see also
[M3]).

Here we consider only the standard filtrations; however, the results of chapter
1 were written by Morris for C-chain filtrations (indeed they are valid for any
self-dual lattice function filtration) and the results of chapter 2 are, in a sense,
generalizable to this case.

In searching for supercuspidal representations we next require the notion of a split
stratum: if a stratum is split then we want any representation containing it to be
non-supercuspidal (so any supercuspidal will contain a non-split stratum). In the
case of GL(F) this is fairly simply expressed in terms of a characteristic polyno-
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mial of the stratum (see [BK] (2.3.3) or chapter 5 for the definition of characteristic
polynomial) - a stratum is split if and only if its characteristic polynomial has at
least two distinct irreducible factors. This definition is the correct one because

every maximal torus T of GLy (F') contained in no proper Levi subgroup is of the
form T'= E* for F a field extension of F' of degree N.

Here we use the same definition of a split stratum but this will not be the correct
one in general. As Morris remarked [M3] (1.3) (see also [Kim] (1.1)) the maximal
tori in G = Spyn (F') contained in no proper Levi take the form

Nl(El) X oo X Nl(ET),

where E;/F is a field extension of degree 2n; contained in A, i = 1,...,r,
S_ini =N, E; = E; but ~is non-trivial on E;, i = 1,...,r, and Ni(E;) =
{e € E; : ee = 1} are the norm 1 elements of E;.

So we are restricting considerably the supercuspidals we hope to construct (even
in Sp,(F) we will miss some). However, we can hope methods similar to those of
“semisimple types” [BK1] may allow us to obtain the remaining supercuspidals
in the future.

We are able to show (as a corollary to the results of chapter 5) that if an irreducible
representation 7 contains a nonsplit fundamental skew stratum then it contains a
skew simple stratum.

Note that there is a general definition of split stratum for any reductive group due
to Lemaire [Le]. This definition is in terms of the building of G and a lattice-
theoretic translation has yet to be done.

There are several differences between this work and the paper [Ka]. In that paper,
arbitrary maximal anisotropic tori are considered. This has the advantage that
those strata which appear split (by our definition) are not excluded. However,
considering only maximal tori will certainly not be enough - it is not so even for
GLx (F). Further, only elements which are a sum of minimal elements (see [BK]
(1.4.14)) are considered, which again is insufficient even for GLy(F). As in this
thesis, only the standard filtrations of parahoric subgroups are considered.

We now give a brief summary of the contents of each chapter.

In chapter 1 we present some preliminary results, most of which are due to Morris
([M1],[M2],[M3]). In chapter 2 we check that we have the exact sequences anal-
ogous to those in [BK] (1.4) and we prove the intertwining theorem for a skew
simple stratum. In chapter 3 we introduce the notion of a residual subspace of a
lattice chain £ (due to Bushnell) and prove some results about block decomposi-
tions for 2. In chapter 4 we introduce the analogue of the (W, E')-decomposition
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[BK] (1.2.6) for the symplectic Lie algebra and use it to begin the refinement pro-
cess. In chapter 5 we prove some results on Jordan decompositions and prove that
a nonsplit fundamental skew stratum is “contained in” a skew simple stratum (cf.
[BK] (2.3.4)) and that a skew pure stratum is equivalent to a skew simple one (cf.
[BK] (2.4.1)). In chapter 6 we define the groups H™(3,2) and J™1(5,2),
define simple characters and calculate their intertwining. Finally, in chapter 7,
we consider the case where the field extension associated to the skew simple stra-
tum is a maximal extension of F' in A; in this case we complete the construction
of the type and examine a tentative transfer map from certain supercuspidals of
GLan (F) to supercuspidals of G.
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1
PRELIMINARIES

In this chapter we recall some results concerning self-dual lattice chains and para-
horic subgroups of symplectic and unitary groups. Most of the results in this
section can be found in Morris’s papers [M1], [M2], [M3].

(1.1) Notation

Let F be a non-archimedean field equipped with a Galois involution x — T with
fixed field F;. We allow the possibility that Fy = F. We will use the following
notation throughout:

or the discrete valuation ring in F
pr the maximal ideal of op;
krp = op/pr, the residue class field of F’

p the residual characteristic of F’;
q =p' =#kp.

(1.1.1) Assumption We assume throughout that p # 2.

We have similar notation o0g, po, ko for the same objects in F. We also use

1o some fixed continuous character of the additive group of Fp,
with conductor pg;

Yrp =1 otrp g, where trp r denotes trace;

V' an F-vector space of finite dimension N;

A == EndF(V)

Note that F'/F} is at worst tamely ramified, since the residual characteristic of F’
is not 2, so the character ¢)p of (F,+) has conductor pp.

If F/Fy is unramified, we put mp = 7, a uniformizer of Fy; if F'/F, is ramified,
we choose g to be a uniformizer of F' such that 7 + 7 = 0 and put 79 = W%.
In either case we have np = £7f.

Let h: V x V — F be a nondegenerate e-hermitian form on V', with € = 1 (see
[Sch] (7.1.2), for example). If FF = Fy we exclude the case ¢ = 1 (i.e. we rule
out orthogonal groups). For definiteness, assume that h is F-linear in the first
variable. So

h(Av,w) = Ah(v,w) = Aeh(w,v), for v,w eV, A € F.
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Then h induces an adjoint involution on A, also denoted ~, given, for a € A, by
h(av,w) = h(v,aw), for all v,w e V.

Note that for F' embedded diagonally in A, the two involutions coincide.

We set G = {g € Autp(V) : h(gv, gw) = h(v,w) for all v,w € V'}
={g€Autp(V):gg=1}.
This is the group of Fy-points of a unitary (or symplectic) group defined over Fj.

For X an additive subgroup in A invariant under the involution, define

X_={reX:T=—z}, theskew elements;
Xy ={zxeX:T=x} , thesymmetric elements.

These are both additive groups and if X is an op-lattice then
X= X, & X_
r=3(x+7T)+ 5(z—T)

since 2 € og. Set trg = trp/p, o tra p : A — Fy where tr denotes trace. Then
this is an orthogonal direct sum decomposition with respect to trg since, for x €
X_,y e X4, we have

tro(wy) = trp/p, (tra,p(vy)) = tre/p, (tra,r (TY))
=trp g, (tra/p(UT)) = —tro(yz) = —tro(zy),

and hence tro(zy) = 0.
Note that A_ is just the Lie algebra of G.

For L an og-lattice in V', define the dual lattice of L to be
L#* ={zx eV :h(zx,L) Cpr}.

Then L## = L and L? can be identified with Hom(L, pr) by the non-degeneracy
of h. For £ = {Ly : k € Z} an op-lattice chain, define the dual chain

ot = (L7 ke 7z}
We say that £ is self-dual if £7 = £.

(1.1.2) Lemma Let £ be a self-dual lattice chain in V. Then there ezists a
unique d € 7 such that Lk# =L4_y fork € Z.

Proof: Lf = Ly for some k' = k'(k) € Z and Lk## = Ly so k — k' is an
order-reversing bijection Z — Z. So it is of the form k — d — k. |

In fact, by changing the indexing of the lattices in £ (so that L[ 1y becomes Ly),
2
we may assume that d =0 or —1.

16



(1.2) Hereditary orders

Let £ be a lattice chain in V' and let 2 = EndDOF (£) be the associated hereditary
op-order in A (see [BK] (1.1)). Let B be the Jacobson radical of 2. Then P is
invertible as a fractional ideal of 2 and the B", for n € Z, give a filtration of A.
There is also a valutation map vg associated to the hereditary order 2, given by

v (x) =max{n € Z : z € P"}, x €A,
with the understanding that vy (0) = occ.

(1.2.1) Lemma Let £ be a self-dual lattice chain in V' and let A be the associated
hereditary op-order, with Jacobson radical 3. Then we have P" = P", for n € Z.

Proof: Choose x € B™ ; so xLy, C Ly, for all £ € Z. Let d be the unique integer
such that Lk# = Lq_y for k € Z given by (1.1.2). Fix k € Z and let v € Ly; then

W@v, LY, ) = h(v,2La_g—n) C h(v, La_i) C pr

SO TV € Lk#fn = Ljyn. This is true for all k£ € Z so T € P". [ |

In particular, in the situation of (1.2.1), we have A = 2 and, for n € Z, we may
define the additive groups P and P’} as in (1.1) above; so P =P & P .

(1.2.2) Lemma ([M3] (2.8)) Let 2 be a hereditary op-order in A such that
A = A and let b be a left ideal in A. Suppose that x € b satisfies T = nx for
n==x1. Then x =y -+ ny for some y € b.

Proof: 2 € 05 s0 £.14 € A. Then set y = (3.14)z € b. [

Let 2 be a hereditary op-order in A such that A = Aand let b C P be a
left ideal in 2 such that b = b. We now define the Cayley transform C on
{x € A_ :det(1 - 5) # 0} by

Clz)=(1+2%)(1-%)~"

It is easy to check that imC C G. Moreover, if x € b_ then C(x) exists since
b" CP" C p%(n)‘)l, for some j(n) € Z, and j(n) — oo as n — oo so (1 — £)~! can
be defined by the usual power series expansion; then also C'(x) € (1+b)NG. Note
that this is not quite the same Cayley transformation as that used by Morris in

[M1].

(1.2.3) Lemma (cf. [M1] (2.13)(c)) With notation as above, we have a
bijection

b —-(1+b6)NG
x — C(x)

Proof: The map is certainly injective since, if u € (14 b) NG then, for u = C(x),
we must have x = —2(1 — u)(1 +u) ™!,
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Now let u € (14+b)NG; then u = 1+y, for somey € b, so 1+u =2+y = 2(1+3).
Then 2 € o implies £ € bso 14 u is indeed invertible and we have

—2(1—w)(14u)"' —2(1 —u)(1 +u)~1 =0,
1+a)(1—u)+(1—-u)(1+u)=0,
2 = 2uu,

uu = 1.
So x is indeed skew and z =y(1— 4 +(4)*—...)€b;sox €b_. |
We now give a multiplicative version of (1.2.2)

(1.2.4) Lemma Let A be a hereditary op-order in A such that 2 = 2 and let
b C P be aleft ideal in A. Letu € 1+b C UL(A).

(i) If b =b and vt = 1 then there exists v € 1 + b such that u = vo 1.

(i7) If u =1 then there exists v € 1 + b such that u = v0.

Proof: (i) This follows from (1.2.3) since u € (1 +b) NG so u = C(zx) for some
x € b_. Then we put v =1+ 3.

(i1) For each n € N, we will find inductively v,, € 1+b such that v, —v,_; € b(*~1
and v,U, = v mod b™. Then, as 2 is compact and b” C PB", there exists v € A
such that v, — v; then v € 1 + b and vv = u as required.

1 -1 _—

We can take v; = 1, so assume we have found v,, as required, i.e. v, uv, =
mod b". Write v, tuw,, "' = 1+ 2, € b"™; then vptuT, Tt = v, tuwy, 1

T = z. By (1.2.2), there exists y € b™ such that y + 7y = x. We obtain

implies

L=y, uty (1-g) =1+z—y—7+O0(b>) €1+ b+
So we set v, 11 = v, (1 —y) L [ |

In particular, we will apply the preceding two lemmas to b = 3".

Before proceeding we give some further preliminary results which will be useful
later.

(1.2.5) Lemma ([M4] (6.1)) Let X DY be op-lattices in A which are stable
under the involution, so that X/Y inherits an involution and (X/Y)_ is defined.
Then
(1) the natural map I_ — (I/J)_ is surjective;
r—x+J
(7i) the map I_/J_ — (I/J)— ‘s an isomorphism.
r+J_—ax+J

Proof: (i) Let y+.J € (I/J)_, so that y +7 = a € J. Since a = @, (1.2.2) implies
that a = b+ b for some b € J. Then set y' =y —b. Then part (ii) is clear. |

There is an analogous lemma in the case of (X/Y). Further

XY = (X/Y)- @ (X/Y)+
t+Y =3z -T)+Y + 3(z+7)+Y
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(1.2.6) Lemma Let X,Y be additive subgroups of A invariant under the involu-
tion. Then

(X+Y)_=X_+Y_
Proof: We clearly have the containment D. Let z +y € (X +Y)_;s0x+7 =
—(y+7). Wehave x +7 € (X NY)y and, by (1.2.2), there exists z € (X NY)
such that t + T =2+7Z. Thenset 2’ =2 — 2,y =y + z. [

We now give a multiplicative version of the previous lemma.

(1.2.7) Lemma Let K, K’ be subgroups of GLoy such that K N K' =1+ b,
where b is a left ideal in some hereditary op-order A, both invariant under the
involution and with b C P = radA. Then (K.K')NG=KNG . K'NG.

Proof: Let kk' € (K1K2) N'G. Then k'K = k~'k~1 lies in Ky N K3 and, by
(1.2.4)(ii), there exists u € Ky N Ko such that k'k’ = uu. Then we set k1 = ku,
Ky =u" k. |

(1.3) Parahoric subgroups and filtrations

Let 2 be a hereditary og-order in A; then we have a parahoric subgroup in
GLan(F) given by U(21) = 2A*, the groups of units in 2. This has standard
filtration given by

urE) =1+ for n > 1.

Set P = P() = AN G, a parahoric subgroup of G; this comes equipped with its
standard filtration P* = P™"() = {x € P : z = 1 mod "} = U™(A) N G, for
n > 1. This gives a filtration of P(2() by normal open subgroups and [P"™, P™| C
P™*" for m,n € Z. Then we can apply (1.2.3) to give

(1.3.1) Proposition ([M1] (2.13)(c)) For eachn > 1, the Cayley map provides
a bijection P — P"; x +— C(x).

(1.3.2) Corollary ([M3] (2.1.4)(b)) If2n >m >n > 1, the map P" — P"
in (1.3.1) induces an isomorphism of abelian groups

PP~ PP
r—1+x

Proof: We only need to check that the map is indeed a group homomorphism but
this follows since 2n > m. [ |

As ‘B is stable under the involution, /B is a kp-algebra which inherits an invo-
lution. Set

PR)={zeA/P a7 =1}
={z+P:27— 1€ P}

(1.3.3) Proposition ([M3] (2.11)) The natural map P — P(A) is surjective.
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Proof: Suppose € 2 and x + B € P(). Let 2; = x. For each n, we will find
inductively z,, € 2 such that x,, — x,,_1 € P! and z,7,, = 1 mod B". Then, as
20 is compact, there exists ¢ € 2 such that x,, — t; then t —x € P and tt = 1, i.e.
te GNA = P and t maps to = + L.

We have x; already so assume we have found z,, as required, for some n > 1.
Then z,%, — 1 = ©,T, — 1 so, applying (1.2.2), there exists a € B" such that

TpTy = l14+a+a.
Then (1 + a)(l +a) =TnTy +aa and aa € ;,BQR C (Bn+1 SO
1=((14+a)'z,)((1+a)"1z,)  mod P tl.

So set xy41 = (1 +a) ta,. [ ]

(1.3.4) Corollary ([M3] (2.14)(a)) The natural map in (1.3.3) induces an

isomorphism P/P! ~ P(A)

Proof: Consider the natural map ¢ : P — A — /8. By (1.3.3), imp = P(2).
Further

kero={x e P:x+P=1+P}
—{zeP:zcl+P}=P" u
Then we see that P(2) is the reductive quotient of the parahoric subgroup P.
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(1.4) Characters

Recall that trg = trp/p, o tra p. If X is an op-lattice in A (hence an o¢-lattice in
A) define
X*={a€ A:tro(aX) C po},

which is also an op-lattice. Since 2 € oy and F/Fy is of degree at most 2, F is at
worst tamely ramified over Fy so

X*={acA:try/p(aX) Cpr}
which is the same as the usual definition of X* (as in [BK] (1.1.4)). In particular
(™) =g, for all n € Z

(see [Bu] p.190).

If X is also stable under the involution, we can define
(X_)*={ae A_ :tro(aX_) C po}.
Then, as the direct sum X = X_ & X is orthogonal with respect to try, we have
(X_)* = (X*)_

and, in particular,

(P2)* =P

Recall that 1 is a character of the additive group of Fjy with conductor pg. As in
[W] (IL.5), the map

A_— (A_)
z = (y — to(tro(zy)))

is an isomorphism of abelian groups, where "~ denotes the Pontrjagin dual.

Given an og-lattice L in A_, set L. = {x € (A_) : x(L) = 1}. Then the identifi-
cation A_ — (A_) enables us to identify L. with L*. Moreover, if Ly O Lo then
(L1/Ly) ~ Lo./Ly. ~ L3/L;. We have obtained:

(1.4.1) Lemma ([M2] (4.19)) If2n > m > n > 1 there is a P-equivariant
isomorphism of abelian groups

PR S (PP
b+PL" o~ Py
where Py (p) = Yo (tro(b(p — 1)) for p € P™.

Then ), is the restriction to P™ of the character i, of U™ () defined in [BK]
(1.1.6), since tg o trg = ¥ o tr4/p and 1P has conductor pp.
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2
EXACTNESS AND INTERTWINING

In this chapter we show that the exact sequences of [BK] (1.4) restrict well to the
symplectic Lie algebra. This will follow from the fact that if E'/F is a subfield of A
stable under the involution then there is a tame corestriction on A relative to E/F
which commutes with the involution. (See below or [BK] (1.3) for definitions.).

These exact sequences, together with the formula for the intertwining in GLoy
of simple strata [BK] (1.5.8), allow us to calculate the intertwining in G of skew
simple strata, showing that it is, in some sense, as small as possible. Note that a
similar intertwining theorem has been obtained in the case E/F tamely ramified
by Morris ([M3] (3.13)).

(2.1) Exact Sequences

Let E/F be a subfield of A such that E = E and let Ey be the fixed field of
the involution. Let 2 be a hereditary op-order in A which is invariant under the
involution ~ and suppose E* normalizes 2. Then we define

B = Endg(V), the A-centralizer of E;
B =2ANBDB, Q=PNB.

Then, by [BK] (1.2.4), B is a hereditary og-order with Jacobson radical Q and
Q" = P N B. Note also that £ = E implies that B = B.

Recall, from [BK] (1.3.3), that a tame corestriction on A (relative to E/F) is
a (B, B)-bimodule homomorphism s : A — B such that s(2() = 2N B for any
hereditary op-order 2 in A which is normalized by E*. By [BK] (1.3.2), a tame
corestriction is uniquely determined up to multiplication by a unit u € 0. For
E/F tamely ramified, we can take s to be orthogonal projection, relative to the
pairing (z,y) r— tra,p(zy) (see [BK] (1.3.8)(i1)).

We now prove that there is a tame corestriction which commutes with the involu-
tion on A.

(2.1.1) Lemma There exists a tame corestriction on A relative to E/F such

that s(Z) = s(x) for all x € A.

Proof: Recall that we have the character ¢y of the additive group of F, with
conductor po; then ¢ = 1pgotrp, g, is a character of the additive group of F', with
conductor pr since F'/Fy is at worst tamely ramified. We put ¢4 = Ypotry/p =
Yo o trg, as in (1.1), where trg = trp g o tra,/p.

Similarly, let ¢ g, be a character of the additive group of Ej, with conductor pg,;
then g = ¥g, otrg g, is a character of the additive group of F, with conductor

pe. We put Yp =¢gotrg/p = ¢g, o try, where try = tTe/B, 0 trB/E-
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As in [BK] (1.3.4), there exists a unique map s : A — B such that
Ya(ab) = Yp(s(a)b), a€cAbeDB

and this is a tame corestriction on A relative to £/F. Then, fora € A_, b€ By,
we have ¥ (s(a)b) = 1 a(ab) = ¥o(tro(ab)) = 1o(0) =1 as A_, A, are orthogonal
with respect to tro. Hence s(a) is orthogonal to B, with respect to try, that is,
s(a) € B_. Similarly, we have that s(A;) C By.

Now, for a € A, a = a4 +a_ with ay € AL and a_ € A_ so we have

as required. [ |

From now on, let s be a tame corestriction given by (2.1.1); it is uniquely de-
termined up to multiplication by u € oy such that v = @w. Then s splits as
s_.:A_— B_ands;: Ay — By

Now let 5 € A_ be such that the algebra E = F[{] is a field and consider the
adjoint map

ag:A—>A
x— PBxr—zxf

This is a (B, B)-bimodule homomorphism with kernel B. Then

ap(z) = fr — xf =70 — BT = T + 6T = as(T)

So ag also splits as ag : A~ — A_ and ag : Ay — Ay, In particular we have an
infinite exact sequence

a a
AN N AN N

which splits as

Let 3 be as above and let k € Z. Define
MNp = Ne(B,2A) = {z € A: ag(x) € PF}.

Then M, = N and Ny, is an op-lattice in A. In particular, M also splits as
‘ﬁk* O N
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Let n = —vy(0); then ag(A) C P~ whence Ny, = A for k < —n. Suppose E # F.
Define
ko = ko(ﬁ,m) = max{k: ceZ: Ny ¢ B —|—£B}

which exists, by [BK] (1.4.4), and we have kg > —n. If E = F then set ko(3,2) =

—0OQ.

(2.1.2) Remark Let e = ¢(E|F) be the ramification index and v = vg(8). We
say the element (3 is minimal if it satisfies
(i) ged(v,e) = 1
(17) mz".B° + pE generates the residue class field extension kg /kp.
Then, by [BK] (1.4.15), ko(8,2) = —n if, and only if, 5 is minimal. Moreover,
we then have

NTE,A) =B+ P forr >0

and, in particular, g, =N_, =2

(2.1.3) Proposition ([BK] (1.4.7)) Let k,r € Z and suppose k > ko(3,2) ,r >
1. Then the following sequences are exract:

0 — M/ Mppsr — PF /P 5 QF/QF - 0
0— M/B L Pk 9k -0
By (1.2.5) all the terms in the exact sequence are stable under the (induced)
involution and split as a sum of skew elements and symmetric elements. Further,

we have seen that ag and s both preserve the skew elements and the symmetric
elements. Therefore these exact sequences split in two. In particular, we have:

(2.1.4) Proposition Let k,r € Z and suppose k > ko(5,4), r > 1. Then the
following sequences are exact:

0 — O /My, — PE/PET 25 9k 9kt

0— 0N /B_ 2 pk 29k 0
Note also that we have

QTN = ‘ﬁ_k Qm = N Q™
=0"N, by [BK] (1.4.8)

so, from [BK] (1.4.10) and (1.2.5), we also have

(2.1.5) Corollary For m,k € Z ,k > ko(5,2) the following sequences are exact:

0 — (QmIM)_/Q™ 25 gtk 2o, qmik g
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0 — (Q7My)_ /(A7 My ) 2 Ptk jpmhrl 2o, quetk jqmethl g

Note that if E/F is tamely ramified then, taking s to be the projection pr:A — B,
all these exact sequences are split by the inclusion B — A.

Recall from [BK] (1.3.10) that a lattice L is called E-exact if s(L) = L N B.
(2.1.6) Lemma Lety € B, r € Z; then L = P" + B "y~ ! is E-exact.

Proof: From [BK] (1.3.16), the lattice Ly = B"y + yP" is E-exact and, further,
an Ad (E*)-invariant (A(E), og)-bilattice. Then L = (Lvy)y~! is also an Ad (E*)-
invariant (A(E), og)-bilattice, and hence is E-exact by [BK] (1.3.12). |

In particular, if v € BN G then (P'L +yPLy 1) NB = (P"++yP"v HyNB =
(Q"+7Q" 71+ = Q%+

Let k = ko(8,2) and write 91 for 9, (5,2). Finally in this section we present the
multiplicative analogue of (Q"*M)_ for the symplectic group G. For m > 1 define

QM =(1+9Q™)NG.

Then, by (1.2.3), there is a bijection (Q™M)_ — Q™ given by z — C(z). Note
that for § minimal over F', 91 =2 so Q™ = P™(2).

(2.2) Intertwining of simple strata

Recall (from [BK] (1.5)) that a stratum in A is a 4-tuple [, n,r, b] consisting of
a hereditary op-order 2 in A, integers n > r, and an element b € A such that
v (b) > —n. If [, ng, 7, b;] are strata in A, ¢ = 1,2, and B; = rad(2;), we say
they are equivalent, denoted

[Q[lan17rl7bl] = [912,712,7"2,[)2], if
by + Py = by + Py

If they are equivalent then, by [BK] (1.5.2), 2y = 25, r; = ry and, if we have
vy, (b;) = —n; for i = 1,2, also ny = na.

(2.2.1) Definition A stratum [2,n,7,b] in A is called skew if b+b =0 and A
18 invariant under the involution on A.

(2.2.2) Definition ([BK] (1.5.5)) Let [, n,r, (] be a stratum in A. It is pure
if

(1) the algebra E = F[(] is a field,

(i) E* C R(A),

(7i1) vy (B) = —n.

It is called simple if, in addition,

(1) r < —ko(B,2).
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We now define the formal intertwining in G of a skew stratum [, n, r, b]

Toln,rb)={zecG: 2 (b+ Pz (b+P-") £ 0}

(2.2.3) Theorem Let [, n,r, 3] be a simple stratum with 3 € A_ and 2 stable
under the involution ~. Write k = ko(5,4) and M = N (B,2A) and, for m > 1,
define Q™ as in (2.1). Then

I =TI, n,rp =Q "(BnG)Q "+
Before proceeding with the proof, we remark that B N G is a unitary group (we
will examine it more closely in chapter 4). It will therefore be necessary for us

to prove many results (concerning refinement of strata etc.) for unitary groups as
well as for symplectic groups.

Proof: Let J ={z € G:271(b+P ")z N (b+P~") # 0}. This is the GL(2N)-
intertwining of the stratum (in the sense of [BK] (1.5.7)) contained in G. Clearly
Z C J. Suppose, on the other hand, x € J; then there exist b; € P, 1 = 1,2
such that

.fE(ﬁ -+ b1>33'_1 = ﬂ + b2.

We now write b; = u; +v;, u; € B, v; € P, for i = 1,2 so
r(f+v)z ™t Faruet = (84 va) + us.
Now zA_2x ' CA_and zA, 271 C Ay so A=A_ 1 A, implies
z(B+v)a™! = B+ v,

i.e. 7 € Z. So we see that T = J = (1+ Q99 B*(1 + QM) NG by [BK] (1.5.8),
where d = —r —k > 0.

We continue with two lemmas:
(2.2.4) Lemma We have
(1+QMMBX(14+ QM) NG c (1+2M)(BNG)(1+QM).
Proof: Let t € (1+Q%)B*(1+QM)NG with vy (t) =m. Sot = (1+z1) tb(1+
y1) with b € BX, z1,7; € QI C P?. Then we have

(1+21)t =b(1+y1),
(1+21)(1+77) = b(1 +91)(1 +77)b,
bb— 1 =21 + 71 + 2171 — b(y1 + U1 + y171)d.

So bb = 1 (mod P4 + vPLb). We will find inductively b, € U%(B)bU?(B) such
that

(2.2.5) bpb, =1 (mod P + b, P79,
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and bpy1 = b, (mod PH").  Granting this, we have vg(b,) = va(t) = m
80 bpb, = 1 (mod P + i]3”d+2m). Then the sequence {b,} converges to b’ €
U(B)bU?(B) (since the double coset is compact) and b’ = 1. So t € (1 +

QW) (BN G)(1 + QM) since Q¢ € QIN.
We are reduced to proving (2.2.5). The case n = 1 is immediate: take b; = b.

So let n > 1 and assume we have found the required element b,. We write
by = (1 +2)t(1 +y)~! with 2,y € QM C P<. Then, as above,

bubp — 1 =2 +T 42T — by (y +7 + y7)bn
Now b,b, — 1 € (‘Bid + bn‘B’}FdE) NB = Qﬁd + anfﬁdE by the remark following

(2.1.6). So there exist v',w’ € D’}rd such that b,b, — 1 = v/ — b,w'b,,. Then let

1,/ 1 nd X
v =357, ’LU—Q’LU UW€Q+ SIHCGZGOFand

bpbp — 1 =047 — bp(w+W)by =& +T + 2T — bp(y + T + y7)bn
We set b1 = (1 —v)b,(1 —w)~t. Then

V+T — b1 (w+W)bp i1
=(v+7) — (1 —v)b, (1 —w) Hw+w)(1 — @)*1@1 — 1)
(v+7) = by (1 —w) H(w+)(1L —w) 'b,)(1 —7) (mod P39

)
1= 0)[v+7 — by (w +W)b,|(1 — ) (mod P + b1 B bn1)
=(1-0)[z+T+aZT—b(y+7+yP)ba)(1-0)  (mod P! + bn+1§p+ br+1)
=(1-0)(&+T+27)(1 -0) = (1 = 0)by(1 —w) " (y + 5+ y7)(1 — @) b, (1 — D)
(mod Y 4 by BTV
=2+ T+ 2T~ bya (Y + 7+ ¥t (mod B+ by 1380 15)

Now (1 —v)(1+ 2)t = by41(1 —w)(1 4 y) so, misappropriating the O-notation in
the obvious way, we get

(1-v)14+2)(14+2)(1-0) =bypr1(1 —w)(1+y)(1 +7)(1 —W)bp41,
hence 1—v—T+z+T+ 2%+ OB Y
bt 1bnrt — bt (—w — @+ y + 7 + 47+ OBV bria

and  bypibor =1 (mod P 4 b, BTG,
This completes our induction and the proof of the lemma. [

(2.2.6) Lemma Lett € G; then

(1+ Q91+ QM) NG = QUQ™.
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Proof: Let h € (1+Q™M)t(1+QM) NG and vy (t) = m. We will find inductively
tn € Q?hQ? such that

(2.2.7) t,=t  (mod Q"INt, +tQ"MN).

Granting this, we have vy (t,) = vo(t) = m so t, =t (mod L"4+™). Then the
sequence {t,} converges to t. The double coset Q?hQ? is compact in G so we
conclude that t € Q?hQ?, or h € Q4Q?, as required.

So we are reduced to proving (2.2.7). The case n = 1 is immediate; take ¢; = h.
So let » > 1 and assume we have found the required element ¢,, satisfying (2.12).
Then there exist x,y € Q"M such that t,, = t —at, +ty, i.e. (1+2)t, =t(1+y),
and we have

(1+2)(147) =t(1+y) 1+,
hence = — tyt = —(T — tgt)  (mod (Q%™IN), + t(Q*™IN) 1),
le. z —tyt € (Q™N 4+ tQ™NE)_ + (Q*IN); + ¢(Q*N)4+t. Now we have
(QmIN 4+ tQINE) _ = (Q™4N)_ + t(Q"9N)_ so there exist v, w € (Q™¥N)_ such
that

(2.2.8) xr —tyt = v — twt (mod Q%M 4 tQ?"INT).
We set t,11 = C(v)t,C(—w) € QThQ?. Then, from (2.2.8), we have

r—u)t=t(y—w) (mod Q*INt + tQ?"IMN)
ie. (z—v)(1+2)C (=)t 1Cw)(1+y) =ty —w)
(mod Q"M 4 tQ*"IN)
ie. (z—v)(1+2)C(—v)tpt1 =ty —w)(1 +y)C(—w)
(mod Q*"MNt,, 1 + tQ>"IN)
ie. (x—v)the1 =ty —w) (mod QM1 + tQIN)

Then (1 + z)C(—v)tp+1 = t(1 4+ y)C(—w) implies

(14 (2 = v) + Q*Ntng1 = t(1 + (y — w) + Q")
and  t, 1=t (mod Q*MMNt, 1 + tQ*"IN).

Now n > 150 typ1 =t (mod QM HDINt, | 4+ tQ+HDIN) as required. [ |

Returning to the proof of the theorem, we have

7=>01+QMB*X(1+9"M NG
=(1+QMBNGA+2M NG, by (2.2.4),
= QYBNG)QY, by (2.2.6). [

Note that, following the proof of (2.2.6), we find
(2.2.9) Ur@)tU™(A) NG = P (A)tP™ (),
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for t € G and n > 1. Further, replacing A with B, 2 with B etc. we have
(2.2.10) urB)tu"(B) NG = P"(B)tP"(B),
for t € BNG, n > 1 and where P"(B) =U"(B)NG = P"(A)N B.
(2.2.11) Proposition Lette€ BNG, n > 1. Then

P"R0tP"(A)N B = P"(B)tP"(B).
Proof: P"(R)tP"()NB =U"20tU"(A)NGN B, by (2.2.9),

= U™(B)U™(B) NG, by [BK] (1.6.1),
— P"(B)LP"(B), by (2.2.10).
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3
RESIDUAL SUBSPACES

In this chapter we introduce the notion of a residual subspace of a lattice chain
in V. This is due to Bushnell, as are the results (3.1.1-9). These will be seen to
correspond to subspaces of V' which split £ in some sense. They will play a role
similar to the Z/eZ-graded algebras in [M3].

We can then apply the results obtained about residual subspaces to find “nice”
block decompositions for the hereditary order associated to a self-dual lattice chain
in V (cf. [BK] (2.5.1)). In particular, the involution on A will permute the blocks
with respect to this decomposition.

This chapter is given in the generality of unitary groups so, as in (1.1), h will be
an e-hermitian from on V.

(3.1) Residual subspaces

Let £ be an op-lattice chain in V of period e. Then we have an additive norm vg
(in the sense of [BT] (1.1)) on V associated to £ given by

ve(v) = sup{k : v € Li}.
keZ

Then vg¢ satisfies the following properties:

ve(zv) = evp(z) +ve(v) forxze F*veV;
ve(v 4 w) > inf(ve(v),ve(w)) for v,w € V;
ve(v) =00 <= v=0.

(3.1.1) Definition An op-basis of £ is a basis {v1,...,on} of V which splits
ve, in the sense that

1<i<n

N
Vg(invi): inf ve(z;v;).
i=1

This is not the usual definition of an 0 p-basis, as in [BK] (1.1.7), but is somewhat
weaker. Indeed, for 0 <i <e—1,let {v;; : 1 < j <dimg, L;/Lit1} be a basis for
L;/L;41, and choose 0;; € V such that 9;; + L;y1 = v;;. Then {0;;} is an op-basis
of £ in the sense of [BK].

(3.1.2) Lemma With notation as above, {0;;} is an op-basis of £ in the sense

of (5.1.1).

Proof: Let v = ) x;;0;; and let | = infwvg(x;;0;;). Then certainly ve(v) > L.
Let {(ix,Jx) : 1 < k < r} be the set of indices for which vg(x;;0;;) = I. Since
0 <wve(v;;) <e—1forall i,7, we have

ve(Oijy) = - = ve(®i,y,);

vE(wi,5,) = -+ = vp(24,5,)-
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So we may assume vp(z;, ;) = 0 and | = vg(0;,5,) for 1 < k < r. However,
by definition, the ¥;, ;, + L;4+1 are linearly independent over kr so v € L;41 and
ve(v) =1L [

Conversely, an 0p-basis {v1,...,un} of £ in the sense of (3.1.1) is an op-basis in
the sense of [BK] if and only if 0 < ve(v;) <e—1, for 1 <i < N.

(3.1.3) Definition Let £ be an op-lattice chain in V. A residual subspace of £
is a family V = {Vy : k € Z} such that

(i) Vi is a kp-subspace of Ly/Lyy1 for each k € Z

(ii) for any x € F* with valuation v = ve(x), we have xVi = Viiey, where
e=re(L).

Since, by definition, the Vj are kp-subspaces, it is enough to verify (ii) for 7p,
rather than every x € F'*. It is easy to produce these residual subspaces. Let W
be an F-subspace of V', and define

. W N Ly _(WﬂLk)—f—Lk+1
W N Lk L1

E(W)k . keZ

The family {£(W)y : k € Z} is then surely a residual subspace of £.

(3.1.4) Proposition Let {Vy : k € Z} be a residual subspace of the lattice chain
£. Then:

(i) there exists a subspace W of V' such that £(W ) =V, for all k € Z;

(ii) for any subspace W satisfying (i), we have

e—1

dimp(W) =) dimy,. (Vi);
1=0

(iii) let W, W2 be subspaces of V. Then £(W1), = £(W?)y, for all k € Z, if
and only if there exists x € UY(A) such that W? = zW1,

Proof: For each i, 0 < i < e—1, choose a basis {v;;} of V; and let 9;; € V' be such
that 0;; + L;11 = v;;. Let W be the F-span of the 0;;. Then {0;;} is part of an
op-basis of £ so V; = £(W); and we have proved (7).

(4i) comes from the fact that, for any subspace W of V, dimp (W) = dimy,, wAke

WNL. "
(iii) If x € UL(A) then aW! N Ly = (W' N L) and = acts as the identity on
Ly /L1 so LW, = £(xWy),. Conversely, suppose £(W1), = £(W?); for all
k € Z. Choose a basis {wf;} for W* such that {w};} (mod L;y1) is a basis of
L(Wk);, for 0 < i < e—1, k = 1,2. There exists a subset B of V such that
BU {wfj} is an op-basis of £ for both values of k. There exists © € Autz (V') such
that a:wilj = wfj and such that zb = b for b € B. Then z stabilises each L; and
acts as the identity on each quotient L;/L;y1 so z € U (). |

In particular, the dimension of a residual subspace V is well defined: dimyg,V =
Zze;ol dimg . (V;), which is the dimension of any subspace W of V such that V =
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(3.1.5) Proposition Let £ be a lattice chain in V, with residual subspaces V!,
V2, such that

LZ'/L7;+1 = (Vl)z D (V2>z
for alli € Z. Let V1, V2 be subspaces of V such that (V¥); = £(VF); for all i, k.
Then V. = V'@ V2 and the pair (£(V1);, £(V?);) determines the pair (V1 V?)
up to translation by an element of U(2).
Further, for any such pair (VY,V?), we have

Ly=(LynVHo(LynV?), keZ

Proof: Choose bases {vfj} of VF, for0<i<e—1,k=1,2and let ﬁfj € L; be
such that @l’“] 4+ Liy1 = UZ Let V¥ be the F-span of the @Z’?j, for k = 1,2. Then
{@l"; :k =1,2} is an op-basis of £so V¥ = &(VF) fork=1,2and V =V V2
The uniqueness up to translation by an element of U1 (%) follows as in (3.1.4).

We clearly have (L, N V1) @ (L N'V?) C Ly for k € Z. The converse holds since
{0F; : k= 1,2} is an op-basis of £. |

(3.1.6) Proposition Let £ = {Ly : k € Z} be a self-dual lattice chain in V. Let
d € 7 be the unique integer such that LY = Ly_s for all k € Z, given by (1.1.2).
Then for each i € Z, h induces a nondegenerate kp-sesquilinear pairing

L; Lg—i1

3.1.7 "LZ k
( ) Livi Lo "

Proof: Fori € Z, x € L;, y € Ly_;—1, we have mpx € L; 1 so h(rmpz,y) € pp.
Hence h(z,y) € op and we can reduce modulo pr to get the pairing h;. For
nondegeneracy we need that if y € Ly_;_; satisfies h(L;,y) C pp then y € Ly,
which is immediate, and symmetrically. [

Now let V = {V;} be a residual subspace of our self-dual lattice chain £. We say
that V is nondegenerate if the pairing

Vi X Vg—i—1 — kp

induced by (3.1.7) is nondegenerate. Irrespective of this condition, given a residual
subspace V, we can define its orthogonal complement V* = {Vi- : i € Z} by

Vit ={x € Li/Liy1:hi(x,v) =0,v € Vg_i_1}.
Then V* is indeed a residual subspace of £ and we have the identity
vt =v.
In the usual way, V is nondegenerate if and only if YNV+ = {0}, or, more precisely,
Li/Lis1 =V, ® Vi,
for all 4.
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(3.1.8) Proposition (i) Let V be a nondegenerate residual subspace of the self-
dual lattice chain £. Let W be a subspace of V' such that £(W) = V. Then h|lw xw
1s nondegenerate.
(i) Let W be any subspace of V such that £(W) is nondegenerate. Then S(W)
1s nondegenerate and

gWh) =gw)t.

Proof: (i) Let w € W be such that ve(w) = ¢; so w € L; but w ¢ L;11. By
hypothesis there exists w’ € W N Lg_;_1 such that h;(w+ L;y1,w + Lg_;—1) # 0.
Hence h(w,w") & pr and, in particular, h(w,w’) # 0.

(ii) We certainly have £(W); C £(W)i- for all i € Z. The result then follows by

comparing dimensions. |

(3.1.9) Corollary Let V!, V? be nondegenerate residual subspaces of £ such that
Li/Liy1 =V} 1L V? fori e Z. Then there exist subspaces V1, V2 of V such that
V=V!1V2and £(V*)=V* fork=1,2.

(3.1.10) Lemma Let W be a totally isotropic subspace of V. Then L(W1) =
gw)t.

Proof: The proof is the same as (3.1.8)(ii). [

We call a residual subspace V of £ totally isotropic if h;(V;,V4—;—1) = 0, for all
1 € L.

(3.1.11) Proposition Let W be a totally isotropic subspace of £. Then there
exists a totally isotropic subspace W of V' such that W = £(W).

Proof: Put n = dimg, . The idea of the proof is to split W into (totally
isotropic) one-dimensional residual subspaces, contained in mutually orthogonal
nondegenerate two-dimensional subspaces X¢ of V, 1 < i < n. Hence we reduce
to the case dimy, W =1 and dimpV = 2.

We choose a non-zero w; € W,,, for some r; € Z. By the nondegeneracy of h,,
there exists v; € V4_,, 1 such that h,, (wi,v1) = 1. Let Y1, Z! be the residual
subspaces given by

1 T (w1 ) ke if k =1y + se;
Vi = { 0 otherwise,
Zl_{ﬁs(m}kF ifk=d—r —1+ se;
A otherwise,

where e = e(£) is the op-period of £, (v), = kpv is the kp-span of v and 7p
is the kp-linear isomorphism Ly /Lgy+1 — Lgte/Litetr1 induced by multiplication
by 7 (see (3.3) for more details). We put X! = P! + Z1. The residual subspace
X1 is nondegenerate so, by (3.1.8), there exists a subspace X! of V such that
£(X1Y) = X! and hx1«x1 is nondegenerate.

Replacing V by X'+ and W by WN X!+, we may repeat the above to obtain, for
1 <4 < n, residual vectors w;, v; and nondegenerate subspaces X* of V such that
X" L XJ fori# j, dimpX'=2 and W is generated by (w1, ...w, )k, and Tp.
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For each i we will find @; € X such that @;+L,, 11 = w; and such that h(w;,0;) =
0. Then we put W = (w; : 1 <i < n)p and we are done.

We drop the subscript ¢. Let x € X be such that x + L,.1 = w. Let s € Z be
such that r +se >d—r—1>r+(s—1)e so

Lr+se+1 - Lq# ; Lr+(s—1)e+1-

Suppose first that r + se > d —r — 1; then 752 € L,y s C L so h(z,z) € pp °.
Otherwise, r + se = d —r — 1; then n.x € Lg_,_;. Then h(njz,x) + pr =
hy_r1(7r°w,w) =0 so h(z,z) € p}_s in this case also.

For n € N we find, by induction z,, € X such that w = z,, + L,41, Th+1 — T €
Ly (n—1)et1 and h(zy,2y,) € pf °. Then we put w = lim,, ., z, and we are done.

We may take x1 = x so assume we have found x,, as required. If h(z,,, z,) € p}‘fl*s
then we may take x,,+1 = x, so assume h(z,,z,) € p%_s\p’}“_s; say h(xp, Tn) =

QT %, oy € 0, T ° € Fy. By the nondegeneracy of h, : V, X Vy_,_1 — kp,

there exists y, € Lg_.—1 such that h(x,,y,) + pr = %an. Then h(yn,yn) €
p since Ly r—1 C Lyy(s—1)et1 = W;_lLd#iril and 7 *Yn € La—r—14(n-s)e C

Lyt (s—1)et14(n—s)e = Ln—1)etr+1. Then we put x,41 = x,, — 7 ¥y, and we have

h(xn-i-la $n+1) = h(:lfn, xn) - W?_sh(xm yn) - W}«z_sh(yna xn) + W;(nis)h(ym yn)

1
= o = Goum T+ O )
1
= o T+ OMETT) + 0P ) .
€ p}ffl*s, since n > 1.

(3.2) Splittings of self-dual lattice chains

We continue with the notation of the previous section; in particular h is a nonde-
generate e-hermitian form on V. Let £ be a self-dual lattice chain in V.

(3.2.1) Definition A splitting of £ is a decomposition of V
V=V V_,®---ViaVyVid---dV,

into F'-subspaces such that the following hold:

(i) For all k € Z we have Ly = @ cqLr N V., where Q is the set of w €
{o0,—r,...—1,0,1,... ,r} such that V,, # 0;

(1) £ :={Lpy NV, : k € Z is a lattice chain of period 1, for w € §);

(iii) Vi = D, Vo for allw € Q (with the understanding that —oo = 00).

(3.2.2) Proposition Let £ be a self-dual lattice chain in V. Then there ezists a
splitting of £.

Proof: Let d =0 or —1 be the integer such that Lk# = Lq_y for k € Z, given by
(1.1.2), and let e = e(£) be the op-period of the lattice chain. Define residual
subspaces V), for i € Z, by
D) _ Ly /Ly i =k (mod e)
F 0 otherwise.
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Then A induces a duality V) « Y(d=i=1) 1y (3.1.6). Set W) = pu-1 4 pld=i)
for j € Z; this is a direct sum if 25 # d + 1(mod g), while YU~—D = P(d=J)
otherwise.

(3.2.3) Lemma The residual subspaces W9 are nondegenerate.

Proof: We have to show that the pairing
Wi x Wil ) — ke

is nondegenerate. But if W,E,j ) £ 0 then, without loss of generality, V,idij ) =
L/Lys1 #0s0 k=d—j (mod g). Then d —k = j (mod g) so WY, = V), =
Lg_x/Lg—k+1. Then by (3.1.6) the pairing is nondegenerate. [ |

Set f = [¢1=4); then Ly /Ly = W™ oW @ o W) for all k € Z.
The residual subspaces W@+ . W@+ are orthogonal so, by (3.1.9), there
exist subspaces W@+ W @+S) of V such that

vV =w@+t) | ... Wt

and WU = ¢(WW) for d+1 < j < d+f. So we can write h = hgyq L -~ L hgy s
with h; a nondegenerate e-hermitian form on W,

(3.2.4) Lemma & = {L, N WY : k € Z} is a self-dual lattice chain in W),
d+1<j<d+ f. Moreover,

1 if2j =d+1 (mod e)

€; = 6(23') = .
. ) i otherwise. o
Proof: That £ is a lattice chain of period e; in W) is clear. For all k € Z,
(LynWON# = LF L (WON# = Ly o+ WO 4 g WG 4 WG (),
Restricting the duality operation to W), this says that (Lp N WU))# is the
projection in W) of Ly g, which is Lg_ N W), |

Note that all but at most 2 of the £/ have period 2. If d = —1 then eg; = 1 and
put Vg = W(d“), otherwise Vg4 = 0. If 2f = e+ 1 —d then eq4y = 1 and put
Voo = W) otherwise Vi = 0.

Now consider the case e; = 2. Then V-1 and V@-9) are totally isotropic
residual subspaces of £/ so, by (3.1.11), there are totally isotropic subspaces V;
and V_; of W) such that £(V;) = VU=Y and £(V_;) = V(@=9). Then clearly
W =v,eVv._,.

Altogether we have
V=V Vo, -V ioVpaVid---dV,

as required, e = 2r, 2r + 1 or 2r + 2. So this completes the proof of (3.2.2). N

We think of Q C {oo, —r,...,7} as an ordered set of indices. Also, Z/eZ acts on
by cyclic permutation. For w € Q, i € Z, we will write w + ¢ for the translate by
i+ eZ of w.

35



We can push this further. We choose op-bases for Voo N Lg—r—1, V_; N Lgq_; for
r>j>1,and Vo N Lg and op-bases for V; N L;_; for 1 < j < r. Then, with
respect to this basis B, h has matrix

Jw 0 - )
o o --- e 0T
7 1
Jo where 1= ,
1
el
S0 :
0 e 0 - e 0

J, is the matrix of hly, xv,, for w = 00, 0, and A = 2A(£) has the form

o Op .- O OFf

pr oFp o
(3.2.5) -

Pr Pr O0Fp OF

pPr Pr -+ Pr OF

So we have chosen a basis of £ in the sense of [BK] (1.1.7). Note that the above
matrices are n-block matrices, where n = (noo,n_p, ... ,n;) is a vector of positive
integers and n,, = dimV/,, for w € €.

Putting A“w) = Hom(V,, V), for w,w’ € Q, we get a block decomposition A =
| AW with respect to which 2 has the form above. Then, for a € Al
we have h(V,/,aV,) = h(aV,/,V,) which is non-zero if and only if v = «’ and
v = —w. Hence a € A-%"=%)_ In particular, the involution on A fixes diagonal
“bands” of blocks in A.

We now define a set of representatives for the cosets ™ /PB™+L for any integer

m, as in [BK] (2.5.5). We define integers [, k by

(3.2.6) 0<l=m-ek<e—1.

Consider the set B; = B;(2l) of e-tuples of matrices
b= (b, :weN)

where b, has entries in op and dimensions n,, x n,4;. For b € B;, we define an
n-block matrix r,,(b) over F' by

kb, ifw<r—landw=uw —1,
T (0)ww = ﬂfﬂ“bw ifo>r—landw=uw —1,
0 otherwise.
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Then the map b — r,,(b) induces a bijection between B;(2) (modulo pr) and
BB

Moreover, since the involution fixes bands of blocks, 7,,(b) = r,,(b’), for some
b’ € B;(2). Then we can define an involution ~on B;(2l) by putting b = b’. (Note
that, in the case F' # Fj, the involution on B;(2() is dependent on m.)

(3.2.7) Definition Let [A,n,n — 1,b] be a stratum in A. It is in band form if
b=r_p,(b), for some b € B;(), where I,k € Z are such that 0 <= —n — ek <
e—1.

Any stratum is equivalent to a stratum in band form and further, since the involu-
tion on A fixes bands of blocks, any skew stratum is equivalent to a skew stratum
in band form.

It will sometimes be more convenient to choose a slightly different basis, which is
a basis for £ in the sense of (3.1.1). We can choose bases for V,, and V} such that

mptl I
(3.2.8) Joo = Ko , Jo = Ko ;
ew}lf el

where K, is the matrix of the anisotropic part of hly, xv,, w = oo, 0. Then,
rearranging the bases for V,,V_,, ..., V,, the form h has matrix

Koo
(3.2.9) K,
el

K= (k)

is at most 2 x 2 since the anisotropic part of V with respect to h is at most
2-dimensional. From [M1] (1.8), the only possibilities for K are

Moreover, the matrix

K=(5), (6) or (_55 5)

where ¢ € Fy, € € Np/p,(F) and 0 = 1, if h is hermitian, § € F_, if h is skew-
hermitian.

(3.3) Residual maps

In this section we look at maps between residual subspaces.

Let £ be an op-lattice chain in V' and 2 the associated hereditary order in A. Let
x € A be such that vg () = n. Then x induces maps

Ty o Ly /Lgy1 — Ligyn/Liktnt1
v+ Lk+1 — v + Lk+n+1
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for k € Z. Let V be the residual subspace £(V') of £, so Vi, = Ly, /Lyy1, for k € Z.
Then we say that  : V — V is of degree n.

(3.3.1) Lemma Let A be a hereditary op-order in A. Then x € K() if and only
if Tk is an isomorphism for all k € 7.

Proof: Suppose x € £(2) and put n = vg(z); then vy (x~!) = —n so ™! induces
a map of degree —n, x=1 :V — V. Then, for k € Z, we see that (x=1)k,, o T is
the identity on Ly /Lg11, since Zx(v + Lgi1) = 20 + Lgypny1 = (v + Lgyq).
Conversely, suppose = ¢ R(2) and put n = vy (z). We have that 2Ly G Lyyy, for
some k € Z. Then T} is not surjective; in particular, it is not an isomorphism. W
In particular, 7z induces an isomorphism 7z : V — V of degree e = e(£), the op-
period of £. Indeed, if W is any residual subspace of £ then (7z)Wi = Whie,
for all k € Z, so we have an isomorphism 7z : W — W.

Let W', W? be residual subspaces of £ and let o : W' — W? be of degree n. i.e.
o is a set of kp-linear maps {ox : k € Z}, where g : W} — W,ern. Then we say o
is a residual map if poTp = Tp o, i.e. for all k € Z

Okte © (TF)k = (TF)ktn O Ok-

(3.3.2) Lemma Let o:V — V be a residual map of degree n. Then there exists
x € A, vy(x) =n such that p = T.

Proof: We may assume that 0 < n < e — 1 by scaling by 7. For 0 < k <e—1
choose a basis {v;, : 1 <i < d;} of Vi and choose 0;;, € V' such that 0, + Li4q1 =
v;k. Taking the index k& modulo e, we have

o) = D QikVimik

1<i<dp s

for some p;r € kp. Choose x;; € op such that z;x + pr = 01 for each i,k and
define x by

T = Z ik Vi n+tk-
1<i<dn i
Clearly z € A, vy(z) =n and T = p. |
We write Endy;V for the kp-module of residual maps of degree n.

(3.3.3) Corollary For each n € Z, the natural map B" — Endg V : z — T
induces an isomorphism of kp-spaces P" /BT — Endj V.

Proof: The natural map is surjective by (3.3.2) and clearly the kernel is 3"”. W

Note also that if o is a residual isomorphism (i.e. gy is an isomorphism for each
k € Z) then z € K(2).

Let now h: V x V — F be an e-hermitian form as before and let £ be a self-dual
lattice chain in V. Then, by (3.1.6) we have nondegenerate sesquilinear forms
hy Vi X Vy__1 — kr for all k € Z.
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Let o:V — V be a residual map of degree n. Then we define the adjoint residual
map 9, also of degree n, by

Piin(0k0,0") = B (v, 0g—jp_1_nv")

for v € Vi, v/ € Vg_p_1_,. This is well-defined as hj is nondegenerate for all
k € Z.

(3.3.4) Lemma Let x € A; then T = .

Proof: Put n = vg(z) and choose any v € Vg, v/ € Vy_g_1-. Choose also
0,0" € V such that o + Ly 1 =v and o' + Lg_;_, = v’. Then

A residual map p is called skew if p = —p.

(3.3.5) Lemma Let g be a skew residual map of degree n. Then there exists
x € A_, vy(x) =n, such that p = Z.

—_~—

Proof: Let y € A, vy(y) = n be such that § = , by (3.3.2). Then (—7) = —y = 0
so, by (3.3.3), =y € y + P, Then, by (1.2.2), there exists u € PB1*" such that
y+y=u+uand we put x =y — u. |

(3.3.6) Corollary Writing EndZF’,V for the skew residual maps of degree n, we
have an isomorphism L™ /P T — Endy, V.

Put A = Endj_V. Then the map

e—1

./4 — H EndkFLi/Li_|_1
1=0

0 (907"‘79671)
is an isomorphism of kp-algebras since g,eqi = Tr 0;7p = forallr € Z, 0 <

i < e—1. So we have notions of minimal polynomial (over kr) and Jordan
decomposition in A.
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4
REFINEMENTS

In this chapter, A is an alternating form, i.e. this chapter is only for the symplectic
group.

In this chapter we look at the refinement process for skew simple strata (cf. [BK]
(2.2)). In order to do this we must first adapt the notion of a (W, E')-decomposition
[BK] (1.2) to our situation. We now recall this.

Let E/F be a subfield of A and write A(F) = Endp(FE), B = Endg(V). Let W
be the F-span of an E-basis of our vector space V. Then the choice of W induces
an embedding of algebras vy : A(E) — A and an isomorphism

(4.0.1) A(E)®p B~ A

of (A(F), B)-bimodules ([BK] (1.2.6)). Moreover, if 2 is a hereditary order in A
normalised by E then, by [BK] (1.2.8) we can choose W such that the isomorphism
of (4.0.1) restricts to an isomorphism

(4.0.2) AUE) @, B,

where 2((F) is the unique hereditary op-order in A normalised by F ([BK] (1.2.7))
and B =AN B.

In our situation, E/F is a subfield of A stable under the involution but not fixed
pointwise by it. Then FE, considered as an F'-vector space, has a nondegenerate
alternating form on it (indeed we will need two different forms in general). Then
A(F) has an involution and we would like A(E)_ to be embedded in A_ by wyy.
In general, we will need to take not the space A(E)_ but the space of elements
skew according to both involutions (induced from the two different forms on E).

This will allow us to prove that if [2(, n, r, 5] is a skew simple stratum and b € P_"
such that [B,r,r—1, s(b)] is equivalent to a skew simple stratum then the stratum
[, n,r — 1,3+ b] is equivalent to a skew simple stratum (cf. [BK] (2.2.8)).

(4.1) (W, E)-decomposition

Let E/F be a subfield of A such that E = E and let Ey be the fixed field of the
involution, Ey # E. Let e = e(E|F) be the ramification degree of E/F and let
D=1 be the inverse different of E/F. Let B = EndgV be the A-centraliser of E
so B = B. There exists a hermitian form f:V x V — E by

h(ev,w) = trg,p(def(v,w)) forallec E, v,weV

for some § € pp¢ 1D, § & ppT1® !, such that § + 6 = 0. This is well-defined
as trg/p is nondegenerate, and f itself is nondegenerate by the nondegeneracy of
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h. Then f determines an adjoint involution on B, which is in fact the involution
~on A restricted to B since, for x € B and v,w € V, e € E, we have

tre r(def(zv,w)) = h(erv,w) = h(zev, w)
= h(ev,Zw) = trg p(def(v,Tw)).

As a direct consequence of this we have:

(4.1.1) Lemma The centraliser in G of E, BN G, is the unitary group of E-
automorphisms of V' which fix the hermitian form f.

From the theory of hermitian forms (see [Sch] (1.5.11), (7.1)), V then has a Witt
decomposition as an E-space, V = Ve | V*P where f|yanyyan is anisotropic,
dimpVe <2 and f|ysrxysr is split (i.e. it is a sum of hyperbolic planes).

Let 2l be an op-order in A, normalised by E, such that 2 = 2 and let £ = £(A)
be the self-dual op-lattice chain associated to it. Let 8 =2ANB and Q =P N B,
where ‘P is the Jacobson radical of 2, as usual. Then £ is in fact a self-dual
og-lattice chain in B since, for L € £,

¥ ={veV :h(x L) Cprt={veV:6f(v,L) CD 'pp}
B { {veV: f(v,L)Cpg} if 6 & ps, @1
C{veV:fw,L)cogt ifdepi®

Then by [M1] (1.7) we can choose a basis for the lattice chain such that, with
respect to this basis, the hermitian form f has matrix:

cCi 0 0 O 0 1

0 0 0 I _ ) _(Cy 0
0 0 Cy 0] where [ = . and C = ( 0 02>
0 I 0 0 1 0

and C' is the matrix of f|v, «v,.,-

The possibilities for C' are:
dimV*" =1 C=(1) or (e);

. an (- 0}
dimV** =0 C_<0 1),

where ¢ € Ey, € € Ng/g, (). (In fact, in the case dimV*" = 1, we may always
assume C' = (1) by changing 0 to de and choosing a basis for the form given by
this.) Note also that we may change £ by any norm so we will choose it carefully.

(4.1.2) Lemma In the situation above there exists € € Ey, € € Ng/p,(E) such
that €™ € F for somen € Z, (n,p) = 1.

Proof: We first consider the case E/E, ramified. Then let ¢ be a root of unity
in Fy which is not a square. Then ™ = 1 for some m € Z, (m,p) = 1. Then
this € will do. For suppose ¢ is a norm; then any element of o; is a norm since
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e generates the group of roots of unity while every element of Ul(0g) is a square
as p # 2. Further 7 is also a norm, for some prime element 7y, since E/Ey is
ramified. So every element of Ej is a norm, which is absurd.

Now consider the case E/Ey unramified. Let Ey,. be the maximal tamely ramified
extension of F' contained in Ey and let m = e(Fy.|F') be the ramification degree
of Ey./F, (m,p) = 1. Then we can choose a uniformizer m,. of Ej,. such that
o =&, for € a (p prime) root of unity in Ey,.. We let € = m, and observe that
vp(e) is a power of p, since Eqy/E}, is wildly ramified, which is odd. However, all
norms have even valuation so € cannot be a norm. [ |

So we will choose ¢ according to (4.1.2) and fix it.

Let W be the F-subspace of V' spanned by the given F-basis so that V = F®p W.
Let W; be the subspace of W spanned by the vector v in the basis such that
f(v,v) = £e (if it exists, W7 = 0 otherwise) and let W5 be the subspace spanned
by the remaining basis vectors. Set V; = E®p W,;, © = 1,2. Then, for i = 1,2, we
define symmetric bilinear forms f; : W; x W; — F by

fl(vl,wl)zs_lf(vl,wl) for vy, w, € Wy

fa(va,we) = f(v2,ws) for ve, wo € W,
We also define two skew-symmetric bilinear forms ¢; : E X E — F,i=1,2 by

gi(e €)= trg/p edee’ fore,e’ € E

ga2(e,e’) =trp p dee’ for e,e’ € E

giving rise to involutions ™ and 2 on A(E) = Endp(E) respectively. These
involutions both restrict to ~on F for E < A(F). Note that, in general, the two
involutions are not the same, i.e. there exists a € A(E) such that a® # @°. In fact,

~2
for a € A(E), at = cae L.
Now define @?:1 iR fi :VxV — F by

2

P gi® fi(e® (wi+ws), & @ (w) +wh)) = gie,€) fi(wr,w))+g1(e,€’) fa(ws,wh)
=1

for e,e’ € E, w;,w; € W;, i =1,2. Then

2

P i @ file@(wr +ws), € @ (w] + wh))
=1

= trp p(edee’) fi(wr,w)) + trp/p(dee’) fo(wr,w))
= trg pdee’[ef1(wr, w)) + fa(we, wh)]
:trE/F(Segf(w1+w2,w'1+wé), since W1 L Wy,
= he® (w1 + w2), e’ ® (W] + wy)).

So @?:1 9i @ fi = h.
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Let AY = Hom(V;,V;), i,j = 1,2, so A = @i’j AV, Let 1 » A(E) — A" =
A(F) ®p Endp(W;) be the embedding given by ¢;(a) = a ® 1, as in [BK] (1.2.5),
and let ¢ : A(E) — A @ A?? C A be given by t(a) = t1(a) + t2(a). Then for
a € A(E) we have

h(v(a)(e(wr + wa)), €' (w + wj)) ae, €’) f1(wy, wh) + ga(ae, €) fo(wa, wy)

g1

(
g1(e, @) fi(wn, w)) + gale, € fa(ws, wh)
h(e(wr +ws), (11(@) + 12(@2)) (€' (w] + wh))).

So 1(a) = 11 (@) + 12(a?).

We also have, from (4.0.1), that the isomorphism V = E @ W gives rise to an
isomorphism of (A(FE), B)-bimodules,

(4.1.3) A(E)®p B= A
and, as in [BK2] (5.3), this restricts to isomorphisms
(4.1.4) AE) Qo B=AU and AE) ®,, Q" = P" forn e Z

where A(F) = EndgE {p%, : i € Z} is the unique hereditary og-order in A(FE)
normalised by E and B(F) is its radical.

(4.1.5) Lemma The lattice chain {pE NS Z} is self-dual with respect to both
alternating forms, g1 and g. So Ql( ) = 52[( ) =A(E).

Proof: Consider the form gy (for go it will be similar and simpler). Then

(05)* ={z € E: gi(x,p) Cpp} ={z € E: trg pdeapy C pr}
={x € E:dexp’y CD 'pr}
elop  if 6 & peD!
B { elpp  ifdepy@!

so {p%, : i € Z} is self-dual. The second assertion now follows from (1.1.2). |

In particular, we will be able to look at the exact sequences of (2.1). First we
must check that the tame corestriction found in (2.1.1) will commute with both
involutions.

(4.1.6) Lemma Let sg be a tame corestriction on A(E) relative to E/F which
commutes with ™. Then it also commutes with ~>
Proof: We have s(a?) = s(eate™1) = es(al)e™!, since ¢ € B(E) = E, so s(a?) =

—1 —

es(a) e7! = s(a) . |

(4.1.7) Proposition (cf. [BK] (1.3.9)) Let so be a tame corestriction on
A(E) relative to E/F which commutes with the involutions on A(FE). Then the
map s = sg @ lp is a tame corestriction on A relative to E/F which commutes
with the involution on A.
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Proof: By [BK] (1.3.9), s is certainly a tame corestriction on A relative to E/F.
Moreover, for a € A(FE), b € B, we have

s(a®b) = s((a)b) = s(b 1(a))

= bs(11(@') + 12(a®)) = b(t1(s0(@')) + t2(s0(@?)))
(

= b(t1(s0(a) ) +t2(s0(a) )) = b(e(s0(a)))
= b(s(t(a))) = 5(1(a))b = 5(1(a)b) = s(a @ b).
Note then that any tame corestriction s on A relative to E/F which commutes

with the involution on A takes the form sy ® 1 as above, since s and sy are
uniquely determined up to multiplication by u € o} such that u = .

Now let E1/E be a subfield of B such that E, = E,. Then, as above, we have two
involutions on A(FE), 1 and 2, and elements 81, £, € Fj.

(4.1.8) Lemma Let s’ be a tame corestriction on A(Ey) relative to E/F which
commutes with ™. Then it also commutes with >

Proof: Since ¢; € E; C Endg(F1), the proof is the same as for (4.1.5). |

(4.1.9) Lemma  Let s be a tame corestriction on A relative to E/F which
commutes with ~. Then s = s’ ® 1p, for some tame corestriction s’ on A(E)
relative to E/F which commutes with ™ and ™

Proof: As in the proof of [BK] (2.2.8), for s’ as above s'®1p, is a tame corestriction
on A relative to E/F and, as in (4.1.7), it commutes with the involution. Then,
changing s’ by some u € 0}, such that u =, we have s = s’ ® 1p,. [

Now let 8 € A_ be such that F = F[f] is a field and put B = Endg(V') as usual.
Let ¢ € B_ be such that By = E[¢] is a field. Let ™, 2 be the involutions on

~2
A(E,) = Endp(FE;) as above; recall that a! = 61&61_1, where €1 satisfies £, = &3
~2
and €™ € F for some ny € Z, (n1,p) = 1. Then, writing o1(a) = a' , we have
o1t = 1. Set I'y = (01), the cyclic group generated by o;.

The extension F/F' is a subfield of A(FE7) so we may consider B(F), the centraliser
of F in A(F4). Then the tame corestriction s’ on A(FE1) relative to E/F given by
(2.1.1) commutes with o1 by (4.1.8), as does ag since o1(8) = S.

Recall that A(F;) is the unique hereditary order in A(F;) normalised by Ej,
with Jacobson radical B(E1). We put B(F;) = A(E1) N B(E1) and Q(E,) =
B(E1) N B(E), the Jacobson radical of the hereditary og-order B(E;). Put
My = Ni(8,2A(F1)). Then the exact sequence (from [BK] (1.4.10))

0 — (L) N /QE)™ — P(EY)"™F — QBN 0, k> ko(B,U(E)),
is I'y-equivariant. So we have a long exact sequence in cohomology

0 — (Q(B)™MN,/Q(E)™)™ — (B(EY)™H) — (Q(B)™ )T
— Hl(Fl,Q(El)mmk/Q(El)m) — Hl(Fl,‘B(El)m+k) — ...
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Since |T'1| = ny and (ny,p) = 1, we have HY(I'1, Q(E1)™ N /Q(E;)™) = 0, by
[Bn] (10.2), and hence an exact sequence

(4.1.10) (P(E)™ )T — (Q(E)™ ) —0
in AT = {a € A(Ey) : a' = a?}. Set

A" ={ae A" Gt = —a)}
Al ={a e A™ G = a}.

Then A = A @ AEJ and (4.1.10) splits into two sequences to give

(4.1.11) (P(E)™H)D — (QE)" ) =0

Note that ¢ € By < A(F)) satisfies ¢! = =¢= —cso ce A",

(4.2) Refinements

Let [, n,r, (] be a skew simple stratum in A. As usual we write £ = F|[f], B
for the A-centraliser of £, 8 = 2A N B, and Q = P N B, the Jacobson radical of
B. We also fix a tame corestriction s on A relative to E/F such that s commutes
with the involution on A, as in (2.1.1). As in [BK] (2.2), a refinement of our given
stratum is a stratum of the form [, n,r — 1, 5 + b], where b € P~". We can then
form the derived stratum [%B,r,r — 1, s(b)], which is stratum in B.

A skew refinement is a refinement where we also have b+b = 0. Then the derived
stratum is a skew stratum.

(4.2.1) Lemma (cf. [BK] (2.2.1)) Let [, n,r, (] be a skew simple stratum in
A. Let [A,n,r—1,6+0], [, n,r—1,8+] be skew refinements of it. Write k =
ko(B, ), Mt = Ni(6,2A). Then the derived strata [B,r,r—1,s(b)], [B,r,r—1,s(b)]
in B are equivalent if and only if there exists y € (Q~TtRN)_ such that

[, n,r—1,C(y)" (B+b)C(y)] ~ [&A,n,r —1,8+V].

Proof: We have [B,r,7—1,s(b)] ~ [B,r,r—1,s(b")] if and only if s(b—b") € Q' ".
By (2.1.5), this happens if and only if there exists y € (Q~"T*)N)_ such that
b—b =ag(y) (mod P1"). Then, since —(r + k) > 1, we have

Cly) " (B+b)C(y) =B+b+apy) (mod P'7),
since (Cy) —y—1) € Q2N s0 ag(Cy) —y—1) e P07 cp-r. M

(4.2.2) Proposition (cf. [BK] (2.2.8)) Let [, n,r, 5] be a skew simple stratum
in A. Let B be the A-centraliser of E = F|[3] and B = AN B. Letb € A
with ve(b) = —r and let s be a tame corestriction on A relative to E/F which
commutes with the involution on A. Suppose that the stratum [B,r,r — 1,s(b)] is
equivalent to a skew simple stratum [9B,r,r — 1,c| in B. Then [A,n,r — 1,3 + b
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is equivalent to a skew simple stratum [A,n,r — 1,061]. Moreover, ko(B1,2) =

max{ko(3,21), ko(c,B)}.

Proof: We follow the proof of [BK] (2.2.8). Let E; = F[3,c], so E; = E;, and
let B; denote the A-centraliser of the field Ey, 8, = A N B;. Then we have a
decomposition

A =A(E1) ®op, B1

as in (4.1.4). By (4.1.9) our tame corestriction s on A relative to E/F' takes
the form s’ ® 1p, for some tame corestriction s’ on A(E,) relative to E/F, which
commutes with the involutions on A(E;).

Let € denote the hereditary og-order 2A(F;) N Endg(E;). Then we have decom-
positions 2A(E1) = A(E) ®,, € and B = C®,, Bi.

Put e; = e(®B1|og,). Then the strata [A(FE1),n/e1,r/e1,f], [ 1r/e1,r/e1 — 1, ¢]
are simple and ko(3,4(E1)) = ko(8,2)/e1 by [BK] (1.4.13). Now ¢ € A(F;)™
s0, by (4.1.11), choose by € A(F;)"* with Va(ey)(b1) = —r/e1 such that s'(b1) = c.
By [BK] (2.2.3), the stratum [2A(E7),n/e1,r/ex — 1,8 + b1] is simple. Consider
the stratum [, n,r — 1,¢(8 + b1)]; this is a skew refinement of [, n,r, ], since

- —1

(B0 = (B 101 ) Hia(B b1 ) = tn(—(B+b1) +ea(—(B+b1) = —(B+by),

and

(B, r,r—1,u(s(b1))] = [B,r,r — 1,

as in [BK] (2.2.8). Then, by(4.2.1), we can find a conjugate of [, n,r—1, (8+b1)]
equivalent to [, n,r — 1, 3+ b]. The rest of the proof is exactly the same as [BK]
(2.2.8). m

(4.2.3) Remark If F; = E]c] is a maximal subfield of B then we can use [BK]
(2.2.2) to deduce that [B,r,r — 1,s(b)] is itself simple, with E[s(b)] a maximal
subfield of B, and [BK] (2.2.3) to conclude that [, n,r — 1, 5+ b] is itself simple.
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5]
STANDARD FORM

The main result of this chapter is the following (cf. [BK] (2.4.1)), which we prove
in (5.4):

Let [, n,n — 1,3] be a skew pure stratum in A. Then it is equivalent to a skew
simple stratum.

This then allows us to use induction “along 5”7 (i.e. on ko(5,2)) as in [BK] to
define simple characters and prove results concerning them (see chapter 6).

In order to prove this result we need several results in the generality of unitary
groups attached to a hermitian form so h will be:

e-hermitian in sections (5.1-2);

skew-hermitian in section (5.3).

(5.1) Lifting

In this section h : V x V — F will be an e-hermitian form.

Let 20 be a maximal order associated to a self-dual lattice chain £ = {L; : i € Z}
in V and we put P =rad®, as usual. Let V = £(V) be the standard residual
subspace of £ and put A = End), V (~ /pp2 by (3.3.2)). For each k € Z,
V inherits from V a nondegenerate e-sesquilinear form hy : Vi X Vg1 — kp
as in (3.1.6), where d is the unique integer such that Lz& = Lg_y, for all k € Z.
Then we have an adjoint involution ~ on A so we can define A_, A, to be the
skew elements, the symmetric elements respectively. In fact AL ~ AL /(pp2A)+ by
(1.2.5).

(5.1.1) Lemma Let n = =+ be a sign. The natural map A,, — A, is surjective.

For f(X) € F[X], f(X) = anX™ + --- + ag, define f(X) € F[X] to be the
polynomial f(X) =@, X" + ---+ag. Also, for f(X) € op[X], f(X) = an X" +

-+ + ag, define f(X) € kp[X] to be the polynomial obtained by reducing the
coefficients modulo pp.

(5.1.2) Lemma Let v,~" € U(RA). Suppose v,7' have the same minimal polyno-
mial, that the reduction modulo pr of this minimal polynomaial is irreducible and
that v = ~'(mod ™). Then there exists v € U™(A) such that v = vy'v~".

Proof: The elements v,v" generate unramified extensions over F'; in particular,
they are minimal over F'. Write B, for the centralizer of v in A and B, = AN B,.
By [BH1] (1.6), there exists u € U(2() such that v = uy/u~!. Since v —+" € B",
we have yu—wuy € P". ie. u € N, (7, 2A). But v is minimal so N,, (7, A) = B+P".
Hence u = wv, for w € U(B) and v € U™(2A), and v = vy'v~! as required. |
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We fix an irreducible polynomial ¢(X) € kp[X] of degree N, ¢(X) # X. The
following is a Hensel’s Lemma-type result.

(5.1.3) Proposition Let n = + be a sign and let p € A,. Suppose o has
irreducible characteristic polynomial ¢(X) € kp[X]|. Let ®(X) € op[X] be a
polynomial such that ®(X) = ¢(X) and such that ®(nX) = ®(X). Then there
exists v € Ay, such that ¥ = o and ®(y) = 0.

Proof: By Hensel’s Lemma, there exists y; € U(2) such that 77 = g and ®(y1) = 0.
Also, 77 = ny1 (mod P) since 71 € A,,.

For n > 1, we will find, by induction, ~, € U(2l) such that 7, = o, 7, is conjugate
to v (in particular, ®(v,) = 0), 7, = 7y, (mod B") and 7y, = v,_1 (mod P~ 1).
Granting this, let v be the limit of the sequence {~,}. Then 7 = g, ¥ = 1y and
®(vy) = 0 as required.

We have already found 77 so assume we have found +,, as required, for some n > 1.

We have that ®(vy,) = 0 and also ®(77,) = ®(ny,) = ®(v,) = 0 so v, and 77,
are conjugate. Moreover, v, = 1%, (mod B") hence 7y, = upynu, ", for some
u, € U™(2A), by (5.1.2).

Write u, = 1+ 2, z, € B, so that 79, = Vn + TV — YnTn (mod P2"). We
put y, = % and v, = 1+ 1y, € U™(R); then v, = v, and 77y, = v, Vv, "
(mod P2"). By (1.2.4)(ii), there exists w,, € U™(A) such that v,, = wW,w,. Then
we put Yp+1 = wnynwgl. [ |

We finish this section with some results which will prove important later.

(5.1.4) Lemma Let n = & be a sign. Let v, € A5 be such that v = o
mod PB7, r > 1. Then there exists u € U (A) such that v = uy'u (mod P27).

Proof: Let a =~~~ € " and put u = (1+ 5a7'""). m

(5.1.5) Proposition With hypotheses as in (5.1.4), there exists u € U" () such
that v = uvy'u.

Proof: We find, by induction, u,, € U"(2l) such that
(5.1.6) Y = upY U, (mod P)

and Up41 = u, (mod P™). Then {u,} converges to u € U"(A) such that v =
uy'u.

We can take u; = 1 so suppose we have found u,, € U" () satisfying (5.1.6). Then
v and u,7y'u, satisfy the conditions of (5.1.4) (with r replaced by rn). So there
exists v/ € U™ (2) such that v = v/u,yu,u/ mod P> and, in particular, this
congruence holds (mod ‘,B(”'l)”) since r > 1. So we set Uup11 = u'uy. [ |

(5.1.7) Lemma Let ®(X) € op[X] be an irreducible polynomial of degree N such
that ®(X) = ®(X) and such that its reduction modulo pp, ® is also irreducible.
Let v € U(A) have characteristic polynomial ®(X). Let 0 : A — A be the map
given by O(z) = a7y — vz, for x € A. Suppose y € Im () NP_; then there exists
€ € P4 such that y = 9(§).

48



Proof: We need only show that for y € Im (9) NP there exists £ € P such that
y = 0(§), since 0 maps A4 to A_ and vice versa.

Let E/F be a splitting field for ®(X) and let 0g : A ®,, 0 — A R®,, 0g be the
extended map. The result then holds for 0 if and only if it holds for 0.

Let \;, i = 1,...,n, be the eigenvalues of v in E; these are also the eigenvalues of 7.
Further, the \; are distinct modulo pr since 7 generates a maximal extension of

Fin A. Hence the non-zero eigenvalues of O, which are A; = \; for 1 <1 # j < n,
are Z 0 (mod pr) and the result follows. |

(5.1.8) Proposition Let o, € U(A) N AL be such that v := aff generates a
mazximal (unramified) extension of F in A. Let ¢(X) € kp[X] be the reduction
modulo pr of the characteristic polynomial of v and suppose that ¢(X) = ¢(X).
Let ®(X) € op[X] be such that ®(X) = ®(X) and such that ®(X) = ¢(X). Let
v € UA) be such that v' =~ (mod pr) and such that ®(v') = 0. (There exists
such a ' by Hensel’s Lemma.) Then there exist o € a4+ Py, 5/ € B+ P+ such
that v/ = o/ 3.

Proof: Write v = v 4 § with § € B. Note that a7 = afa = ya and also that v/
generates a maximal unramified extension of F'.

We have oy’ — o = ad — da € P_ so, by (5.1.7), there exists € € P such that
&y —v'¢ =ay — ' a. Then we put o =« — € and ' = a’_lv’. [ |

(5.2) Jordan form

Let V be an N-dimensional kp-vector space, equipped with a nondegenerate e-
hermitian form h : V xV — kp. We put A = Endy,. V. Recall also that kg is the
residue class field of Fj.

For W a subspace of V we define its orthogonal complement to be
Wt ={veV:hwW)=0}.
Then, by the nondegeneracy of h, W+ = W.

(5.2.1) Lemma Let W be a totally isotropic residual subspace of £. Then h
induces an e-hermitian form h' on W /W which is nondegenerate.

Proof: For v € W, v' € W, we define b/ by b/ (v+W,v' +W) = h(v,v’). This is
well defined since v, v’ € W+ and W is totally isotropic. Suppose now there exists
v € W+ such that h'(v + W, WL/W) = 0; then h(v, W) =0sov € Wt =W
as required. ]

Let y € A be such that y = ny, n = £. Let the characteristic polynomial of y
be ¢(X)! € kp[X], with ¢(X) irreducible of degree N/t. Let y = yss5 + Ynp be
the Jordan decomposition of y. Then, by uniqueness of the decomposition, we
have yss = Ny, and ynp = ny,,. Then ys, is elliptic with irreducible minimal
polynomial ¢(X) and [ = kplyss| is a field with y,,,y € End(V. We also set
lo = {l € [: 1 =1}; note that [ = [y if, and only if, kr = ko and n = +. As (/1o
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and h are nondegenerate, there exists a nondegenerate form f : )V x V — [ such
that, for v,v' € V,

h(lv,v') = tryp, (LF(0,0')), for all [ € [.

The adjoint involution on EndV defined by f is precisely that defined by h.

If [ = [y then f is e-bilinear while if [ # [y then f is e-hermitian. In either case,
YV =V 1 V" where f|yanxypaen is anisotropic and f|yspxypsr is split. In fact,
if [ =1y and € = —1 then f is split so dimV*"* = 0; if [ = [ and € = +1 then
dim V" < 2; while if [ # [y then N/, is surjective so dim(V*" < 1.

(5.2.2) Lemma (i) With notation as above, there exists a flag of I-subspaces of
V, V=V >Vl 5 ... 5V =0 such that VI+ = V=9 and y,, V"' C V9 and
such that, moreover, dim(V?/VIT1 =1 for all q (so s = t) except in the case | = |y,
€ = +1 and t even when, possibly, dim V>~ /Vt/2 =2 and s =t — 1.

(ii) Given such a flag, there exist [-subspaces W1, 1 < q < s, of V such that
VITl = @I W and Wit =@, W for 1 <gq<s.

Proof: (i) We proceed by induction on ¢, the cases t = 0 and ¢ = 1 being obvious.
So assume t > 2 and that we have the result for t — 2. Since y,,, is nilpotent there
exists v € V such that y,,v = 0. Then for v' € V, f(ynpv’',v) = nf (v, ynpv) =0
80 YnpV C (V).

Suppose first there exists such a v such that f(v,v) = 0; then let V=1 = (v)y,
Yl = <v>[l Then, replacing V with V! /V*~! we have, by the inductive hypothesis,
a flag

Vsl =yl oyt oyt og

which we can lift to a flag as required. (Note that the form induced by f on
V1 /Ys=1 is indeed nondegenerate by (5.2.1).)

Now suppose that for all v € V such that y,,v = 0 we have f(v,v) # 0. Since
YnpV C ()i and t > 2, there exists v/ € (v){- such that y,,v" = 0.

We deal first with the case [ # lp. Since Nyl = lp, we may assume f(v,v) =
—f(@',v") = 1. But then y,,(v+v') =0 and f(v+v',v +v') = 0, contradicting
our assumption.

Suppose now [ = ly; then, since f(v,v) # 0, we must have e = +1. If t = 2
then we put Vo = V, V; = 0 and we are done. Otherwise we have, as before,
that y,,V C (v,v'){ so there exists v € (v,v'){ such that y,,v” = 0. But then
F" ") = —2f(v,0) = U f(v',v') for some [, 1’ € [ so, putting w = lv + I'v/ + v’
we have f(w,w) = 0 but y,,w = 0, contradicting the assumption.

(i1) We proceed by induction on s. If s = 1 we are done, putting W! =V so we
assume s > 2. Choose a non-zero v; € V*~! and w € V such that f(v;,w) = 1.
Put wy = w — 3 f(w,w)vy; then we put W' = (w;) and W* = (vy)1.

Suppose now that we have chosen W/ for 1 < j < q¢—1,s—q¢+2<j <s. If
s —q+2 = q then we are done. Otherwise, choose v € V=971 such that v ¢ V*79.
We then put v, =v — Z?;} F(v,wj)v; and set W= 9T = (v ). If s —qg+1=g¢
then we are done. Otherwise, choose w € V7 such that f(vg, w) = 1. Put v’ =
w— 5 f(w,w)vy and wy = w' — zg;i f(w',w;)v;. Then we put W? = (wy);. W
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Before continuing, we examine the case dimW"?~! = 2 of (5.2.2) in more detail.
So kp = ko, n =+, e =+1.

Choose u/,u” € W21 such that f(u',u”) = 0 and put U’ = (u'), U" = (u")y;
then we have

U/L _ u// D @ Wi, ynpu/ c @ Wi;
i#tt—1 i>L—1

u//J_ _ ul @ @ Wi7 ynpu// C @ Wi.
i£t—1 i>L—1

Now suppose V = V; & Vs, where Vi, V5 are maximal isotropic subspaces of V; in
particular, f is split. Suppose further that yV; C V;, for ¢ = 1, 2; then y. and y,,,
also fix V;, 1 = 1,2. Also, we can write t = 2t’, for t’ € Z.

Let b € A be such that bV, = Vs, bV> =0, b = —b, and b commutes with . Then
b also commutes with y,, and y,, so b € End(V.

(5.2.3) Lemma (i) With notation as above, there exist flags of [-subspaces

Vi=VoViD---DVi=0
Vo=VIDOVID---DV5=0

such that (VI®Vy)= = V59, bW = V{ and y,, VI~ C Vi for 1 < q < s and such
that, moreover, dim(V?/ VIt
e=—1, and t' even when, possibly dimV} /2_1/Vf ?=2ands=t—1.

(it) Given such flags, there exist residual [-subspaces W, 1 < q < s, of Vi,
i =1,2, such that V™' = @5_ W/, WIT =Vi&@,,_, . WS and Wi = W]
for1<qg<s,i=1,2.

=1 for all q (so s = t') except in the case [ = Iy,

Proof: We define a nondegenerate —e-hermitian form f’ on V; by f'(v,v") =
f(v,00"). Then we apply (5.2.2) to (V1, f') and put V§ = bVy. |

We now examine the case dim[l/\/f,/z_1 = 2 of (5.2.3) in more detail. So kr = ko,
n=+,e=—1

Choose v/, u" € Wf/m_l such that f(bu',u”) =0 and put U’ = ('), U" = (u");
then we have

U-=vis"e @ wi ' ¢ Wi
AL 1 i>4 -1

u-=view's @ w; " € €D W
AL —1 i>4—1
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(5.3) Non-split fundamental strata

In this section, h will be a skew-hermitian form.

Let [, m,m — 1,b] be a stratum in A and set
y=1uyp= w}n/gbe/g e

where e = e(2l) is the op-period of A and g = (m,e).

Let ®(X) € or[X] be the characteristic polynomial of y and let ¢, (X) € kp[X] be
its reduction modulo pp. This polynomial ¢,(X) depends only on the equivalence
class of the stratum, since it is also the characteristic polynomial of y considered
as an element of 2/, and is called the characteristic polynomial of the stratum.

(5.3.1) Definition Let [, m, m—1,b] be a stratum in A, ¢p(X) its characteristic
polynomial.

(i) The stratum is called fundamental if ¢p(X) is not a power of X.

(ii) The stratum is called split if ¢p(X) has (at least) two distinct prime factors.

In particular, a non-split fundamental stratum has characteristic polynomial ¢(X)*
for ¢(X) € kp[X] an irreducible monic polynomial of degree N/t, ¢(X) # X.

Now let [2(,m,m — 1,b] be a skew non-split fundamental stratum in A. We recall
that 7p is a fixed uniformizer of F' such that 7p = 7 if F//Fj is unramified, while
np = —7p if F/Fy is ramified. In particular, we have y = ny, for n = 4, and

(nX) = ¢(X).
The main result of this section is the following:

(5.3.2) Theorem (cf. [BK] (2.3.4)) Let [2,m,m — 1,b] be a skew non-split
fundamental stratum in A. Then there exists a skew simple stratum [A',m',m’ —
1,0'] in A such that

b Pl b T

Moreover, m'[e(") = m/e(A) and the lattice chain defining A" contains that which
defines A. In particular, [A';m’',m' — 1,b] is a skew stratum and it is equivalent
to [, m',m' — 1,¥].

Proof: Put e = e(21), g = (m,e) and y = W?/gbe/g, as above; so § = ny, n = +.
Let ¢(X) € kp[X] be the unique (monic) irreducible factor of the characteristic
polynomial of the stratum [, n, n—1,b]. Let ®(X) € 0x[X] be such that ®(X) =
#(X) and such that ®(nX) = ®(X). Then we will show that we can choose b’

Z}/gb/e/g

such that the element ¢y’ = 7 has minimal polynomial ®(X).

We now reduce to the case where the stratum takes a standard form (see (5.3.10)
below).

Let £ = {Ly : k € Z} be the (self-dual) lattice chain associated to 2 and, after
renumbering, let d = 0 or —1 be the integer such that Lz& = Lg_j for all k € Z,
given by (1.1.2). We define residual subspaces W® of £, 0<i<g—1, by

w — { Li/Lit1 if k=1 (mod g)
k= )
0 otherwise
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Let f = [%_d]; for 1 <j < f, set
YU — yl+d-1) + w(9—i)

Note that if 2j £ 1 —d (mod g) then the sum is direct, while if 2j = 1—d (mod g)
then VU) = WU+d=1)  Get

_{1 if 2j =1—d (mod g)
95 = 2 otherwise.

(5.3.3) Lemma The residual subspaces VU) are nondegenerate.

Proof: This is identical to (3.2.3). [

The residual subspaces V) are clearly orthogonal and Ly, /Li+1 = V,gl) D-- ‘EBV,gf )

for all k so we can apply (3.1.9) to get an orthogonal decomposition
V=v® ... yvW
such that YU) = £(V(j)) for 1 <j < f. Then h decomposes as h =hy L --- L hy,
where h; is a nondegenerate e-hermitian form on v 1<j<f.
Write ng) =L,NVWforkeZ 1<j<f.

(5.3.4) Lemma The set £0) = {L,(Cj) k€ ZY} is a self-dual lattice chain in V'),
1 < j < f. Moreover, the op-period e; = e(£0)) s §gj.

Proof: This is identical to (3.2.4). [
Putting A(¥) = Hom(V ), V(®), we get a “block decomposition”:

A= H A9

1<i,j<f

Write 1) for the projection V. — V() with kernel H#j V) so that 1U) ig
in fact the identity element of the algebra AU and AW = 10 . A.10). Then
10, = Lg) C Ly for all k € Z so we have 1U) € A, 1 <5< f.
We denote ~/ the adjoint involution on AU7) induced by the form hj, 1 <j<f.
Then set A7) = {x € AUI) . 77 = ).

(5.3.5) Lemma Write b= b;; with b;; € AW, Then
(i) b € AY) for1<j<
(it) P~ N AWD = Ppr=m ) A for i £ j;
(ii7) b= b;; (mod Pr~™).
Proof: (i) Let w,w’ € V. Then we have
h;(bjjw,w') = h(bw,w") = h(w, —bw") = hj(w, —b;;w")
J

SO bjj = _bjj-
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(ii) Let z € P~ N AW £ jso xL,(Cj) C Lglm. Note that

L,(Cj) £ L,E}J‘J)rl if and only if Liﬁm # Ll(jzmjtl

and L,(Cj) # L,(gjll implies L,(:) = L,(;)Ll

for k € Z. Then if LY # LY}, we have 2(LY) ¢ L, = L\ ., while if

k41
L,(j) = L,(Cj_il then x(Ll(j)) = m(L,(jll) = L,Slmﬂ. So x € P N AW,
(7i7) is immediate from (ii). |

Let 2U) = 2(£0)) be the hereditary op-order in AU7) corresponding to £(7).
(5.3.6) Lemma With the notation above, we have AU) = AN AUI),

Proof: Let z € AN AUD; then zL, C Ly for k € Z so xL,gj) C L,(j). ie.
z € AU Conversely, let z € AU); then xL,(j) C L,(j). But z = 10z10) o
oLy =101, =102 c LY ¢ L. n

Let BU) be the Jacobson radical of AU,

(5.3.7) Lemma (i) PN AU = PO,
(i1) P=™ N AU = (qg(j))—%gj :
(i53) P N A = (PU)I=59

Proof: The proof of (i) is similar to (5.3.6), as are the proofs of (i) and (ii7),
having observed that L](j) #* Lﬁjll if and only if k = —j or j+d —1 (mod g), so
that

(PO Ly) = L) for ke Z;
(POYFu LD = L) | fork=—jorj+d—1 (mod g). "
In particular, we have vyu) (bj;) = —*tg; = —m;. We consider the stratum

[AG) m; m; — 1,bj;] in AUI). Set y; = W?j/gjb%/gj = W;n/gbjj/-g. Then we have

y = Zyj (mod P)

from (5.3.5)(44), since b;;b;; = 0 for ¢ # j. The characteristic polynomial of y as an
element of A/P = [[AY) /PU) is the product of the characteristic polynomials of
the y; as elements of 2AG) /p0G) | In particular, [Ql(j),mj, mj — 1,b;;] is a non-split
skew fundamental stratum with characteristic polynomial a power of ¢(X).

Each lattice chain £(9) is given by

2R LD S LO#F D D LPF S LY 2 QLY = apLDF QL
so e; = 2r;, 2rj + 1 or 2r; + 2. Note further that if g; = 2 then, for k = j +d — 1,
(L,(CJ))# = Lglj_)k = L(_J])url = L,(CJ) as —j +1 > —j. So if we renumber the lattices
of £/ then (ng))# = ng).
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Putting this together, we split the possibilities into five cases:

(5:3.8) ()

( ) =2, Léj) = Léj)# and L%) = 7TFL7(%)#,' 50 ej = 2rj;
(ej,mj) =1, LY # LY# and LY = np LI#; 50 e; = 2rj + 1;
(22) (ej,mj) =1, L(J) + L(J)# and L(J) + TR L(J)# s0 €; = 2r; + 2;
( ) =1, L(()]) = L(()J)# and LSJZ,) # L,(:;)#, s0e; =2r; +1;
(ej,mj) =1, LY = LY# and LY = 7pL#; 50 ¢; = 2r; + 1.

Suppose, in each of these cases, we can find a stratum [2'0) ,m,m; —1,b%] such

that A') c AW Yi; = /g] v, J/gj has minimal polynomial ®(X) and
)\1—m; (F)\1—
+ (PO C b+ (B)
Then put b' = 0%, m" =3 m/ and ¢’ = ) e’. Set

£ = {op-lattices L€V : L; D L D L;;; for some i € Z and,
for1<j<f,LNVY = L’g) for some k; € Z}.

(5.3.9) Lemma With notation as above, £ is a self-dual lattice chain in V and
we have (L) =€ and VA =P |, where A’ = A(L") and P’ is the radical of A'.

Proof: For each i € Z there exists a unique j, 1 < 7 < f, such that ng ) #* LY

i+1
Hence £’ is a lattice chain and e(£') = ¢’. It is self-dual since each £'(7) is, |
Then F[b'] = F[b};] for any j, 1 < j < f since bj;b}; = 0 for i # j so F[b'] is a

field and ¥’ is mlmmal over F. In particular, [, m m’ —1,b'] is a skew simple
stratum in A. Moreover, we have

1— mj m i
R (bj; + B9 ) B A

1£]

I
=~

.
I
—

1= — 1—m/
(;j+§p,(J) )Hm/ ﬂA(]):b/—i—‘B/ ,
i#]

'E3*

<
Il
=

since Pl N AW = ‘B’l_m/ N AW for i # j, by counting lattices. Hence we are
done.

Before completing the proof in the cases (i—v) of (5.3.8) we describe what we mean
by standard form. We choose a splitting of £, V.o ®V_,.®---dV_10VoBV1B- - -V,
(see (3.2.2)) with, possibly, Voo = 0 and/or V5 = 0. Let Q be the set of indices
w € {oo,—r,...,r} such that V,, is non-trivial; then, as in (3.2), Z/eZ acts on
by translation in the obvious way. For w € Q, ¢ € Z, we will write w + ¢ for the
translate by i + eZ of w. We also choose a basis B as in (3.2.5), such that the
matrices Jo, Jo take the form described in (3.2.8). Put 6 = deg ¢(X).
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(5.3.10) Definition Let [2A,m,m — 1,b] be a non-split fundamental stratum in
band form, b = r_,,(b), where b= (b, : w € Q).
(a) Suppose first we are in one of (i—v) of (5.3.8). Then the stratum [, m,m—1, b
is in standard form with respect to B if the following holds:
Each by, is block diagonal (in blocks of size 6 x § or, in cases (iv), (v), possibly
one middle block of size 26 x 26), except for the following which are upper block
triangular modulo pp:

case (1) by and b_1_p,;

case (1) b[ Jm s

case (1i1) boo and bog—m ;

case (iv) b cot[]m s

case (V) be- ol -
(b) Suppose otherwise. Then the stratum [2(,m, m — 1,b] is in standard form with
respect to B if each of the strata [QI(J),mJ,mJ -1, ]j] (as described above) is in
standard form.

(5.3.11) Proposition Let [A,m,m — 1,b] be a non-split fundamental stratum
which takes the form of one of cases (i—v) of (5.3.8) and is in band form, b =
r_m(b), where b = (b, : w € Q). Then there exists a self-dual basis B which
matches the splitting such that [, m, m — 1,b] is in standard form with respect to

B.
Proof: We treat the five cases separately, although there are many similarities.

Case (1)

The maps by, and (7F); are isomorphisms for all k € Z by (3.3.1) so, in partic-
ular, we have dimy,. Vy = dimg, Vi12 for all & € Z. Further, duality via h gives
dimy, Vi, = dimy,, V_1_y, for all k € Z, so dim, Vy, = & for all k € Z.

Form y = W;n/ 2b¢/2 and consider Yo, an automorphism of V. It has characteristic
polynomial ¢(X)?, for some ¢, so, using Jordan canonical form, we can find a flag
of kp-subspaces

Vo=ViDoV;D---DVi=0

such that ¢(yo)Vg it Ve for 1 < ¢ < s = t and which is stable under 79. So,
as an automorphlsm of V§/Vi™, ' U has (irreducible) characteristic polynomial

P(X).
Then we obtain a flag in each V;, by translation by b, 7r and by duality:

V=W oOViD---DVi=0

with ~
a_ { TROYVE k=0 (mod 2)
K Fubr (Ve 1)+ k=1 (mod 2),

where u, v € Z are such that
L ue +vm if k=0 (mod 2)
~ lue+vm—1 ifk=1 (mod 2)
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Note that this is well defined since the flags are y-stable and that (V{)* =V* 7, .

Now we must lift this structure from the residual level to V. Choose a de-
composition Vy = @jzl W such that VI~' = @;:1(1 Wi for 1 < ¢ <s Put
WL = e g1 OV for 1 < ¢ < s; then Vi = @j;_, W2, Then for
1=0,—-1,1<q <s, let W"? be the residual subspace of £ given by

WL itk =ue+i

0 otherwise.

vy = {

Recall that we have a splitting V_, @ --- @ V_1 V1 @ --- ®V, of £ (so Q =
{=r,...,—1,1,...,r} in this case). For 1 < g < s, there exist (totally isotropic)
subspaces W of V; such that

L(W) =W,

We also put
swWiy= ] whH
Jj#s—q+1
then (W) =W and (W)* NV =@, o1 w,.
Now, for 1 <v <5 —1and 1<g<s, weput

qu—um = bVW1q7
Wzl—l—um = b_Vng,
so that V, = Wl@...@ W for all w € Q. Then b, is block diagonal for all w € 2,
except by and b_;_,, which are upper block triangular modulo pg since y is.
Case (it)
As in case (i), dimg, Vy = & for all k € Z.

Form y = 7b° and consider y_; as an automorphism of V_;. It has characteristic
polynomial ¢(X)¢, for some t. We also have the nondegenerate form h_; : V_1 x
V_1 — kp and, for ~ the involution associated to h_1, we have E = 4y 1. By
(5.2.2)(i), applied to (V_1,h_1), we can find a flag of kp-subspaces

V=V, oV, 0.0V =0

such that (V1)L =V ]9 for 0<q<s=t, ¢p(J_1)Vi;  c VI, for 1 <¢<sand
which is stable under y_1.

From this flag we can obtain a flag in each V;, by translating by b and 7 p:
V=V oVio ..oVi=0

with i
V6 =7pb"Vvey

where u,v € Z are such that k + 1 = ue + vm. Note that this is well defined as

the flag is g-stable and that (V{)+ = V"7 .
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By (522)(22), therg exists a decomposit.ion V1= @;:1 Wil such that Vﬂ]l =
@;:q W’ and (W’ )t = Dise g1 W,y for 1 <g<s. Thenforl<g<s,let
W~L4 be the residual subspace of £ given by

e Wi ifk=ue—1
Wby, = { Fo .
0 otherwise.
Recall that we have a splitting V_, @ --- @ V_1 Vo @ V1 & --- ® V,. of £ (so
Q={-r...,0,...,7}). For 1 < g < s, we will now choose subspaces W{ of 1}
such that (W) = w14,

If 5 is odd then W[5 is a nondegenerate residual subspace so there exists a
(25

s+1
nondegenerate subspace W(E > of Vo such that £(W, * ) = WL, Then we

s+1
replace Vp with (Wé 2 ])L N Vp to reduce to the case where s is even.

If s is even then we first choose totally isotropic subspaces W3, W of V, such
that £(Wg) = W14, for ¢ = 1,s. The subspace W & W is nondegenerate and,
replacing Vo by (W @ W)+ NVp, we may continue inductively to choose W, for
1<qg<s.

With these choices, W{ is totally isotropic if, and only if, W~ is and, further,
(Wg)J_ N ‘/O = @j;ﬁs—q—l—l Wg

Now, for 1 <v < [§] and 1 < g < s, we put

Wg—um = bVWOq7
Wg—i—um = b*VW(;I’

sothat V, = Wl@...@ W for all w € Q. Then b, is block diagonal for all w € 2,
except bm[%]; which is upper block triangular modulo pg.
Case (i)
We proceed as in case (i) to obtain the kp-spaces V{, 1 < ¢ < s, k € Z, and
hence subspaces W{ of V;. (Note that here the splitting of £ takes the form
Voo®V_, @V 10V VI®--d V., 80 Q={o0,—r,...,0,...,7}.) Again,
forlgygg—landlgqgs,weput

W um = V"W

W,y = bYW

(Note that we have not yet chosen subspaces of V.) Then b, is block diagonal
for w € Q\ {0, 00 — m}.

Now we must choose subspaces WY of V such that b is upper block triangular
modulo pp; for then by, _,, must also be upper block triangular modulo p g, since y
is. (In fact, boo—m = (mp' JM) Too, where Jo, I are as in (3.2.5) and frepresents
transposition in the off-diagonal; so b, _,, is upper block triangular modulo pp if,
and only if, by, is also, regardless of the element y.)

We consider the kp-space V., with form h!. : V. x V. — kg given by h!(v,v") =
h,(v, 75 'v'), for v,v’ € V,. This form is still skew-hermitian if F'/F, is unrami-
fied, but is symmetric if F'/F is ramified.
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We have subspaces V¢ C V, such that (V9)+ = 7z 'V5~4¢ (for L relative to

h.). So, for L relative to the form h!, we have (V4)+ = V579, We may now
apply (5.2.2)(ii) to obtain subspaces W of V), such that VI~ = @qu Wi and
Wit = D s g1 Wi for 1<g<s.

Now we define residual subspaces W™ as for W19 and find subspaces W4 of
Voo as for W in case (7). Then, since b,ym Vi, = VZ, for 1 < ¢ < s, we have

that boo @ Vootm — Vo 18 upper block triangular modulo pr, as required.

Case (iv)

We treat this case as case (ii) except that we take V. instead of V_;, with form
h. : V. x V. — kp given by h.(v,v') = 77 *h(v,v') + pp (= by (v, 78 ') for
v,v" € V,.. As in case (iii), this form is skew-hermitian if F'/Fy is unramified, but
symmetric if F'//F{ is ramified.

The rest is effectively identical to case (ii), with V{ replaced by V., although it is
possible to have a double-sized block from (5.2.2)(i) (in the case F'/Fy ramified,
m odd and t even). As in case (ii), there is only one b, which is upper block

triangular modulo pp, namely booym[g]-

Case (v)
As in case (i), dimVy = Z for all k € Z. Note that —m must be odd so we put
—m = 2] + 1; then b induces the map b_; 1 : V_;_1 — V.

Form y = w#b° and consider y as an automorphism of V_;_; &V}, where V_;_; and
V) are maximal isotropic subspaces. It has characteristic polynomial ¢(X )%, some
t. We also have the form A’ on V_;_1 @V, given by h/(v_;_1 + v,v" ;| +v)) =
h_i—1(v_j—1,v]) + hi(v;,v",_;), which is nondegenerate, since h; is, and skew-
hermitian. For ~ the involution associated to this form, we have § = +7. By
(5.2.3)(4), applied to (V_;—1 &V}, h'), we can find flags of kp-subspaces

V_l_l - Vgl—l D) Vil—l DD Vil—l - O
Vi=VWoVo---2V=0
such that (V?, )+ =V"9, szl_l = V], each flag is y-stable and ¢(@Vﬁ‘1 c V!

for 1 <g<s,s=tort—1. (Note that s =¢ — 1 can only occur if F' = Fj; for
it occurs only if kr = ko and, if F' # Fy, then F/Fy must be ramified. But then

g=(—1)"9(-1)9y = —yson=—.)
From this flag we can obtain a flag in each Vi by translating by b and 7p:

V=V oVo .o Vi=0
with .
Vi =apbVi,
where u,v € Z are such that £+ 1+ 1 = ue + vm. Note that this is well defined
as the flag is y-stable and that (V{)* =V°7,.
By (5.2.3)(ii) there exist decompositions V; = @;:1 W/ i = —1—1,1l, such that
VIt =@ WL VL)t =V 0@, W] and W = bV for
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1<qg<si=-1—1,0. Thenfori= —1—1,1,1 < q < s, let W"9 be the residual
subspace of £ given by

ﬁ“w;l itk =ue+1
0 otherwise.

(W) = {

Recall that we have a splitting V_, @ --- @ V_1 & V1 @ --- dV, of £ (so Q =
{—=r,...,—1,1,...,7}). Then there exist (totally isotropic) subspaces W%, | of
V_;_1 such that

LWy = Wi,

We also put
qu+1 = ﬂ (Wil—l)L;
J#s—q+1
then E(WﬂH) = Wh4 and (quH)L NV = @j;ésfq+1 Wil—l'

Now, for 1 <v <5 —1and 1<g<s, weput

Wl({l—l—ym = byWﬂl—l’
ng—l—i—um - biuWﬁl—l’
so that V, = Wj @--- Wi for all w € Q. Then b, is block diagonal for all w € 2,
except b etmo1 which is upper block triangular modulo pf.

This completes the proof of (5.3.11) in all cases. |

(5.3.12) Remark In cases (i), (i), (iii), (iv), it is possible for us to choose the
bases for the W2 such that all the b,, are diagonal with 1s and —1s on the diagonal,
excepting those blocks which are upper triangular by blocks modulo pr. In case (v),
we may choose the bases for the W1 such that all the b,, are 1 or —1, excepting

be+m,—1 and bl—m .
2 2

We now prove a result similar to [BK] (2.5.8) about the shapes of the blocks of a
stratum in standard form which is equivalent to a simple stratum.

(5.3.13) Proposition Let [2A,m,m — 1,b] be a non-split fundamental stratum
which takes the form of one of cases (i—v) of (5.3.8) and is in band form, b =
r_m(b), where b = (b, : w € Q). Suppose [~A, m,m — 1,b] is equivalent to a simple
stratum. Then there exists a self-dual basis B which matches the splitting such
that [, m, m — 1,b] is in standard form with respect to B and b, is block diagonal
modulo pr for all w € ).

Proof: Put y = W?/gbe/g as usual; then y = ro(y), for some y = (y,,) € Bo(A).

By [BK] (2.5.8), y (mod pr) is semisimple so y,, is block diagonal (mod p ), for all
w € Q. Then, cases (ii), (iv), (v), where only one b, is upper triangular modulo
pr, we are done, as indeed we are in case (i) since 1 and —1 are incongruent
modulo 2 in €.
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Consider now case (7ii) where by, and boo4s, are upper block triangular modulo
pr. Write
a B v
bso=10 6 ( (mod pg),
0 0 ¢

where the block sizes are [5]d, 0 (respectively 6), [5]6 if s is even (respectively odd)
and we have chosen a self-dual basis matching the decomposition (as in (3.2.9)).
We also have that o and £ are upper block triangular modulo pf.

A simple matrix calculation shows that

boorm=| 0 —0*K —p* (mod pr),
0 0 —a

where z* is the conjugate transpose of z (for transposition in the off-diagonal) and
K is the central block of I.J,, (notation as in (3.2)).

Let u = ro(u), with u = (u,) € By(2), be the unipotent block diagonal matrix
all of whose blocks are the identity except u., which is given by

1 CEHY'K ¢ Kee
0 1 et
0 0 1

Then (u~1bu)s has matrix

<@
\2\

(mod pF);

oo Q
o
MmO

for some (3',~,. So, changing the basis B, we may assume ¢ = 0.
We have y = ro(y), with y = (y.,) € Bo(2l), and

a &6 Ey—77¢
Yootm = 0 —0"Ko _ﬁ *f Z (mOd pF)7
0 0 —a*€

where Z € GL(sd,o0F) is block diagonal. Since Yoot is block diagonal modulo
pr, we have —£*# = 0 (mod pr) and £y — ~v*¢ = 0 (mod pp). In particular,
B=0 (mod pp) and (v~ 1)* =& (mod pr).

Put y = 5(7*6+£*). Let v/ = ro(u'), with v’ = (u,) € Bo(2), be the unipotent
block diagonal matrix all of whose blocks are the identity except ul which is given
by

o O =
YO = O
—ow



Then (v~ 'bu')s has matrix

a 0 0
0 6 0 (mod pr).
0

0 ¢
Hence, again changing the basis B, we may assume § =0 and v = 0.

Let v = ro(u”), with v’ = (u’) € Bo(2), be the block diagonal matrix all of
whose blocks are the identity except us, which is given by

at 0 0
0 1 0
0 0 (abH*
Then (v’ 'bu")s has matrix
1 0 0
0 6 0 (mod pr).
0 0 (a7h)¢
So, changing the basis B, we may assume « = 1; then £ must be block diagonal
modulo pg since y is. [ |

(5.3.14) Corollary Let [, m,m—1,b] be a non-split fundamental stratum in band
form, b =1r_,,(b), whereb = (b, : w € Q). Suppose [A, m, m—1,b| is equivalent to
a simple stratum. Then there exists a self-dual basis B which matches the splitting
such that [, m,m — 1,b] is in standard form with respect to B and b, is block
diagonal modulo pr for all w € Q).

We now return to the proof of (5.3.2), in cases (i—v) of (5.3.8), using notation
from the proof of (5.3.11). We first define a self-dual lattice chain £', using the
residual subspaces V{ in the proof of (5.3.11).

In all cases we have a flag of kp-subspaces in each V, and they satisfy the relation
(Vg)L = V;:Z—l'

Then for each k € Z, 0 < ¢ < s — 1 there exists a unique lattice L', e such that

L/Sk+q/Lk+1 - V}Z.

Then £ = {L;i € Z} is a lattice chain in V, of period €’ = es.

(5.3.15) Lemma The lattice chain £ is self-dual.

Proof: We show that (L’Sk+q)# = L;(d_k)_q-

Since Lj D L'Sk+q D Lgi1, we have Ly C (L’Skﬂ)# C Lg—t—1. Then, for
v € Ly__1, we have

h(v, Ly y) Cor <= h(v+ Ly, V])=0

< v+ Li_ C (V]Z)L = V;ig 1

> vE L/s(d—k—1)+(s—q) = ’s(d—k)—q-
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Let ' = A(L'); then 2/ C A and A’ = A'.
(5.3.16) Lemma With notation as above, we have bA" = ‘B’_m/, where m' = ms.

Proof: We have b € () by [BK] (2.5.6) s0 Ly = bLr D bLi;,, D bLii1 =
Ly_m+1. Then, for v € Lg_,,, we have

v EDLL g ==V + Ly €V =V}
= v € Ly m)iq

So b€ A(A') and bA' =P~ |

Now we find an element b’ € b+ /' ™™ such that ®(b') = 0. We take a splitting
for £/,
Vv=vieV o oV ,oVieVie oV,

with possibly V., = 0 and/or Vj = 0 and which is subordinate to the chosen
splitting for £. We also put ' = {w’ : V/, # 0}.

We have dimpV/, = § or 20 for all w’ € €, where 06 = deg¢(X). Moving to
stratum equivalent to [',m’,m’ — 1,b], we may assume b is in band form, b =
r_p (b) for b € B_,,/(A"). Then y = W?//g/be//g/ is of the form y = 7y(y),
Y = (Yur) € Bo(A’), with

Yo' = bw’bw’fm . bw’—(e’/g’—l)m’ € Hom(Vu’),, Vu/)’)

Let C be a set of representatives for the equivalence classes of 2’ under the action
of Z/g'Z, so card(C) = ¢'. If Vj # 0 then we require that 0 € C; if V. # 0 and

oo # 0 (mod ¢’), then we require that co € C. Also, if we are in case (v) and m’
1-—m/

5 € C. Then we have four cases:

is odd, then we require that

(a) W' #0,00, 5™,

(b) w' = 0;

() W' = o0 /
(d) ' =15,
Case (a)

In this case we have dimV/, = 4.

By Hensel’s Lemma, there exists x,» = y.» (mod pr) such that ®(x,,) = 0. Then
Ty = Uy Yy for some u,y =1 (mod pp).

Case (b)

In this case we have dimVj = 4.

By(5.1.3) there exists z,, € A“"“") such that ., = Yo (mod pp) and ®(z,) = 0.
Then, by (5.1.5), there exists u,, =1 (mod pr) such that x,/ = Uy Y Uy
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Case (c)

If dimV., = § then this is identical to case (b). So suppose we are in the case
dimV. = 24.

By the discussion following (5.2.2), we have £(V.)__1 = U L U", with
YU =U" and y_,.._1U" =U". Let U',U" be orthogonal subspaces of V.,
such that £(U")_ -1 = U’ and £(U")_ -1 = U". Then yo = vy, + y2 (mod
pr), where y., € Hom(U’,U’) and y/, € Hom(U"”,U"). Moving to an equivalent
stratum if necessary, we assume that y., = y. + v .

The spaces U’, U” are equipped with nondegenerate skew-hermitian forms (by
restriction of h). Then we apply case (b) to find x._,z. and u.,ul . Then
we put Too = zh, + 20, and us = ulL, + ul,. In particular, we have ®(z) =
O(zl,) + P(2) =0 and us =1 (mod pp).

Case (d)

Following the remark (5.3.12), we assume that b, = £1 for v/ = w
AW W= = 1.

We first treat the case dimV/, = 4.

/

(mod ¢'),

Write o = b, and 8 = by_, _1. A simple matrix calculation shows that b+b = 0
if and only if @« = o™ and § = (%, where z* is the conjugate transpose of x, for
x € M(9, F) (for transposition in the off-diagonal). The map x — z* is the adjoint
involution of a hermitian form on M(J, F').

By Hensel’s Lemma, there exists z,, = y, (mod pg) such that ®(z, ) = 0.
By (5.1.8), there exist o/ = « (mod pr), ' = B8 (mod pr) such that o' = o/,
B =" and z, = o/F'. By (5.1.5), there exist u,,uy 1 =1 (mod pr) such
that o/ = u,rou’, and 5" = uy—p_10u), ..

Now consider the case dimV/, = 20

By the discussion following (5.2.3), we have £(V/,)u—1 = U ® U"” such that
£V’ Jor—r—1 = U & U" and h(bU',U") = 0. Let U’ be a subspace of

w!'—r’'—1
Vi & Viyr—pr—q such that £(U")y—1 = U" and £(U")p—pr—1 = 0U'. Put U =
U0 (Vi & Vigr—pr_1).

The spaces U’, U” are equipped with nondegenerate skew-hermitian forms (by

1 "

restriction of h). Then we apply the case dimV/, = ¢ to find 2/ ,, 2/, and u/,, u/,
1

/ _ / 1 _ !/ 1
and u,,_,._q,U, .. Then we put x, = z, + 2, Uy = u, + u, and

U —pr—1 = 4!, . Inparticular, we have ®(z, ) = ®(z/,,)+P(a!,) =
0, uyr =1 (mod pr) and uy ——1 =1 (mod pp).

We set u,, = 1, if u/, is not defined, and put u = ro(u) where u = (u,/) € Bo(2).
Put ¥ = wbu and y' = 7p /19y le = ro(y’). Then y' = (y.r), with gy, a
conjugate of x,/, where v’ € C is such that w’ = v/ (mod ¢’). In particular, we
have ®(y’) = 0.

(5.3.17) Proposition [A',m/,m' — 1,V is a skew simple stratum in A with
b—|— ;Bl—m C b/ _‘_;Bllfm )
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Proof: 3’ generates an unramified field extension over F' and has normalized valu-
ation 0 with respect to this extension. So, by [Br2] (3.2.11), [, m/,m’ — 1,V/] is

/7

simple. Then b’ is skew, 0 = 2 and b+ P~ C &' + P~ by construction. B

This completes the proof of (5.3.2). |

(5.4) Pure is equivalent to simple
We first recall an important result from [BK] (2.4).

(5.4.1) Theorem [BK (2.4.1)] (i) Let [A,n,r, ] be a pure stratum in A. There
exists a simple stratum [2A,n,r,~v] in A such that

[%7 n? T‘)q/] ~ [2[7n7r76]'

For any simple stratum [A,n,r,~y] satisfying this condition, e(F[v||F) divides
e(FIB]|F) and f(FD)||F) divides f(F[3)|F).
In particular, among all the pure strata [, n,r, 3'] equivalent to the given stratum
[2(,n,r, (], the simple ones are precisely those for which the field extension F[3']/F
has minimal degree.
(ii) Let [A,n,r,v1], [A,n,r, v2] be simple strata in A which are equivalent to each
other. Then

((l) ko (715 Q[) = ko (’727 9’[) ’

(b) e(FI1]|F) = e(Fl)|F) and f(Fn]|F) = F(FR)IF);

(c) Let sy be a tame corestriction on A relative to F|vy1]/F. Then there
exists § € F[y1] such that

51(71 —72) =6  (mod P'")

where P = rad(A).

(iii) Let [A,n,r, (] be a pure stratum in A with r = —ko(5,4). Let [A,n,r,~] be a
simple stratum in A which is equivalent to [A, n,r, (], let s, be a tame corestriction
on A relative to F[y]/F, let B, be the A-centralizer of v, and B, = AN B,. Then
B, r, 7 —1,5,(8 —7)] is equivalent to a simple stratum in B..

Let h be a skew-hermitian form.

(5.4.2) Theorem Let [A,n,n—1,b] be a skew non-split fundamental stratum in
band form. Suppose also that it is equivalent to some simple stratum. Then it is
equivalent to a skew simple stratum.

Proof: We first choose a basis for V' such that b is in standard form. By (5.3.13),
each b; j_, is block diagonal (mod pr). Let b’ be block diagonal such that [, n, n—
1,b] is equivalent to [, n,n — 1,b']. Then, as in the discussion preceding (5.3.17),
we can perturb to make b’ minimal. [ |

(5.4.3) Corollary Let [, n,n—1,b] be a skew pure stratum. Then it is equivalent
to a skew simple stratum.
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Proof: Let [A,n,n — 1,b'] be a skew equivalent stratum in band form. Then the
result follows immediately from (5.4.2). [

We now return to the case where h is an alternating form, as in chapter 4.

(5.4.4) Proposition Let [2,n,r, 3] be a simple stratum with 3 minimal and with
B+ B €P". Then it is equivalent to a skew simple stratum [2A,n,r,].

(5.4.5) Remark The element « given by (5.4.4) will in fact be minimal by
(5.4.1)(i7)(a).

Proof: We prove by induction that for ¢ > r there exists a skew simple stratum
[2(, n, t, ] equivalent to [, n,t, 3]

The case t = n — 1 is given by (5.4.2) so assume we have a stratum [, n,t,v¢] as
required, ¢t > r. We drop the index ¢. Let E, = F[y], let B, be the A-centralizer
of v, By, =AN By, Qy =B N B, and let s, be a tame corestriction relative to
E./F which commutes with the involution.

By (5.4.1)(i1), there exists § € E, such that s,(8 —~) = § (mod Q17*). Now
Y+7=0and B+BeP " CP' s0d+5€ Q. Lete=35(6+6) € QLI NE,;
then § — e is skew. Setting b = 3 — v, we have 5,(b) = 0 — € (mod Q}7*). Then
B, t,t —1,5,(b)] is equivalent to [B.,t,t — 1,6 — €] which is skew simple since
ko(d — €,20) = —oo. Then, by (4.2.2), there exists y;—1 such that y,_1 +7—1 =0
and [2,n,t —1,~;_1] is simple and equivalent to [, n,t — 1, 3]. [ |

(5.4.6) Proposition Let [, n,r, ] be a simple stratum with ko(3,2) = —s and
B+ B €P~". Then there exists an equivalent skew simple stratum [A,n,r,~].

Proof: We proceed by induction on s. The case s = n is (5.4.4) so we assume we
have the result for ko(3,2) < —(s+ 1).

By (5.4.1)(4), there exists a simple stratum [2(, n,s, 3] equivalent to the pure
stratum [, n, s, 3]. Further, 3 4+ 3’ € P~ and ko(B',2) < —(s + 1) so, by the
induction hypothesis, there exists v/ € A_ such that [, n,s,~'] is simple and
equivalent to [, n, s, 3'] and hence to [, n, s, G].

Let £, = F[v'], let B, be the A-centralizer of 7/, B, = AN By, Q. = PN By
and let s, be a tame corestriction relative to E.//F.

By (5.4.1)(iii), [B,s,5 —1,5,(8 —7')] is equivalent to a simple stratum. Let
b=pB—7"s0ob+be P~ C P Hence s, (b) + s, (b) € Q0" So By, 5,5 —
1,5,(8—7")] is equivalent to a skew simple stratum by (5.4.2). Then, by (4.2.2),
there exists 7, € A_ such that [, n,s—1,~,] is simple and equivalent to [, n,s—
L,y +0b =[A,n,s—1,70]

We now prove, by induction on ¢, that for s —1 > ¢ > r there exists a skew simple
stratum [, n, t,y;] equivalent to [, n,t, §]. This will then complete the induction
on s and the proof.

We have just done the case t = s — 1 and the rest of the proof is identical to that
of (5.4.4). [ |

(5.4.7) Theorem Let [A,n,r, (3] be a skew pure stratum in A. Then there exists
a skew simple stratum [A,n,r, 7] equivalent to it.

66



Proof: By (5.4.1)(i) there exists a simple stratum [2l,n,r,~'] which is equivalent
to [, n,r,B]. Then v/ ++" =0 (mod P~") and ko(7/,2A) = —s for some s > r.
So, by (5.4.6), there exists a skew simple stratum [2A, n,r,~] as required. [ |
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6
SIMPLE CHARACTERS

From this chapter onwards, h is an alternating form, i.e. we consider only the
symplectic group. In particular, IV is even.

In this chapter we define some orders H(3,2), J(3,2) in A associated to a skew
simple stratum [2, n, 0, 3] and hence some subgroups H™(3,2), J"™(5,2) of
G. We then define a set C_(2,m,3) of characters of H™!(3,2), called simple
characters. These are defined analogously to the GLy (F') case ([BK] (3.2)) and,
in fact, the simple characters for G will be precisely the restrictions to G of simple
characters for the groups H™(3,2) in GLy (F).

This chapter relies heavily on [BK] chapter 3; many results are proved using the
analogous results there.

(6.1) The orders $ and J

Throughout this section [2(, n, 0, 5] will be a skew simple stratum in A and we set
r= _k'O (ﬁ? Ql)

(6.1.1) Definition ([BK] (3.1.7)) (i) Suppose 3 is minimal over F'; put
H(B) =9H(6,A) =Bz + 513[%}—5—1.

(7i) Suppose that r < n and let [A,n,r,v] be a skew simple stratum equivalent to
[Ql, n? T? ﬁ]; pUt
H(8) = H(6,2A) = B + H(y,A) N RETL

Note that, by [BK] (3.1.9), this inductive definition is independent of the choice
of 7 such that [, n,r,~] is a skew simple stratum equivalent to [, n,r, 3].

(6.1.2) Lemma Let [, n,0,0] be a skew simple stratum in A; then we have
H(B,2A) =H(8,A)

Proof: We proceed by induction along (. If 3 is minimal then $((3) is the sum of
B and P21 both of which are invariant under the involution. If » < n and
[2(, n, 7, 7] is a skew simple stratum equivalent to [2, n, 7, 5] then $(/3)) is the sum
of Bz and H(y,2A) N Plz1+1 both of which are invariant under the involution, the
latter by induction. [

(6.1.3) Definition ([BK] (3.1.8)) (i) Suppose (3 is minimal over F'; put

1
=4}

3(8) =3(8,2A) = By + P!

(7i) Suppose that r < n and let [A,n,r,v] be a skew simple stratum equivalent to
[Ql, n? T? ﬁ]; pUt

7‘+1}

J(B) =3(B,2%) =B + I(v,A) NP
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Again, this definition is independent of the choice of 7 and, exactly as in (6.1.2)
we have:

(6.1.4) Lemma Let [/A,n,0,8] be a skew simple stratum in A; then we have
J(6,2) =3(8,24)

So we can define H(5)- = H(B) N A_ and J(B)- =J(B)NA_.

We now set

9" (8) = H(B)_ NBE, I (B) =3I(B)- Nk, k>0

In particular, as in [BK] (3.1), we get that for § minimal over F,

7 B for k > [5] +1,

and that in the general case

r 1 .
5t = 2 + 95 () for 0 <k < [3]
: HE (v) for k > [5] + 1,
where [2, n, 7, 7] is a skew simple stratum equivalent to [, n, r, 5]. Similar remarks

apply to J.

Now, as in [BK] (3.1.14), we define two families of compact open subgroups of
GLn (F) by

Hm(ﬂ)g():f)(ﬁ,ﬂ)ﬂ[]m(%)} form >0

Then we define two families of compact open subgroups of G by

H(B,) = H™(B,4) NG

for m > 0.
JU(B,A) = J(B,A) NG }

Then, by (1.2.4) we have a bijection between H™ () and H™ () given by the
Cayley map.

(6.1.5) Proposition (cf. [BK] (3.1.15)) (i) For 0 <m < [5] + 1, we have

H™(3) = P (B5) HE (),

and, for 0 <m < [2£1],

r+1

J™(B) = P™(B) T 7 ().

(i) For m > 0, the groups H™([3), J™ () are normalized by R(Bz) N G.
(4ii) J™(B) D H™(B) and H™ () is a normal subgroup of J_(B), for allm > 1.
(iv) For k,1 > 1, [J5(8), JL(8)] € HET(8).
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Proof: By [BK] (3.1.15), H™(B) = U™(Bp)HEH18) N G. But U™(Bs) N
HEFYB) =1+ Q5 N Hlzl+1(B) so, by (1.2.7) we have U™ (B3)HEH1B) NG =
P™(B3)H!5171(3). The same argument for J completes (i). Then (i), (iii) and
(1v) follow directly from [BK] (3.1.15). |

(6.1.6) Lemma (cf. [BK] (3.1.19)) For m > —1, we have

[7‘+1

(7 (B)" = as(3F ) + B
Proof: By [BK] (3.1.19) and (1.2.6). |
We now choose a tame corestriction sg on A relative to F'[3]/F.

(6.1.7) Proposition (cf. [BK] (3.1.16)) For —1 < m < r — 1, we have an
exact sequence

@5 mn(s) -+ L (97 H(8) - 5™ - 0,
Proof: By [BK] (3.1.16) and (1.2.6). |

(6.1.8) Corollary For 0 <m < [5] + 1, we have an exact sequence

r4+1

O—>Q[_2 ]—>3

[7’+1

) 2 (o (9) 2 a0

There are similar results for J (see [BK] (3.1.21), (3.1.22)).

(6.2) Simple characters

(6.2.1) Definition (cf. [BK] (3.2.1)) Let 8 be skew and minimal over F,
E =F[3]. For0 <m <n—1 let C_(A,m, ) denote the set of characters 6 of
H™(B) such that

(Z> 9|HT+1(5)OP[%]+1(90 = d]ﬁ

(i2) Ol gm+1(gyn(B,na) factors through detp, : Bg NG — Ni(E)

where N1(F) ={e€ E : ee = 1}.

(6.2.2) Proposition In the situation of (6.2.1) we have

(1) C-(A,m, B) = {Pp} for [3] <m <n—1;

(7i) for all 0 € C_ (A, m,3) there exists 0’ € C(A, m, 3) such that 9’]H7_n+1(m =0;
(tit) every 6 € C_(A, m, 3) is normalized by K(B) N G.

Proof: (i) is clear from the definition and (iii) will follow from (i7) and [BK]
(3.2.2)(i).
If m > [5] then 6 = 1)g which extends to the character ¢g € C(,m, 3).

Suppose then that m < [§] and take § € C_ (2, m,[3); then 0|HT+1(,8)0(B50G)

= O|pm+1(m,) = x o detp,, for some character x of the closed subgroup
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detp, (P™1(Bg)) of N1(E). By the observation following [BK] (3.2.1), the char-
acter ¢z of UZIT1(B4) also factors through the determinant, 153 = x1 © detp,
and, moreover, XlldetP[%]“(%,@) = X|detP[%]+1(sig) since 9|P[%]+1(%6) = 13. Then
we define a character ' of detp, (P™ 1 (B3)UE1H1(Bg)) by

X'(pu) = x(p)xa(u) € detp, (P™(Bp)), u € detp, (U1 (Bp)).

Extend this to a character of EX, also denoted x’. Now H™!(3) = P+ (B,).
PIEI+1(21), where the first factor normalizes the second, and further H™+1(3) =
UmT1(B5).UEHL(2A). So we define 6’ by

0’ (uh) = x/(detg, (u))abg(h),  we€ U™ (Bg), h e UEIT().

Since U™T1(B3) normalizes ¢3 on UEIT1(A) by [BK] (3.2.2) and y’ o detp,,
Vs agree on UlZI¥1(B3), this defines a character of H™¥!(3) and clearly ¢’ €
C(A,m, ). [ |

(6.2.3) Remark The fibres of the restriction map C(2(, m, 3) — C_ (A, m, 3) are
of the form 0.X where 6 € C(2, m, 3) and X is the group of characters of the finite
group U™+ (Bg)/(P™+(Bs)UE1+1(Bs)) which factor through detp,.

(6.2.4) Definition (cf. [BK] (3.2.3)) Let [, n,r,v] be a skew simple stratum
equivalent to the skew pure stratum [A,n,r,[3]. Then, for 0 < m < r —1, let
C_(A,m,B) be the set of characters @ of H™(3) such that

(1) H‘HT“(ﬁ)ﬂ(B,@ﬂG) factors through detp, ;

(17) € is normalized by R(Bg) N G;

11) if m’ = max{m, [5]}, the restriction 0| .1
2 H"

00 € C_(Ql,m’,’y), c= ﬁ_7

) s of the form Oy, for some

For m > r we set C_ (A, m, 3) = C_(~A,m,~).

(6.2.5) Proposition (cf. [BK] (3.2.4)) Form > [§] we have C_(,m,3) =
{¥s}-

(6.2.6) Proposition In the situation of (6.2.4), for all & € C_(2A,m,3) there
exists 0" € C(A,m, B) such that 0’| ym+1 5 = 0.

Proof: We proceed by induction along 3. The case where 3 is minimal is just
(6.2.2)(ii). Let [, n,r, ] be a skew simple stratum equivalent to [, n,r, 3].

If m > [5] then 6 = 6y1). for some Oy € C_ (A, m,v). By induction, there exists
0y € C(A,m,7) such that 04| ym+1,) = Oyl gm+15 = Oo; also . extends to the
character 1. of H™*1(3). Then, by [BK] (3.3.18), ' = 01, is as required.

If m < [§] then 9]Hm/+1(6) = 0Og1p for some 0y € C_ (2, [5],7). Then, by induc-

tion, there exists 6 € C(2, [5],) such that 9(’)|H[§]+1( )= 6o. Now H™M(3) =
2 (v

Pm“(‘Bg).H[_%Hl(ﬁ), with the first factor normalising the second, and also
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H™(3) = U™TY(Bs).HIZ1+1(3). Then Ogmit (gyn(Bync) = Olpmtiesy) = x 0

detp, for some character x of the closed subgroup detg,(P™!(Bg)) of Ni(E).
Further, 6. € C(,[5],8) by [BK] (3.3.18) so Oytc| 5141 = x1 o detp, for

(Bs)
some character X‘l of detp, (UE1T1(B3)). Moreover, we have X1|detP[§]“(zB/g) =
X‘detP[%H‘l(%B) since Oowc\P[ng(%B) = 6. Then we define a character x’ of

detp, (P (B5)UEIT1(Bg)) by

X'(pu) = x(p)xi(u)  p € detp, (P (Bp)),u € detp, (UET(By)).
Extend this to a character of E*, also denoted x’. Then we define ¢’ by
0’ (uh) = X/ (detg, (u)).0h(M)e(h),  u€ U™ (Bp), h € HET(B).

Then U™+ (Bs) normalizes 0. on HZH1(3) = HIZIT1(5) since, as above,
Oibe € C(A,[%],8) and x' o detp,, Ot agree on ULEIH1(Bg) so this defines a
character of H™*1(3) and 6’ € C(™,m, 3). [ |

(6.2.7) Corollary (cf. [BK] (3.2.5)) For 0 < m < [g], restriction induces a
surjective map

C_(2A,m. ) — C_(2,[5).5).

Note that, as in the proof of [BK] (3.2.5), the fibres are of the form 6.X for
0 € C(A,m, ) and X is the group of characters of P+ (B3)/Pl51¥1(B ;) which
factor through detp,.

By (6.2.6) we could have defined C_(2,m,3) to be the set C(A, m, ) of char-
acters of H™+1(/3) restricted to H™*(3). Indeed, from now on we will use this
description.

(6.2.8) Corollary In the situation of (6.2.4), C_ (2, m,[3) is independent of the
choice of the element .

Proof: By [BK](3.2.20)(i), C(,m,[3) is independent of the choice of v and
C_(A,m,B) = {0l H"1(6) : 6 € C(A,m, B)}. =

We now generalize (6.2.3) to describe the fibres of the restriction map C(A, m, 3) —
C_ (A, m, ) in all cases. First we give a result concerning the surjectivity of the
determinant map.

We put P(OE) = Nl(E) C U(OE), Pn(OE) = Un(OE) N N1<E) for n Z 1.
(6.2.9) Lemma For n >0, we have detg,p P"*(B) = Pl (op).
Proof: We have detp,pU"*(B) = Ul¢1*1(0g) by [BF2](2.8.3). Then certainly

detp/pP" 1 (B) C PlEI1(0p) since detp,; commutes with the involution ~. Sup-

pose now we have X € PlelT!(og); then, by (1.2.4)(i), X = UT " for some
U € UMY (og). But we know U = detg,pu for some u € U+(B). Then,
putting z = wn !, we have z € P"*1(%) and detp gz = X as required. [ |
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(6.2.10) Proposition Let [, n,0, 5] be a skew simple stratum with r = —ko(3,2)
and let [A,n,r,v] be a skew simple stratum equivalent to [A,n,r,[5]. Let 0 < m <
r — 1. Then restriction induces a surjective map C(2A,m,3) — C_(A,m,3). If
m > [5] then the fibres are in bijection with the fibres of C(A, m,~y) — C_ (A, m,);
if m < [5] then the fibres are of the form ©.X odetp,, g,, where X is the group

of characters of U[%Hl(UEB)/(P[%Hl(OEB)U[%]H(OEB)) and © is a fibre of
C@, [5,7) — - (&, [5],7)-

Proof: As usual, we will work by induction along (. For  minimal this follows
from (6.2.3) and (6.2.8).

First we look at the case m > []. Let ¢ € C(A,m,[); then 6’ = Oy, for

0, € C(A,m,v), c = —~ and the result is clear.

Now suppose m < [5] and let 8" € C(2A,m,[3); then 0I|H[§H1(ﬁ) = 60(%., for
0y € C(A, [5],7), ¢ = B —~. Then the result follows from (6.2.3) and the case

m =[] .

We recall here a result of Glauberman ([G] or see [BH2] §A2). Let M be a finite
group and let I" be a subgroup of AutM such that |M]|, |I'| are relatively prime.
We write 'M for the semi-direct product I' x M. The group I' acts on the set
Irr(M) of equivalence classes of irreducible representations of M; we denote the
set of fixed points by Irr(M)T.

Let p € Irr(M)Y. Then, by [G] Theorem 1, there exists a unique (up to equiva-
lence) representation p of I'M such that p|y ~ p and detp(y) =1 for all y € T.

(6.2.11) Proposition ([G] Theorem 3) Suppose, with notations as above, that
the group I' is cyclic. There is a canonical bijection

gr : Ir(M)F = Trr(M1),

where MY is the centralizer of T' in M. Explicitly, for p € Irr(M)Y, the represen-
tation ¢ = gr(p) is given as follows. There is a sign € = €(p,I") such that

tr(x) = etr ),

for all generators v of T' and v € MY, where p is the extension of p to TM as
above.

We now apply this to our situation. Let [2(, 7,0, 5] be a skew simple stratum. All
simple characters § € C(2,m,3) are trivial on the group U1 () so they are,

essentially, characters of the finite p-group H™1(3,21) /U™ (21).

Let 0 : AX — A* be the involution given by o(x) = T~!. Then o acts on

the group H™*1(3,2) /U™ (), since both groups in this quotient are fixed by
the involution ~. We put I' = (o), a cyclic group of order 2. Then we have
H™H(3,207 = H™H(3,2) and UH(R0OF = P*1(2); in particular, we have
(H™H(B,2) /U ()T = H (B, 20) /P ().

Since p is not 2, we apply Glauberman’s correspondence (6.2.11) to the groups
M = H™(3,2) /U™ TH(2L), T; this gives us a bijection between those equivalence
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classes of representations of H™*1(3,2) /U1 () which are stable by o and the
equivalence classes of irreducible representations of H™ (3, 2)/P"+1(2A). More-
over, the relationship between the characters of these representations implies that
we have a bijection

(6'2'12) C(Ql7m7ﬂ)r ic—(mamaﬂ)a

given by restriction of characters. (Note that the character of H™1(3, ) corre-
sponding to a given simple character of H™*1(3,2) is indeed a simple character,
since we can construct it explicitly as in (6.2.2)(i7),(6.2.6).)

(6.3) Intertwining

(6.3.1) Proposition Let § € C_(™A,m,(3), 0 <m < r—1 and let j € J_(B).
Then 0(jhj~) = 0(h) for all h € H™(3),

Proof: [BK] (3.3.1). |

(6.3.2) Theorem (cf. [BK] (3.3.2)) Let [2,n,0,0] be a skew simple stratum
in A, r=—ko(8,). Let 0 <m <r—1and § € C_(A,m,3). Then

I (0|HT ()
— (49 R() + 3

IB)NG . BsnG . (1+ Q5™ N(B)+3=1(B) NG

(6.3.3) Remark We can write

r+1

[7‘4—1

= 1(B) NG = ((1+Q5™NB)) . J=
:Q [r+1]

(1+957N(B) +3 =1(B) nG

Moreover, when m < [5], Qi7" N(8) C 3“31] so the Theorem says

r+1

a0 H™ () = "7 (3) . BsnG . U7 (@)

Proof: We proceed by induction along /3, following the proof of [BK] (3.3.2). The
case 1 = oo is trivial so we begin with » = n. Then § is minimal so J! [#3-] &B (%3]
and Q" N(B) = P"~™. Let m’ = max{m, [5]}; so (1+Q " N(B)+ = ( )N

G = P~ (). Then
To(0|H" 1 (8)) C I6(0|P™ () = Za[A,n,m', 5]
=P (A) . B4NG . P ()
by (2.2.3). But we also have

Ig(OJHTH(B)) D IgLoy (OH™FH(B)) NG
=U"™(A)BFUTT™ (), by [BK] (3.3.2),
=P (). BsNG . P (), by (2.2.3),
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so we in fact have the equality required.

Now we look at the general case where r < n. Let [, n,r, 7] be a skew simple
stratum equivalent to [, n,r, 8] and put s = —ko(y, ). We look first at the case
m > [5]. Thus H™(B) = H™ () and, for 6 € C_(™A, m, 3), we have I5(0) C
Ig(0|H™ 1 (B)). Then, as in [BK] (3.3.2), the restriction of § to H't1(8) =
H"™ () lies in C(A,7,v). Put I"(y) = Ig(A|H™*1) so, by induction,

s+1

I'(v) = A+ 25 N(y) +32 () NG . ByNG . (1+Q57™N(y) +3= () nG

We define another set
L,(B) ={z € G:z ' (B+97THB))z N (B+H7TH(B)) # 0},

i.e. the formal intertwining of the coset 5 + $™11(3)*. Note that this is just
LY (B)NG, where I,7(3) is the formal GL y-intertwining of the coset 3+ 9™+ (3)*,
as in [BK].

(6.3.4) Lemma (cf. [BK] (3.3.5)) Ig(0)=1,,(8)NI"(7).

Proof: We first show that

r+1 r41

J5e) 1) J5E ) c IE ) i) JEN) na
=It(B) NG, by [BK] (3.3.6),
).

= 1,05

r41
We now take z € I"(7); then, as all the sets are bi-invariant by g ](6), we

may assume that z € (1 +957"M(y))NG . By,NG . (1+257"N(y)) NG. Let
h ez " H™M(3)z N H™1(B); then, as in [BK] (3.3.5),

0° ()0~ (h) = Yz-1p5—p(h).

So x intertwines 6 if and only if ¥,-15, g(h) = 1 for all h € 2 *H™ ()2 N
H™ (), i.e. if and only if = intertwines 1g|H™"*(3). But this is if and only
if x_lﬁx _ 6 c (w_lijJrl(ﬁ)x mf)r_n+1(ﬁ))* — x—l(ﬁiz+1)*x + (ﬁT_nJrl)* ie
x eI (0). |
Now, as in [BK] (3.3.10), we have

r4+1

I.(8) > (14+Q5 ™ NB) +3 = HB)NG . BgnG . (1+Q5 ™ N(B)+3 = (8)NG.

Then, for x € I, (), we have
7B+ (H™THz N (B4 (H™TH*) £ 0
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so there exist 01,82 € (H™T1)* such that

(6.3.5) Y BH6+ BTz N (B4 62 +PI™) # 0.

(6.3.6) Lemma (cf. [BK] (3.3.12)) Let 6 € (9™1(3))*. Then there exists

41
y € 3[_2 ]([3) such that

Cy) B +6+P-™)Cy) = B+ P-™.

Proof: We show that for k € Z, § € (H$™(8)* N P~) + P-™, there exists
[+

yeJo ](ﬁ) such that

Cly) " (B+68)Cly)=F (mod (HTF(B)" NPT + P=™)

and the result will follow by induction. Let § € ($™(8)* N P*) +P-™. By

1

6.1.6), there exists y € 3[_2 ] () such that § + ag(y) € P-™; then ag(y) €
B O B

(H™THB)* NPE) + P=™. We have C(y) = 1+ 3 for some ' € JI'= ] so, as in

the proof of [BK] (3.3.12),
Cly) 10C(y) =4 (mod (H™H(8)" NP + ™).

Further C(y)~'8C(y) = B+ (1+y') " tas(y’). Now ¢/ is given by a power series in
y and, for n > 2, as(y") = Sy ylag(y)y" " € JTF OB NPF) +P) +
(571 (9)" NP) +)3 T € () AR L, Hemee ag(y') = ag(y)
(mod (H™H1(B)*NPFH) +P~™). Then (14+9')~' = 1+y", for some y” € JI=1,
SO

1+y") tap(y’) = ap(y) + y"as(y) = asly) (mod (H™F(B)* NP+ +P~™).

Then altogether we have

Cly) H(B+0)Cly) = B+ +ag(y) (mod (H™H(8)" NP+ +F~™)
=G (mod (H™H(B)" NP + 7).

Then, since the elements on both sides of this congruence are skew, we have the
assertion. [}

Then we can write in (6.3.5)

B40+P-" =Cly) " (B+P™"C(wi), i=12,

~1E]

for some y1,y2 € J_2 (B). Thus, if z = C(y1)xC(y2) !, we have

2 HBHPIM N (B+ P # 0.
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Then, by (2.2.3), z € (1 + Q5 ™R(3) NG . BsNG . (1+ 5 "N(F) N G and

so z lies in

(1+Q5 "N(B) +

[T+1

1B)NG . BgnG . (1+Q5 ™NP)+

Finally we prove

I,(8) € I"(v)
and this, together with (6.3.4), will conclude the proof of the theorem in the case
m > [£]. Since I"(7) is bi-invariant under multiplication by J[_#](ﬁ) = J[_#} ()
it is enough to show that

I"(v) D (1+ Q25 ™NB) NG . BsNG . (1+25 "N(B)NG.

This is just the formal intertwining of 5+ P_"™ so it is contained in the formal
intertwining of 3 +P-" =~ +P_", which is (1+29""N(y)) NG . B, NG . (1+
0°7"N(v)) NG and this is certainly contained in I"(7).

Now we assume that m < [§]. Note that
Im

[z rtl
Q5 (8) = 9,7 M) <3
by [BK] (3.1.10) so the assertion is

Ia(0) = J7FNB)  BsnG . I B), m< L]

We certainly have

r r+1 r41
Ic(0) ¢ Ic(OHE™y = S 8) . Bsna . S0 (),

by the case m = [5] above. But also
IO H™ ) D T,y (OIH™ ) N G = JU(3)B; I (B NG
] B.nG  JUE]
(B) - BgnG . J_* (f)
So we in fact have equality and we have completed the proof of (6.3.2). |

5 b

(6.3.7) Corollary (of the proof) In the situation of (6.5.2) let 0 < m < [g].
Then
J™(B).By.J"(B) NG =JT(B) . BgnG . JI(B).

(6.4) Heisenberg Representations

(6.4.1) Theorem (cf. [BK] (3.4.1)) Let1 <m <randletf € C_(A,m—1,0).
The pairing
ko : (J,k) = 0lj, k] j, ke J"(3)

induces a nondegenerate alternating bilinear form

JI(B)/H(B) x J™(B)/H(8) — C*.
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Proof: We have [J™(83), J™(8)] € H?>™(8) c H™(3). Moreover, J™(/3) normal-
izes 6 so ker(f) is a normal subgroup of J™((3) and H™([()/ker(f) is central in
J™(B)/ker(0). So kg defines an alternating bilinear form on J™(8)/H™(3). For
nondegeneracy, we need

04, k] =1 for all k € J™(B) if and only if h € H™(S).

The implication < is immediate.

We deal first with the case m = 7’;1]. Let 7,k € J
r+1
k=C(y) =14y for some x,y 63[_2

(3.2.12),

21(B), 50 j = Cla) =1+,
{(8) and o,y € 3)(B). Then, by [BK]

0j, k] = Y14 -15040)—(1 + 1)

We also have (1+2')13(1+2") — B = ag(z’) — (1+ ') *a’ag(a’), and 2’ag(z’) €
3= (9511 by [BK] (3.1.17) and this is contained in (312 1)*. Also, as in the

=
r41 +1

proof of (6.3.6), ag(z') — ag(x) € JFT(HlaH) 4 (glal+1)3= c (Fl=))=.
Altogether, we have

(1+a) 7' B(L+a') = B=ap(x) (mod (J=1))

r+1

and, since both sides are skew, this is in fact (mod (~[ ) )- S0 0[C(x),C(y)] =
1, for all y € 3"=), if and only if ag(x) € (3[%}) which, by [BK] (3.1.22), is if

[5141) A A5 (5
and only if x € (Bg+9'2!1TH)Ng NA_ =9

2

Now suppose m < [“51] so J™(8) = Pm(’Bg).J[_ > (B). Since P™ (B 3) normalizes
6, the commutator subgroups [P™(B3), P™(Bg)] and [P (Bg), J[ 2 ](6)] are

both contained in ker(f). Take j = uj’ € J™(f) with u € P™(Bpg), j' € J[r !
Then H[j, Jm] = 1 if and only if 0[5, J™] = 1 which, by the first part, 1mphes
41

i e H'T) Then j € Pm(B,).HIF ) = Hm(p).

Now suppose m > [“£L]. If § is minimal over F, this means m > [£]+1 and J™ =
H™ = P™(2l) so the assertion is trivial. Otherwise, let [2(, n, r,v] be a skew simple
stratum equivalent to [, n,r, 3]. We have [J™(8), J™(8)] C H*™(3) by (6.1.5)
and H?>™(3) = H?>™(y). Moreover, 2m > r + 1 so 0| H*™(8) € C_(A,2m — 1, ).
The result now follows by induction along (3, since H™(v) = H™ (). [

(6.4.2) Proposition (cf. [BK] (5.1.1)) Let [A,n,0,5] be a skew simple stra-
tum in A, 0 € C_(,0,3). There exists a unique irreducible representation n(0)
of JX(B3,2) such that n(0)|H(B,21) contains 0. Moreover, n(0)|H.(3,%) is a
multiple of 0 and

dim(n(9)) = (J1(8,2) : H'(3,2))*.
The G-intertwining of n(0) is JL(8,2).BNG.JL(3,2).

Proof: Given (6.4.1), the proof is identical to that of [BK] (5.1.1). |
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7
A SPECIAL CASE

In this chapter we look at the case where the element 3 in our skew simple stratum
[2(,n,0, F] generates a maximal field extension E = F[3] over F in A. In this case
we are able to complete the construction of the type and construct supercuspidal
representations of G. In the case where E/F is wildly ramified, these are new
supercuspidals.

(7.1) Construction of types

Let [, n,0, 5] be a skew simple stratum in A such that F = F[f] is a maximal
field extension of F'in A. Then the centralizer B of E in A is just the field E itself
and BNG = P(og) = N1(E) is the group of norm-1 elements of E (for the norm
Ng/E,, where Ej is the fixed field of the involution) and B =N B = op.

Put r = —ko(8,2) and let [A,n,r,7v] be a skew simple stratum equivalent to
[2(,n, 7, 5]. Then we have

In particular, J_(3) = P(og)JL(8) and J_(B3)/JL(B) ~ P(og)/P(oE) is a finite
cyclic group. (It is isomorphic to P(kg) = {x € kj : 2T = 1}, where ~ is the
involution on kg induced by the involution on 0. If E'/Ey is ramified, this is just
Z7)2Z; if E/Ey is unramified, this is Z/(qo + 1)Z, where qo = #kg,.)

Let 6 € C_(%,0, 3) be a simple character and let 1 be the Heisenberg representation
of J(B) containing 6 given by (6.4.2). Hence the intertwining of 7 is Zg(n) =

JL(B)-BNG.JL(B) = P(og)JL(B) = J-(B).

Now J_(3)/J1(B) is cyclic so we can extend 71 to a representation k of J_(f);
indeed, all such extensions take the form k®, for x a character of P(og)/P(0g).

(7.1.1) Theorem With notation as above, put m# = Ind§ & ,where J_ = J_(f).
Then 7 is an irreducible supercuspidal representation of G. Moreover, (J_, k) is
a |G, T]|g-type

Proof: J_ is a compact open subgroup of G so certainly compact mod centre and
we clearly have Zg (k) C Zg(n) = J—. Then, by [Ca] (1.5), 7 is irreducible and
supercuspidal. Finally, (J_, k) is a [G, 7]g-type by [BK2] (5.4). |
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(7.2) Transfer

We recall from (6.2) that we have the involution o : A* — A* given by o(z) =
Z 1. We put I' = (o), a cyclic group of order 2. Then, for 0 < m < n — 1, we
have a bijection C(A, m, 3)1' = C_ (A, m, 3), given by restriction of characters, as

in (6.2.12).

Let [, n,0, ] be a skew simple stratum such that £ = F[f] is a totally ramified
maximal field extension of F in A. We fix a simple character § € C(,0, 3)'" and
write _ = 0|Hl (8,2)"

By [BK] (5.1.1), there exists a unique irreducible representation n of J* = J1(3,2)
which contains §. Further, there exist precisely two extensions of n to J(3,2)
which are fixed by o; they are xj, given by

ky(&5) =n(j),  for £ € p(F),j € J',

where ,u;(F ) is the group of roots of unity in F of order prime to p; and x3, given
by
ko(&) = x(En(G),  for & € i (F),j e J",

where x is the character of y,(F') given by

1 if ¢ is a square in F;

x@)Z{

—1 if £ is a non-square in F.

The situation in the symplectic group is similar. By (6.4.2), there exists a unique
irreducible representation n_ of J! = J!(3,2) which contains #_. (In fact, this
is just the unique irreducible component of the restriction of 7 to J!.) Further,
there exist precisely two extensions of 7 to J_(3,2); they are m},ﬁ, given by

Ky (€j) =n(j),  for & ==£1,j€ J;

and 1157_, given by

ko _ (&) =¢€n(j),  for&==+1,j€ JL.

Now let 7 be an irreducible supercuspidal representation of GLy (F') = A*. Then
7 contains a simple type (J, \) which is unique up to conjugacy in GLy (F'). This
type is built from a simple character 6, which again is unique up to conjugacy in
GLx(F). Suppose that there is a skew simple stratum [, n,0, 3] in A such that
6 € C(2,0,3) and such that E = F[g] is a totally ramified maximal extension of
F in A. Then \ = Kk, a (-extension of the unique irreducible representation n of
Jt = J1(3,2) which contains 6.

Suppose that the (equivalence class of the) representation « is fixed by the invo-
lution o. In particular, this implies that § € C(,0,8)". Then by the discussion
above, K = kj, for ¢ = 1 or 2; this is determined by the restriction of the central
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character w, of 7 to ,u;’D(F) We put i(m) = 1 if wy is trivial on pu,(F), i(7) = 2
otherwise; then x = H;(ﬂ).
Put 0 = 0|1 (3.2)- This character is not (in general) determined up to conjugacy

in GG, or even up to intertwining. Hence, in order to describe the representations
of GG obtained from 7, we must consider all the simple types contained in 7.

Let K be the set of k such that (J, k) is a simple type contained in 7, & is fixed by
o and k is built from a skew simple stratum [, n,0, 3]. Let © be the set of simple
characters 6 such that 6 is contained in x, for some k € K. We put ©_ to be the
set of restrictions 6|1 for 6 € ©. The group G acts on ©_ by conjugation. Let

¥ be a set of representatives for this action.

We now put € = {m;(i) : 0_ € ¥}. Each k_ € ¢ induces to an irreducible su-
percuspidal representétion m._ of G, by (7.1.1). Note that the representations
m,_ are not necessarily inequivalent, since we do not have an intertwining implies
conjugacy theorem.

Finally, we put Il =II(7w) = {m,_ : k_ € £}. Hence we have associated to 7 a set
of irreducible supercuspidal representations of G.
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