## **FORMULAE AND TABLES**

Number of days in month, n<sub>m</sub>

|                  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
| m                | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9    | 10  | 11  | 12  |
| n <sub>m</sub> = | 31  | 28  | 31  | 30  | 31  | 30  | 31  | 31  | 30   | 31  | 30  | 31  |

### Assumed number of occupants

if TFA > 13.9:  $N = 1 + 1.76 \times [1 - exp(-0.000349 \times (TFA-13.9)^2)] + 0.0013 \times (TFA-13.9)$ if TFA  $\leq$  13.9: N = 1

N is the assumed number of occupants, TFA is the total floor area of the dwelling.

### Domestic hot water usage

- (a) Annual average hot water usage in litres per day  $V_{d,average} = (25 \times N) + 36$
- (b) Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not (c) For each month, multiply V<sub>d,average</sub> by the factor from Table 1a to obtain the daily volume in the month V<sub>d,m</sub>
- (d) The energy content of water used is
  - $4.190 \times V_{d,m} \times n_m \times \Delta T_m / 3600$  kWh/month
  - where  $\Delta T_m$  is the temperature rise for month m from Table 1b.
- (e) Distribution loss is 0.15 times energy content calculated in (d).

### Table 1a: Monthly factors for hot water use

| Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sept | Oct  | Nov  | Dec  | annual |
|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| 1.10 | 1.06 | 1.02 | 0.98 | 0.94 | 0.90 | 0.90 | 0.94 | 0.98 | 1.02 | 1.06 | 1.10 | 1.00   |

### Table 1b: Temperature rise of hot water drawn off (in K)

| Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sept | Oct  | Nov  | Dec  | annual |
|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| 41.2 | 41.4 | 40.1 | 37.6 | 36.4 | 33.9 | 30.4 | 33.4 | 33.5 | 36.3 | 39.4 | 39.9 | 37.0   |

### Table 1c: Thermal capacities for some common constructions

Heat capacity per unit area,  $\kappa$  in kJ/m<sup>2</sup>K, for a construction element is calculated from:

$$\kappa = 10^{-6} \times \Sigma \ (d_j \ \rho_j \ c_j)$$

where:

the summation is over all layers in the element, starting at the inside surface and stopping at whichever of these conditions occurs first (which may mean part way through a layer):

- half way through the element;
- an insulation layer;
- total thickness of 100 mm.
- $d_j$  is the thickness of a layer (mm)
- $\rho_{j}$  is density (kg/m<sup>3</sup>)
- $c_i$  is heat capacity (J/kg·K)

The elements to be included are walls, floors and roofs (windows and doors have negligible capacity), including all internal and party walls and floors. In the case of internal walls and floors, the capacity is needed for each side of the element.

The table gives some typical values.

| Construction                                                                                   | Capacity k<br>(kJ/m <sup>2</sup> K) |
|------------------------------------------------------------------------------------------------|-------------------------------------|
| Ground floors                                                                                  |                                     |
| Suspended timber, insulation between joists                                                    | 20                                  |
| Slab on ground, screed over insulation                                                         | 110                                 |
| Suspended concrete floor, carpeted                                                             | 75                                  |
| Exposed floors                                                                                 |                                     |
| Timber exposed floor, insulation between joists                                                | 20                                  |
| External walls - masonry, solid, external insulation                                           |                                     |
| Solid wall: dense plaster, 200 mm dense block, insulated externally                            | 190                                 |
| Solid wall: plasterboard on dabs, 200 mm dense block, insulated externally                     | 150                                 |
| Solid wall: dense plaster, 210 mm brick, insulated externally                                  | 135                                 |
| Solid wall: plasterboard on dabs, 210 mm brick, insulated externally                           | 110                                 |
| External walls - masonry, solid, internal insulation                                           |                                     |
| Solid wall: dense plaster, insulation, any outside structure                                   | 17                                  |
| Solid wall: plasterboard on dabs, insulation, any outside structure                            | 9                                   |
| External walls - cavity masonry walls, full or partial cavity fill                             |                                     |
| Cavity wall: dense plaster, dense block, filled cavity, any outside structure                  | 190                                 |
| Cavity wall: dense plaster, AAC block, filled cavity, any outside structure                    | 70                                  |
| Cavity wall: plasterboard on dabs, dense block, filled cavity, any outside structure           | 150                                 |
| Cavity wall: plasterboard on dabs, AAC block, filled cavity, any outside structure             | 60                                  |
| External walls – timber or steel frame                                                         |                                     |
| Timber framed wall (one layer of plasterboard)                                                 | 9                                   |
| Timber framed wall (two layers of plasterboard)                                                | 18                                  |
| Steel frame wall (warm frame or hybrid construction)                                           | 14                                  |
| Roofs                                                                                          |                                     |
| Plasterboard, insulated at ceiling level                                                       | 9                                   |
| Plasterboard, insulated slope                                                                  | 9                                   |
| Plasterboard, insulated flat roof                                                              | 9                                   |
| Party walls                                                                                    |                                     |
| Dense plaster both sides, dense blocks, cavity                                                 | 180                                 |
| (E-WM-1 or E-WM-2)*                                                                            |                                     |
| Single plasterboard on dabs on both sides, dense blocks, cavity                                | 70                                  |
| (E-WM-3 or E-WM-4)*                                                                            |                                     |
| Plaster on dabs and single plasterboard on both sides, dense cellular blocks, cavity (E-WM-5)* | 70                                  |

### DRAFT SAP 2009 version 9.90 (April 2009)

| Construction                                                                                          | Capacity k<br>(kJ/m <sup>2</sup> K) |
|-------------------------------------------------------------------------------------------------------|-------------------------------------|
| Plasterboard on dabs mounted on cement render on both sides, AAC blocks, cavity (E-WM-                | 45                                  |
| 6 or E-WM-7)*                                                                                         |                                     |
| Double plasterboard on both sides, twin timber frame with/without sheathing board (E-WT-1 or E-WT-2)* | 20                                  |
| Steel frame (E-WS-1 to E-WS-3)*                                                                       | 20                                  |
| Party floors (k from above / k from below)                                                            |                                     |
| Precast concrete planks floor, screed, carpeted (E-FC-1)*                                             | 40 / 30                             |
| Concrete floor slab, carpeted (E-FC-2)*                                                               | 80 / 100                            |
| Precast concrete plank floor (screed laid on insulation), carpeted (E-FC-3)*                          | 40 / 30                             |
| Precast concrete plank floor (screed laid on rubber), carpeted (E-FC-4)*                              | 70 / 30                             |
| In-situ concrete slab supported by profiled metal deck, carpeted (E-FS-1)*                            | 64 / 90                             |
| Timber I-joists, carpeted (E-FT-1)*                                                                   | 30 / 20                             |
| Internal partitions                                                                                   |                                     |
| Plasterboard on timber frame                                                                          | 9                                   |
| Dense block, dense plaster                                                                            | 100                                 |
| Dense block, plasterboard on dabs                                                                     | 75                                  |
| Ceiling/floor between floors in a house (k from above / k from below)                                 |                                     |
| Plasterboard ceiling, carpeted chipboard floor                                                        | 18 / 9                              |
| * Reference in the Robust Details for Part E "Resistance to the passage of sound"                     |                                     |

## **Table 1d: Thermal mass parameter**

The  $\kappa$  values are used to calculate the TMP variable (Thermal Mass Parameter) is used to characterise the thermal mass of the building. It is:

$$TMP = \frac{\sum \kappa \times A}{TFA}$$

where the summation is over all walls, floors and roofs bounding the dwelling (including party walls and floors/ceilings) together with both sides of all internal walls and floors/ceilings.

Indicative values of TMP are:

| Thermal mass | TMP (kJ/m <sup>2</sup> K) |
|--------------|---------------------------|
| Low          | 100                       |
| Medium       | 250                       |
| High         | 450                       |

### Table 2: Hot water storage loss factor (kWh/litre/day)

If the manufacturer's declared loss is available, see Table 2b.

In the absence of manufacturer's declared cylinder loss, the loss factor L from Table 2 is multiplied by the cylinder volume in litres, by the volume factor from Table 2a, and by the appropriate temperature factor from Table 2b, to obtain the loss rate. These data apply to cylinders heated by gas, oil and solid fuel boilers and by electric immersion, and to stores within combi boilers not tested to EN 13203-2.

For community heating systems with no cylinder in the dwelling, use loss factor for 50 mm factory insulation and a cylinder size of 110 litres. For community systems using a plate heat exchanger apply the data in the table to the insulation on the heat exchanger.

### In the case of a combination boiler:

- a) the storage loss factor is zero if the efficiency is taken from Table 4b;
- b) the loss is to be included for a storage combination boiler if its efficiency is the manufacturer's declared value or is obtained from the Boiler Database (in which case its insulation thickness and volume are also to be provided by the manufacturer or obtained from the Database), using the loss factor for a factory insulated cylinder.

| Insulation thickness, mm | Cylinder loss fact                                                   | tor (L) kWh/litre/day |
|--------------------------|----------------------------------------------------------------------|-----------------------|
|                          | Factory insulated cylinder<br>thermal store<br>store in combi boiler | Loose cylinder jacket |
| 0                        | 0.1425                                                               | 0.1425                |
| 12                       | 0.0394                                                               | 0.0760                |
| 25                       | 0.0240                                                               | 0.0516                |
| 35                       | 0.0191                                                               | 0.0418                |
| 38                       | 0.0181                                                               | 0.0396                |
| 50                       | 0.0152                                                               | 0.0330                |
| 80                       | 0.0115                                                               | 0.0240                |
| 120                      | 0.0094                                                               | 0.0183                |
| 160                      | 0.0084                                                               | 0.0152                |

Notes:

1. Alternatively the heat loss factor, L, may be calculated for insulation thickness of t mm as follows: Cylinder, loose jacket: L = 0.005 + 1.76/(t + 12.8)

*Cylinder, factory insulated:* L = 0.005 + 0.55/(t + 4.0)

2. The data for factory insulated cylinder apply to all cases other than an electric CPSU where the insulation is applied in the course of manufacture irrespective of the insulation material used, e.g. the water store in a storage combi or a gas CPSU.

3. For an electric CPSU, the loss is 0.022 kWh/litre/day.

#### Table 2a: Volume factor for cylinders and storage combis

| Volume | Volume Factor | Volume  | Volume Factor |
|--------|---------------|---------|---------------|
| Vc     | VF            | $V_{c}$ | VF            |
| 40     | 1.442         | 180     | 0.874         |
| 60     | 1.259         | 200     | 0.843         |
| 80     | 1.145         | 220     | 0.817         |
| 100    | 1.063         | 240     | 0.794         |
| 120    | 1.00          | 260     | 0.773         |
| 140    | 0.950         | 280     | 0.754         |
| 160    | 0.908         | 300     | 0.737         |
| Notes  |               |         |               |

Notes:

1. When using the data in Table 2, the loss is to be multiplied by the volume factor.

2. Alternatively, the volume factor can be calculated using the equation  $VF = (120 / V_c)^{1/3}$ 

## Table 2b: Factors to be applied to losses for cylinders, thermal stores and CPSUs and storage combi boilers not tested to EN 13203-2

|                                                                        | Tempe                               | rature Factor                                                        |
|------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------|
| Type of water storage                                                  | for manufacturer's<br>declared loss | for loss from Table 2                                                |
| Cylinder, electric immersion                                           | 0.60                                | 0.60                                                                 |
| Cylinder, indirect                                                     | 0.60 <sup>a) b)</sup>               | 0.60 <sup>a) b)</sup>                                                |
| Storage combi boiler, primary store                                    | n/a                                 | Store volume $\geq$ 115 litres: 0.82                                 |
|                                                                        |                                     | Store volume < 115 litres: $0.82 + 0.0022 \times (115 - V_c)$        |
| Storage combi boiler, secondary store                                  | n/a                                 | Store volume $\geq$ 115 litres: 0.60                                 |
|                                                                        |                                     | $Store \ volume < 115 \ litres: \\ 0.60 + 0.0016 \times (115 - V_c)$ |
| Hot water only thermal store                                           | 0.89 <sup>c) d)</sup>               | 1.08 <sup>c) d)</sup>                                                |
| Integrated thermal store and gas-fired CPSU                            | 0.89 <sup>c) d)</sup>               | 1.08 <sup>c) d)</sup>                                                |
| Electric CPSU:<br>for winter operating temperature T <sub>w</sub> (°C) | $1.09 + (T_w - 85)$                 | 1.00                                                                 |
| Plate heat exchanger in a community system                             | 1.0                                 | 1.0                                                                  |

Notes: <sup>a)</sup> Multiply Temperature Factor by 1.3 if a cylinder thermostat is absent.

<sup>b)</sup> Multiply Temperature Factor by 0.9 if there is separate time control of domestic hot water (boiler systems and heat pump systems)

c) Multiply Temperature Factor by 0.81 if the thermal store or CPSU has separate timer for heating the store

<sup>d)</sup> Multiply Temperature Factor by 1.1 if the thermal store or CPSU is not in an airing cupboard

### Table 3: Primary circuit losses

| System type                                                                                                                            | kWh/year   |
|----------------------------------------------------------------------------------------------------------------------------------------|------------|
| Electric immersion heater                                                                                                              | 0          |
| Boiler or heat pump with uninsulated primary pipework* and no cylinder thermostat                                                      | 1220       |
| Boiler or heat pump with insulated primary pipework and no cylinder thermostat                                                         | 610        |
| Boiler or heat pump with uninsulated primary pipework and with cylinder thermostat                                                     | 610        |
| Boiler or heat pump with insulated primary pipework and with cylinder thermostat                                                       | 360        |
| Combi boiler                                                                                                                           | 0          |
| CPSU (including electric CPSU)                                                                                                         | 0          |
| Boiler and thermal store** within a single casing                                                                                      | 0          |
| Separate boiler and thermal store connected by no more than 1.5 m of insulated pipework                                                | 0          |
| Separate boiler and thermal store connected by:<br>- uninsulated primary pipe work<br>- more than 1.5 m of insulated primary pipe work | 470<br>280 |
| Community heating                                                                                                                      | 360        |
| Notes:                                                                                                                                 |            |

\* "Primary pipework" means the pipes between a boiler and a hot water tank

\*\* Thermal stores have a cylinder thermostat

### Table 3a: Additional losses for combi boilers not tested to EN 13203-2

| Combi type                                                                                | kWh/year                          |
|-------------------------------------------------------------------------------------------|-----------------------------------|
| Instantaneous, without keep-hot facility*                                                 | 600 <sup>a)</sup>                 |
| Instantaneous, with keep-hot facility controlled by time clock                            | 600                               |
| Instantaneous, with keep-hot facility not controlled by time clock                        | 900                               |
| Storage combi boiler <sup>**</sup> store volume $V_c \ge 55$ litres                       | 0                                 |
| Storage combi boiler <sup>**</sup> store volume $V_c < 55$ litres                         | $600 - (V_c - 15) \times 15^{a})$ |
| <sup>a)</sup> If the annual average hot water usage is less than 100 litres/day, multiply | by (daily hot water usage) / 100  |

Notes:

"keep-hot facility" is defined in Appendix D, section D1.16. The facility to keep water hot may have an on/off switch for the user, or it may be controlled by a time switch. If the store is 15 litres or more, the boiler is a storage combination boiler.

In the case of keep-hot:

- 1) If the keep-hot facility is maintained hot solely by burning fuel, use the appropriate loss for combi boiler from Table 3a and proceed with the calculation as normal.
- 2) If the keep-hot facility is maintained by electricity:
  - a) include appropriate combi loss from Table 3a in box (49);
  - b) calculate energy required for water heating as  $[(51)_m (49a)_m] \times 100$ ,  $(86)_m$  and enter in box  $(86a)_m$ . See also Table 4f.

3) In the case of an electrically powered keep-hot facility where the power rating of the keep-hot heater is obtained from the Boiler Efficiency database, the electric part of the total combi loss should be taken as: LE =8.76 x P (kWh/year) (subject to maximum of the value from Table 3a, 3b or 3c)

- where P is the power rating of the heater in watts
- with the remainder (either 600 LE or 900 LE) provided by the fuel.

\*\* "storage combi boilers" are defined in Appendix D, section D1.10.

| Combi type                                                                                                                                      | Storage loss (46a) <sub>m</sub> , kWh/month                                                      | Additional loss (49a) <sub>m</sub> , kWh/month                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instantaneous, with or without keep-<br>not facility <sup>a)</sup>                                                                              | 0                                                                                                | $[\textbf{(39d)}_m \times r] + [F_1 \times n_m]$                                                                                                              |
| Storage combi boiler                                                                                                                            | $\mathbf{F}_1 \times \mathbf{n}_m$                                                               | $(39d)_{\rm m} \times r$                                                                                                                                      |
| These values are obtained from the dare jected energy proportion, r loss factor F <sub>1</sub>                                                  | atabase record                                                                                   |                                                                                                                                                               |
| <sup>1)</sup> If the annual average hot water usag                                                                                              | ge is less than 100 litres/day, multiply b                                                       | y (daily hot water usage) / 100                                                                                                                               |
| See notes below Table 3a                                                                                                                        |                                                                                                  |                                                                                                                                                               |
| See notes below Table 3a                                                                                                                        |                                                                                                  |                                                                                                                                                               |
| See notes below Table 3a                                                                                                                        |                                                                                                  |                                                                                                                                                               |
| See notes below Table 3a                                                                                                                        |                                                                                                  |                                                                                                                                                               |
| See notes below Table 3a                                                                                                                        | ooilers tested to EN 13203-2, scl                                                                | nedule 2 plus schedule 3 or 4                                                                                                                                 |
| See notes below Table 3a Table 3c: Losses for combi b Combi type                                                                                | boilers tested to EN 13203-2, scl<br>Storage loss (46a) <sub>m</sub> , kWh/month                 | nedule 2 plus schedule 3 or 4<br>Additional loss (49a) <sub>m</sub> , kWh/mont                                                                                |
| Table 3c: Losses for combi b<br>Combi type                                                                                                      | poilers tested to EN 13203-2, scl<br>Storage loss (46a) <sub>m</sub> , kWh/month<br>0            | $\begin{array}{l} \textbf{Additional loss (49a)_m, kWh/montl} \\ \hline (39d)_m \times [r + \{100.2 - V_{d,m}\} \times F_3 \\ + [F_2 \times n_m] \end{array}$ |
| <b>Table 3c: Losses for combi b</b><br>Combi type<br>Instantaneous, with or without keep-<br>not facility <sup>a)</sup><br>Storage combi boiler | poilers tested to EN 13203-2, scl<br>Storage loss $(46a)_m$ , kWh/month<br>0<br>$F_2 \times n_m$ |                                                                                                                                                               |

Table 3b: Losses for combi boilers tested to EN 13203-2, schedule 2 only

See notes below Table 3a

### Table 4a: Heating systems (space and water)

- 1. The table shows space heating efficiency. The same efficiency applies for water heating when hot water is supplied from a boiler system.
- 2. For independent water heaters see section at the end of table.
- 3. 'Heating type' refers to the appropriate column in Table 8.
- 4. 'Responsiveness (R) is used to calculate mean internal temperature (Table 9b).
- 5. Systems marked "rd" in the right-hand column are part of the reduced data set (see S10 in Appendix S)
- 6. Heating systems, heating controls and fuels are assigned a code number for identification purposes

|                                                                    | Efficiency<br>% | Heating<br>type | Respon-<br>siveness<br>(R) | Code | Rd<br>SAP |
|--------------------------------------------------------------------|-----------------|-----------------|----------------------------|------|-----------|
| NO HEATING SYSTEM PRESENT                                          |                 |                 |                            |      |           |
| Refer to Group 0 in Table 4e for control options and temperature a | djustments due  | to control      |                            |      |           |
| Electric heaters (assumed)                                         | 100             | 1               | 1.0                        | 699  | rd        |

#### CENTRAL HEATING SYSTEMS WITH RADIATORS OR UNDERFLOOR HEATING

#### Gas boilers and oil boilers

For efficiency, use boiler database (www.boilers.org.uk) if possible, otherwise use efficiency from Table 4b. Use Table 4c for efficiency adjustments.

Use Table 4d for heating type and responsiveness.

Refer to Group 1 in Table 4e for control options and temperature adjustments due to control.

### Micro-cogeneration (micro-CHP)

See Appendix N. Performance data to be obtained from boiler database (www.boilers.org.uk). Use Table 4c for efficiency adjustments. Refer to Group 1 in Table 4e for control options and temperature adjustments due to control.

#### Solid fuel boilers

For efficiency, use boiler database if possible, otherwise use efficiency from this table. Column (A) gives minimum values for HETAS approved appliances, use column (B) for other appliances (see section 9.2.3). For open fires with back boilers and closed roomheaters with boilers the efficiencies are the sum

of heat to water and heat to room. See Table 12b for fuel options.

Refer to Group 1 in Table 4e for control options

| (A) | (B)                                                                                                     |                                                                                                                                                                       |                                                       |     |                                                       |
|-----|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|-------------------------------------------------------|
| 65  | 60                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 151 | rd                                                    |
| 60  | 55                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 152 |                                                       |
| 70  | 65                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 153 |                                                       |
| 65  | 60                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 154 | rd                                                    |
| 65  | 63                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 155 |                                                       |
| 63  | 55                                                                                                      | 3                                                                                                                                                                     | 0.50                                                  | 156 | rd                                                    |
| 67  | 65                                                                                                      | 3                                                                                                                                                                     | 0.50                                                  | 158 | rd                                                    |
| 65  | 63                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 159 |                                                       |
| 50  | 45                                                                                                      | 3                                                                                                                                                                     | 0.50                                                  | 160 | rd                                                    |
| 60  | 55                                                                                                      | 3                                                                                                                                                                     | 0.50                                                  | 161 |                                                       |
|     |                                                                                                         |                                                                                                                                                                       |                                                       |     |                                                       |
|     |                                                                                                         |                                                                                                                                                                       |                                                       |     |                                                       |
|     |                                                                                                         |                                                                                                                                                                       |                                                       |     |                                                       |
|     |                                                                                                         |                                                                                                                                                                       |                                                       |     |                                                       |
| 10  | 00                                                                                                      | 1                                                                                                                                                                     | 1.0                                                   | 191 | rd                                                    |
| 10  | 00                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 192 | rd                                                    |
| 10  | 00                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 193 | rd                                                    |
| 8   | 5                                                                                                       | 2                                                                                                                                                                     | 0.75                                                  | 194 |                                                       |
| 10  | 00                                                                                                      | 2                                                                                                                                                                     | 0.75                                                  | 195 | rd                                                    |
| 8   | 5                                                                                                       | 2                                                                                                                                                                     | 0.75                                                  | 196 |                                                       |
|     | (A)<br>65<br>60<br>70<br>65<br>63<br>67<br>65<br>50<br>60<br>10<br>10<br>10<br>10<br>10<br>8<br>10<br>8 | <ul> <li>(A) (B)</li> <li>65 60</li> <li>60 55</li> <li>70 65</li> <li>65 60</li> <li>65 63</li> <li>63 55</li> <li>67 65</li> <li>63 50 45</li> <li>60 55</li> </ul> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| - |                                                                                                                                                                                                                                   | Efficiency<br>%  | Heating<br>type | Respon-<br>siveness<br>(R) | Code | Rd<br>SAP |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------------------|------|-----------|
|   | <ul> <li><sup>a)</sup> Heated space means within the boundary of the dwelling as<br/>defined in section 1, "Dwelling dimensions"</li> <li><sup>b)</sup> Store within boiler capable of meeting all space heating needs</li> </ul> |                  |                 |                            |      |           |
|   | Heat pumps (see also warm air systems)                                                                                                                                                                                            |                  |                 |                            |      |           |
| 1 | Refer to Group 2 in Table 4e for control options                                                                                                                                                                                  |                  |                 |                            |      |           |
| I | The efficiency values shown apply only for heat pumps that cannot                                                                                                                                                                 | be located in th | ie database     | . 1.1 . 4.1                | 201  | 1         |
|   | Ground-to-water heat pump (electric)                                                                                                                                                                                              | 320              | From 1          | able 4d                    | 201  | ra<br>rd  |
|   | Water to water heat pump (electric)                                                                                                                                                                                               | 300              | From 1          | able 4d                    | 202  | rd<br>rd  |
|   | Air-to-water heat nump (electric)                                                                                                                                                                                                 | 250              | From 7          | Table 4d                   | 203  | rd        |
|   | Gas-fired ground source                                                                                                                                                                                                           | 120              | From 7          | Table 4d                   | 204  | Iu        |
|   | Gas-fired water source                                                                                                                                                                                                            | 120              | From 7          | Table 4d                   | 205  |           |
|   | Gas-fired, air source                                                                                                                                                                                                             | 110              | From 7          | Table 4d                   | 207  |           |
|   | COMMUNITY HEATING SCHEMES                                                                                                                                                                                                         |                  |                 |                            |      |           |
|   | For calculation of SAP rating: efficiency is 100% reduced by the a                                                                                                                                                                | mount in the "e  | fficiency ad    | justment"                  |      |           |
|   | coumn of 1able 4c.                                                                                                                                                                                                                | alarad offician  | v instand of    | value from                 |      |           |
|   | For calculation of $CO_2$ emissions: if known, use manufacturer's de this table                                                                                                                                                   | ciarea efficienc | y insieda oj    | value from                 |      |           |
|   | Refer to Group 3 in Table 4e for control options                                                                                                                                                                                  |                  |                 |                            |      |           |
|   | <i>Check Table 4c for efficiency adjustment due to controls.</i>                                                                                                                                                                  |                  |                 |                            |      |           |
|   | Allow for distribution loss (see Table 12c).                                                                                                                                                                                      |                  |                 |                            |      |           |
|   | Community boilers only                                                                                                                                                                                                            | 75               | 1               | 1.0                        | 301  | rd        |
|   | Community CHP and boilers                                                                                                                                                                                                         | 75               | 1               | 1.0                        | 302  | rd        |
|   | Community waste heat from power station and boilers                                                                                                                                                                               | 75 <sup>a)</sup> | 1               | 1.0                        | 303  |           |
|   | Community heat pump                                                                                                                                                                                                               | 300              | 1               | 1.0                        | 304  |           |
|   | Community geothermal heat source and boilers                                                                                                                                                                                      | 75 <sup>a)</sup> | 1               | 1.0                        | 305  |           |
|   | Efficiency of boliers, apply 100% to the heat fraction from waste he                                                                                                                                                              | at or geotherman |                 |                            |      |           |
|   | ELECTRIC STORAGE SYSTEMS                                                                                                                                                                                                          |                  |                 |                            |      |           |
|   | Refer to Group 4 in Table 4e for control options.                                                                                                                                                                                 |                  |                 |                            |      |           |
|   | Off-peak tariffs:                                                                                                                                                                                                                 |                  |                 |                            |      |           |
|   | Old (large volume) storage heaters                                                                                                                                                                                                | 100              | 5               | 0.0                        | 401  | rd        |
|   | Modern (slimline) storage heaters                                                                                                                                                                                                 | 100              | 4               | 0.25                       | 402  | rd        |
|   | Convector storage heaters                                                                                                                                                                                                         | 100              | 4               | 0.25                       | 403  |           |
|   | Fan storage heaters                                                                                                                                                                                                               | 100              | 3               | 0.5                        | 404  | rd        |
|   | Modern (slimline) storage heaters with Celect-type control                                                                                                                                                                        | 100              | 3               | 0.5                        | 405  |           |
|   | Convector storage heaters with Celect-type control                                                                                                                                                                                | 100              | 3               | 0.5                        | 406  |           |
|   | Fan storage heaters with Celect-type control                                                                                                                                                                                      | 100              | 2               | 0.75                       | 407  | 1         |
|   | Integrated storage+direct-acting heater                                                                                                                                                                                           | 100              | 2               | 0.75                       | 408  | ra        |
|   | 24-hour heating tariff:                                                                                                                                                                                                           |                  |                 |                            |      |           |
|   | Modern (slimline) storage heaters                                                                                                                                                                                                 | 100              | 3               | 0.5                        | 402  | rd        |
|   | Convector storage heaters                                                                                                                                                                                                         | 100              | 3               | 0.5                        | 403  |           |
|   | Fan storage heaters                                                                                                                                                                                                               | 100              | 3               | 0.5                        | 404  | rd        |
|   | Modern (slimline) storage heaters with Celect-type control                                                                                                                                                                        | 100              | 2               | 0.75                       | 405  |           |
|   | Convector storage heaters with Celect-type control                                                                                                                                                                                | 100              | 2               | 0.75                       | 406  |           |
|   | Fan storage heaters with Celect-type control                                                                                                                                                                                      | 100              | 2               | 0.75                       | 407  |           |
|   | ELECTRIC UNDERFLOOR HEATING                                                                                                                                                                                                       |                  |                 |                            |      |           |
|   | Refer to Group 7 in Table 4e for control options.                                                                                                                                                                                 |                  |                 |                            |      |           |
|   | Off real tariffe                                                                                                                                                                                                                  |                  |                 |                            |      |           |
|   | UJJ-peak tariffs:                                                                                                                                                                                                                 | 100              | 5               | 0.0                        | 421  | * 1       |
|   | in concrete stab (on-peak only)                                                                                                                                                                                                   | 100              | 3               | 0.0                        | 421  | ru        |

|                                                                         |         | Efficiency<br>%            | y Heating<br>type | Respon-<br>siveness<br>(R) | Code | Rd<br>SAP |
|-------------------------------------------------------------------------|---------|----------------------------|-------------------|----------------------------|------|-----------|
| Integrated (storage+direct-acting)                                      |         | 100                        | 4                 | 0.25                       | 422  | rd        |
| Integrated (storage+direct-acting) with low (off-peak) tarif<br>control | f       | 100                        | 3                 | 0.50                       | 423  |           |
|                                                                         |         |                            |                   |                            |      |           |
| Standard or off-peak tariff:                                            |         | 100                        | 2                 | 0.75                       | 10.1 | 1         |
| In screed above insulation                                              |         | 100                        | 2                 | 0.75                       | 424  | rd        |
| In timber moor, or immediately below moor covering                      |         | 100                        | 1                 | 1                          | 423  |           |
| WARM AIR SYSTEMS                                                        |         |                            |                   |                            |      |           |
| Refer to Group 5 in Table 4e for control options.                       |         |                            |                   |                            |      |           |
| Gas-fired warm air with fan-assisted flue                               |         |                            |                   |                            |      |           |
| Ducted, on-off control, pre 1998                                        |         | 70                         | 1                 | 1.0                        | 501  |           |
| Ducted, on-off control, 1998 or later                                   |         | 76                         | 1                 | 1.0                        | 502  | rd        |
| Ducted, modulating control, pre 1998                                    |         | 72                         | 1                 | 1.0                        | 503  |           |
| Ducted, modulating control, 1998 or later                               |         | 78                         | 1                 | 1.0                        | 504  |           |
| Roomheater with in-floor ducts                                          |         | 69                         | 1                 | 1.0                        | 505  |           |
| Gas fired warm air with balanced or onen flue                           |         |                            |                   |                            |      |           |
| Ducted or stub-ducted on-off control pre 1998                           |         | 70                         | 1                 | 1.0                        | 506  | rd        |
| Ducted or stub-ducted, on off control, pre 1996                         |         | 76                         | 1                 | 1.0                        | 507  | Iu        |
| Ducted or stub-ducted, modulating control, pre 1998                     |         | 70                         | 1                 | 1.0                        | 508  |           |
| Ducted or stub-ducted, modulating control, 1998 or later                |         | 72                         | 1                 | 1.0                        | 500  |           |
| Ducted or stub-ducted with flue heat recovery                           |         | 85                         | 1                 | 1.0                        | 510  | rd        |
| Condensing                                                              |         | 81                         | 1                 | 1.0                        | 511  | rd        |
| Oil fixed worm ein                                                      |         |                            |                   |                            |      |           |
| Ducted output (on/off control)                                          |         | 70                         | 1                 | 1.0                        | 512  | rd        |
| Ducted output (modulating control)                                      |         | 70                         | 1                 | 1.0                        | 512  | Iu        |
| Stub duct system                                                        |         | 70                         | 1                 | 1.0                        | 514  |           |
| Electric mann ein                                                       |         |                            |                   |                            |      |           |
| Electric warm air                                                       |         | 100                        | 2                 | 0.75                       | 515  | rd        |
|                                                                         |         | 100                        | 2                 | 0.75                       | 515  | Iu        |
| Heat pumps                                                              |         |                            | the database      |                            |      |           |
| Ground-to-air heat nump (electric)                                      | innoi b | <i>e localea in</i><br>320 | 1 ine aalabase    | 1.0                        | 521  | rd        |
| Ground-to-air heat pump with auxiliary heater (electric)                |         | 300                        | 1                 | 1.0                        | 522  | rd        |
| Water-to-air heat pump (electric)                                       |         | 300                        | 1                 | 1.0                        | 523  | rd        |
| Air-to-air heat pump (electric)                                         |         | 250                        | 1                 | 1.0                        | 524  | rd        |
| Gas-fired, ground source                                                |         | 120                        | 1                 | 1.0                        | 525  |           |
| Gas-fired, water source                                                 |         | 120                        | 1                 | 1.0                        | 526  |           |
| Gas-fired, air source                                                   |         | 110                        | 1                 | 1.0                        | 527  |           |
| ROOM HEATERS                                                            |         |                            |                   |                            |      |           |
| Refer to Group 6 in Table 4e for control options.                       |         |                            |                   |                            |      |           |
| If declared efficiency is available (see Appendix E) use instead        | d of va | lue from tal               | ole.              |                            |      |           |
| The normal flue type is indicated as OF (open), BF (balanced            | ) or C  | (chimney)                  |                   |                            |      |           |
| Gas (including LPG) room heaters:                                       |         |                            |                   |                            |      |           |
| Column (A) gives efficiency values for mains gas, column (B)            | for LP  | G                          |                   |                            |      |           |
| ŀ                                                                       | Flue    | (A) (B                     | )                 |                            |      |           |
| Gas fire, open flue, pre-1980 (open fronted)                            | OF      | 50 50                      | ) 1               | 1.0                        | 601  | rd        |
| Gas fire, open flue, pre-1980 (open fronted), with                      | OF      | 50 50                      | ) 1               | 1.0                        | 602  | rd        |
| back boiler unit                                                        |         |                            |                   |                            |      |           |
| Gas fire, open flue, 1980 or later (open fronted),                      | OF      | 63 64                      | ↓ 1               | 1.0                        | 603  | rd        |

|                                                                                                                                                                                          |           | Effic    | ciency<br>% | Heating<br>type | Respon-<br>siveness<br>(R) | Code | Rd<br>SAP |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-------------|-----------------|----------------------------|------|-----------|
| sitting proud of, and sealed to, fireplace opening<br>Gas fire, open flue, 1980 or later (open fronted),<br>sitting proud of, and sealed to, fireplace opening, with<br>back boiler unit | OF        | 63       | 64          | 1               | 1.0                        | 604  | rd        |
| Flush fitting Live Fuel Effect gas fire (open fronted),<br>sealed to fireplace opening                                                                                                   | OF        | 40       | 41          | 1               | 1.0                        | 605  | rd        |
| Flush fitting Live Fuel Effect gas fire (open fronted),<br>sealed to fireplace opening with back boiler unit                                                                             | OF        | 40       | 41          | 1               | 1.0                        | 606  | rd        |
| Flush fitting Live Fuel Effect gas fire (open fronted),<br>fan assisted, sealed to fireplace opening                                                                                     | OF        | 45       | 46          | 1               | 1.0                        | 607  | rd        |
| Gas fire or wall heater balanced flue                                                                                                                                                    | BF        | 58       | 60          | 1               | 1.0                        | 609  | rd        |
| Gas fire closed fronted fan assisted                                                                                                                                                     | BF        | 72       | 73          | 1               | 1.0                        | 610  | rd        |
| Condensing gas fire                                                                                                                                                                      | BF        | 85       | 85          | 1               | 1.0                        | 611  | rd        |
| Descrative Eval Effect and fire, open to shimpey                                                                                                                                         | C         | 20       | 20          | 1               | 1.0                        | 612  | rd        |
| Elueless gas fire, secondary heating only                                                                                                                                                | none      | 20       | 02          | 1               | 1.0                        | 613  | rd        |
| (add additional ventilation requirements in box (9a)                                                                                                                                     | none      | 90       | 92          | 1               | 1.0                        | 015  | Iu        |
| Oil room heaters:                                                                                                                                                                        | Flue      |          |             |                 |                            |      |           |
| Room heater, pre 2000                                                                                                                                                                    | OF        | 4        | 55          | 1               | 1.0                        | 621  | rd        |
| Room heater, pre 2000, with boiler (no radiators)                                                                                                                                        | OF        | e        | 55          | 1               | 1.0                        | 622  | rd        |
| Room heater, 2000 or later                                                                                                                                                               | OF        | 6        | 50          | 1               | 1.0                        | 623  | rd        |
| Room heater, 2000 or later with boiler (no radiators)                                                                                                                                    | OF        | 7        | 70          | 1               | 1.0                        | 624  | rd        |
| Solid fuel room heaters                                                                                                                                                                  |           |          |             |                 |                            |      |           |
| Column (A) gives minimum values for HETAS approved a (see section 9.2.3).                                                                                                                | ppliances | , use co | olumn (1    | B) for other    | appliances                 |      |           |
|                                                                                                                                                                                          | Flue      | (A)      | (B)         |                 |                            |      |           |
| Open fire in grate                                                                                                                                                                       | С         | 37       | 32          | 3               | 0.50                       | 631  | rd        |
| Open fire with back boiler (no radiators)                                                                                                                                                | С         | 50       | 50          | 3               | 0.50                       | 632  | rd        |
| Closed room heater                                                                                                                                                                       | OF*       | 65       | 60          | 3               | 0.50                       | 633  | rd        |
| Closed room heater with boiler (no radiators)                                                                                                                                            | OF*       | 67       | 65          | 3               | 0.50                       | 634  | rd        |
| Stove (pellet fired)                                                                                                                                                                     | OF*       | 65       | 63          | 2               | 0.75                       | 635  |           |
| Stove (pellet fired) with boiler (no radiators)                                                                                                                                          | OF*       | 65       | 63          | 2               | 0.75                       | 636  |           |
| * some wood-burning appliances have a room-sealed flue                                                                                                                                   | 01        | 00       | 00          | _               | 0170                       | 000  |           |
| Electric (direct acting) room heaters:                                                                                                                                                   |           |          |             |                 |                            |      |           |
| Panel, convector or radiant heaters*                                                                                                                                                     |           | 1        | 00          | 1               | 1.0                        | 691  | rd        |
| Fan heaters                                                                                                                                                                              |           | 1        | 00          | 1               | 1.0                        | 692  |           |
| Portable electric heaters                                                                                                                                                                |           | 1        | 00          | 1               | 1.0                        | 693  | rd        |
| Water- or oil-filled radiators                                                                                                                                                           |           | 1        | 00          | 1               | 1.0                        | 694  |           |
| OTHER SPACE HEATING SYSTEMS                                                                                                                                                              |           |          |             |                 |                            |      |           |
| <i>Refer to Group / in Table 4e for control options.</i><br>Electric ceiling heating                                                                                                     |           | 1        | 00          | 2               | 0.75                       | 701  | rd        |
|                                                                                                                                                                                          |           |          |             |                 |                            |      |           |

## Table 4a (continued)

|                                                                   | Efficiency<br>%                         | Code | Rd<br>SAP |
|-------------------------------------------------------------------|-----------------------------------------|------|-----------|
| HOT WATER SYSTEMS                                                 |                                         |      |           |
| No hot water system present - electric immersion assumed          | 100                                     | 999  | rd        |
| From main heating system                                          | efficiency of main system, except:      | 901  | rd        |
| Back boiler (hot water only), gas                                 | 65                                      |      |           |
| Circulator built into a gas warm air system, pre 1998             | 65                                      |      |           |
| Circulator built into a gas warm air system, 1998 or later        | 73                                      |      |           |
| From secondary system                                             | efficiency of secondary heater, except: | 902  | rd        |
| Back boiler (hot water only), gas                                 | 65                                      |      |           |
| Electric immersion (on-peak or off-peak)                          | 100                                     | 903  | rd        |
| Single-point gas water heater (instantaneous at point of use)     | 70                                      | 907  | rd        |
| Multi-point gas water heater (instantaneous serving several taps) | 65                                      | 908  | rd        |
| Electric instantaneous at point of use                            | 100                                     | 909  | rd        |
| Gas boiler/circulator for water heating only*                     | 65                                      | 911  |           |
| Oil boiler/circulator for water heating only*                     | 70                                      | 912  |           |
| Solid fuel boiler/circulator for water heating only               | 55                                      | 913  |           |
| Range cooker with boiler for water heating only:*                 |                                         |      |           |
| Gas, single burner with permanent pilot                           | 46                                      | 921  |           |
| Gas, single burner with automatic ignition                        | 50                                      | 922  |           |
| Gas, twin burner with permanent pilot pre 1998                    | 60                                      | 923  |           |
| Gas, twin burner with automatic ignition pre 1998                 | 65                                      | 924  |           |
| Gas, twin burner with permanent pilot 1998 or later               | 65                                      | 925  |           |
| Gas, twin burner with automatic ignition 1998 or later            | 70                                      | 926  |           |
| Oil, single burner                                                | 60                                      | 927  |           |
| Oil, twin burner pre 1998                                         | 70                                      | 928  |           |
| Oil, twin burner 1998 or later                                    | 75                                      | 929  |           |
| Solid fuel, integral oven and boiler                              | 45                                      | 930  |           |
| Solid fuel, independent oven and boiler                           | 55                                      | 931  |           |
| From hot-water only community scheme - boilers                    | 75                                      | 950  |           |
| From hot-water only community scheme - CHP                        | 75                                      | 951  |           |
| From hot-water only community scheme - heat pump                  | 300                                     | 952  |           |
|                                                                   |                                         |      |           |

\* If available use data from the boiler database instead of the values in this table

## Table 4b: Seasonal efficiency for gas and oil boilers

- This table is to be used only for gas and oil boilers which cannot be located in the database.
   See section 9.2.2 for application of the efficiency values in this table.
- See Appendix B for guidance on boiler classification.
   Apply efficiency adjustments in Table 4c if appropriate.
- 5. See Table 4d for heating type and responsiveness.
- 6. Systems marked "rd" in the right-hand column are part of the reduced data set (see S10 in Appendix S)

| Boiler                                                           | Efficie | ency, % | Codo | Rd  |
|------------------------------------------------------------------|---------|---------|------|-----|
|                                                                  |         | Summer  | Coue | SAP |
| Gas boilers (including LPG) 1998 or later                        |         |         |      |     |
| Regular non-condensing with automatic ignition                   | 74      | 64      | 101  | rd  |
| Regular condensing with automatic ignition                       | 84      | 74      | 102  | rd  |
| Non-condensing combi with automatic ignition                     | 74      | 65      | 103  | rd  |
| Condensing combi with automatic ignition                         | 84      | 75      | 104  | rd  |
| Regular non-condensing with permanent pilot light                | 70      | 60      | 105  | rd  |
| Regular condensing with permanent pilot light                    | 80      | 70      | 106  |     |
| Non-condensing combi with permanent pilot light                  | 70      | 61      | 107  | rd  |
| Condensing combi with permanent pilot light                      | 80      | 71      | 108  |     |
| Back boiler to radiators                                         | 66      | 56      | 109  | rd  |
| (select gas fire as secondary heater, see section 9.2.5)         |         |         |      |     |
| Gas boilers (including LPG) pre-1998, with fan-assisted flue     |         |         |      |     |
| Low thermal capacity                                             | 73      | 63      | 110  |     |
| High or unknown thermal capacity                                 | 69      | 59      | 111  | rd  |
| Combi                                                            | 71      | 62      | 112  | rd  |
| Condensing combi                                                 | 84      | 75      | 113  | rd  |
| Condensing                                                       | 84      | 74      | 114  | rd  |
| Gas boilers (including LPG) pre-1998, with balanced or open flue |         |         |      |     |
| Wall mounted                                                     | 66      | 56      | 115  | rd  |
| Floor mounted, pre 1979                                          | 56      | 46      | 116  | rd  |
| Floor mounted, 1979 to 1997                                      | 66      | 56      | 117  | rd  |
| Combi                                                            | 66      | 57      | 118  | rd  |
| Back boiler to radiators                                         | 66      | 56      | 119  | rd  |
| (select gas fire as secondary heater, see section 9.2.5)         |         |         |      |     |
| Combined Primary Storage Units (CPSU) (mains gas and LPG)        |         |         |      |     |
| With automatic ignition (non-condensing)                         | 74      | 72      | 120  | rd  |
| With automatic ignition (condensing)                             | 83      | 81      | 121  | rd  |
| With permanent pilot (non-condensing)                            | 70      | 68      | 122  |     |
| With permanent pilot (condensing)                                | 79      | 77      | 123  |     |
| Oil boilers                                                      |         |         |      |     |
| Standard oil boiler pre-1985                                     | 66      | 54      | 124  |     |
| Standard oil boiler 1985 to 1997                                 | 71      | 59      | 125  | rd  |
| Standard oil boiler, 1998 or later                               | 80      | 68      | 126  | rd  |
| Condensing                                                       | 84      | 72      | 127  | rd  |
| Combi, pre-1998                                                  | 71      | 62      | 128  | rd  |
| Combi, 1998 or later                                             | 77      | 68      | 129  | rd  |
| Condensing combi                                                 | 82      | 73      | 130  | rd  |
| Oil room heater with boiler to radiators, pre 2000               | 66      | 54      | 131  | rd  |
| Oil room heater with boiler to radiators, 2000 or later          | 71      | 59      | 132  | rd  |
| Range cooker boilers (mains gas and LPG)                         |         |         |      |     |
| Single burner with permanent pilot                               | 47      | 37      | 133  | rd  |
| Single burner with automatic ignition                            | 51      | 41      | 134  | rd  |
| Twin burner with permanent pilot (non-condensing) pre 1998       | 61      | 51      | 135  |     |
| Twin burner with automatic ignition (non-condensing) pre 1998    | 66      | 56      | 136  | rd  |

| Twin burner with permanent pilot (non-condensing) 1998 or later<br>Twin burner with automatic ignition (non-condensing) 1998 or later | 66<br>71 | 56<br>61 | 137<br>138 |    |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|----|
| Range cooker boilers (oil)                                                                                                            |          |          |            |    |
| Single burner                                                                                                                         | 61       | 49       | 139        | rd |
| Twin burner (non-condensing) pre 1998                                                                                                 | 71       | 59       | 140        | rd |
| Twin burner (non-condensing) 1998 or later                                                                                            | 76       | 64       | 141        |    |

# Table 4c: Efficiency adjustments

| Heating system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eff                              | iciency a                                           | djustment                                                  | , %                            |                |  |   |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------|------------------------------------------------------------|--------------------------------|----------------|--|---|------------------|
| <b>Gas or oil boiler systems with radiators or underfloor heating:</b><br><i>The adjustments are to be applied to the space and water heating seasonal egulues and efficiency values from Table 4b.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ficiency fo                      | r both tes                                          | ted efficier                                               | ісу                            |                |  |   |                  |
| (1) Efficiency adjustment due to lower temperature of distribution system:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spa<br>Mains                     | oce<br>Oil or                                       | DH<br>Mains                                                | IW<br>Oil oi                   |                |  |   |                  |
| Condensing boiler with load compensator <sup>a)</sup><br>Condensing boiler with weather compensator <sup>a)</sup><br>Condensing boiler with under-floor heating <sup>a) b)</sup><br>Condensing boiler with thermal store <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>gas</b><br>0<br>+3<br>+3<br>0 | <b>LPG</b><br>0<br>+1.5<br>+2<br>0                  | <b>gas</b><br>0<br>0<br>0<br>0                             | <b>LPG</b><br>0<br>0<br>0<br>0 |                |  |   |                  |
| <ul> <li>(2) Efficiency adjustment due to control system         No thermostatic control of room temperature – regular boiler <sup>c)</sup>         No thermostatic control of room temperature – combi <sup>c)</sup>         No boiler interlock – regular boiler <sup>c)</sup>         No boiler interlock - combi <sup>c)</sup> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5<br>-5<br>-5<br>-5             |                                                     | -5<br>-5<br>-5<br>-5                                       |                                | -5<br>-5<br>-5 |  | - | 5<br>0<br>5<br>0 |
| Community heating systems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                                     |                                                            |                                |                |  |   |                  |
| <ul> <li>(3) Factor for controls and charging method<br/>Flat rate charging<sup>d)</sup>, no thermostatic control of room temperature<br/>Flat rate charging, programmer, no room thermostat<br/>Flat rate charging, programmer and room thermostat<br/>Flat rate charging, programmer and room thermostat<br/>Flat rate charging, TRVs<br/>Flat rate charging, programmer and TRVs<br/>Charging system linked to use of community heating, room<br/>thermostat only</li> <li>Charging system linked to use of community heating, programmer<br/>and room thermostat</li> <li>Charging system linked to use of community heating, TRVs</li> <li>Charging system linked to use of community heating, programmer<br/>and room thermostat</li> <li>Charging system linked to use of community heating, programmer<br/>and room thermostat</li> <li>Charging system linked to use of community heating, programmer<br/>and TRVs</li> </ul> |                                  | 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.              | 90<br>90<br>95<br>95<br>95<br>95<br>95<br>95<br>1.0<br>1.0 |                                |                |  |   |                  |
| <ul> <li>Heat pumps:</li> <li>(4) Efficiency adjustment due to temperature of heat supplied<br/>Heat pump with underfloor heating<br/>Heat pump with radiators without load or weather compensation <sup>e)</sup><br/>Heat pump with radiators and load or weather compensation <sup>e)</sup><br/>Warm-air heat pump</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M<br>Spa<br>1.<br>0.<br>0.<br>1  | f <b>ultiply e</b> f<br>ace<br>.0<br>.7<br>75<br>.0 | fficiency b<br>Dł                                          | oy:<br>HW                      |                |  |   |                  |
| Heat pump supplying all DHW<br>Heat pump supplying 50% DHW (see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.                               |                                                     | 0<br>1                                                     | .7<br>.0                       |                |  |   |                  |

Notes to Table 4e:

- a) These are mutually exclusive and therefore do not accumulate; if more than one applies, the highest applicable efficiency adjustment is to be used. Also, these efficiency adjustments are not applied if there is a flue gas heat recovery device/system.
- b) Adjustment is applicable if the boiler supplies only the underfloor heating, and not if it also feeds radiators or supplies hot water.
- c) These do not accumulate as no thermostatic control or presence of a bypass means that there is no boiler interlock.
- d) 'Flat rate charging' means that households pay for the heat according to a fixed monthly or annual amount, not depending on the amount of heat actually used. If the charges vary within a scheme for other reasons, for example according to dwelling size, it is still classified as flat rate. 'Charging system linked to use of community heating' refers to a system in which the charges are substantially related to the amount of heat used.
- e) Based on maximum heat distribution temperature of 50°C.

# Table 4d: Heating type and responsiveness for wet systems with heat supplied to radiators or underfloor heating

| Heat emitter                     | Heating type | Responsiveness (R) |
|----------------------------------|--------------|--------------------|
| Systems with radiators:          | 1            | 1.0                |
| Underfloor heating (wet system): |              |                    |
| pipes in insulated timber floor  | 1            | 1.0                |
| pipes in screed above insulation | 2            | 0.75               |
| pipes in concrete slab           | 4            | 0.25               |

## Table 4e: Heating system controls

l

- 1. Use Table 4a to select appropriate Group in this table.
- 'Control' indicates the appropriate column to use in Table 9.
   The 'Temperature adjustment' modifies the living area mean internal temperature obtained from Table 8 and should be entered into box (71) of the worksheet.
- 4. Controls marked "rd" in the right-hand column are part of the reduced data set (see S10 in Appendix S)

| Type of control                                                                                              | Control             | Temperature<br>adjustment,<br>°C | Reference to<br>other possible<br>adjustments | Code | rd<br>SAP |
|--------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|-----------------------------------------------|------|-----------|
| GROUP 0: NO HEATING SYSTEM PRESENT                                                                           |                     | -                                |                                               |      |           |
| None                                                                                                         | 2                   | +0.3                             | n/a                                           | 2699 | rd        |
| GROUP 1: BOILER SYSTEMS WITH RADIATORS                                                                       | OR UNDERFLO         | OR HEATING                       |                                               |      |           |
| No time or thermostatic control of room temperature                                                          | 1                   | +0.6                             | Table 4c(2)                                   | 2101 | rd        |
| Programmer, no room thermostat                                                                               | 1                   | +0.6                             | Table $4c(2)$                                 | 2102 | rd        |
| Room thermostat only                                                                                         | 1                   | 0                                | Table $4c(2)$                                 | 2103 | rd        |
| Programmer and room thermostat                                                                               | 1                   | 0                                | Table $4c(2)$                                 | 2104 | rd        |
| Programmer and at least two room thermostats                                                                 | 2                   | 0                                | Table $4c(2)$                                 | 2105 | rd        |
| Programmer, room thermostat and TRVs                                                                         | 2                   | 0                                | Table $4c(2)$                                 | 2106 | rd        |
| TRVs and bypass                                                                                              | 2                   | 0                                | Table $4c(2)$                                 | 2111 |           |
| Programmer, TRVs and bypass                                                                                  | 2                   | 0                                | Table $4c(2)$                                 | 2107 | rd        |
| Programmer, TRVs and flow switch                                                                             | 2                   | 0                                | Table $4c(2)$                                 | 2108 |           |
| Programmer, TRVs and boiler energy manager                                                                   | 2                   | 0                                | Table $4c(2)$                                 | 2109 | rd        |
| Time and temperature zone control                                                                            | 3                   | 0                                | Table 4c(2)                                   | 2110 | rd        |
| Adjustments for features of control systems:<br>(applicable to any control option above and in addition to   | the adjustments sel | ected above)                     |                                               |      |           |
| Delayed start thermostat                                                                                     | one of the above    | -0.15                            | n/a                                           |      |           |
| Load or weather compensation                                                                                 | one of the above    | 0                                | Table $4c(1)$                                 |      |           |
| Temperature control of water heating (cylinderstat)                                                          | n/a                 | n/a                              | Tables 2b and 3                               |      | rd        |
| Time control of water heating (separate programming)                                                         | n/a                 | n/a                              | Table 2b                                      |      |           |
| Adjustments for features other than controls:                                                                |                     |                                  |                                               |      |           |
| Temperature adjustment for CPSU                                                                              | n/a                 | -0.1                             | n/a                                           |      | rd        |
| or integrated thermal store                                                                                  |                     |                                  |                                               |      |           |
| Underfloor heating                                                                                           | n/a                 | n/a                              | Table 4c(1)                                   |      | rd        |
| GROUP 2: HEAT PUMPS WITH RADIATORS OR U                                                                      | NDERFLOOR H         | EATING                           |                                               |      |           |
| No time or thermostatic control of room temperature                                                          | 1                   | +0.3                             | Table 4c(4)                                   | 2201 | rd        |
| Programmer, no room thermostat                                                                               | 1                   | +0.3                             | Table $4c(4)$                                 | 2202 | rd        |
| Room thermostat only                                                                                         | 1                   | 0                                | Table $4c(4)$                                 | 2203 | rd        |
| Programmer and room thermostat                                                                               | 1                   | 0                                | Table $4c(4)$                                 | 2204 | rd        |
| Programmer and at least two room thermostats                                                                 | 2                   | 0                                | Table $4c(4)$                                 | 2205 | rd        |
| Programmer, TRVs and bypass                                                                                  | 2                   | 0                                | Table $4c(4)$                                 | 2206 | rd        |
| Time and temperature zone control                                                                            | 3                   | 0                                | Table 4c(4)                                   | 2207 | rd        |
| Adjustments for features of control systems:<br>(applicable to any control option above and in addition to a | the adjustments sel | ected above)                     |                                               |      |           |
| Load or weather compensation                                                                                 | one of the above    | 0                                | Table 4c(4)                                   |      |           |
| Temperature control of water heating (cylinderstat)                                                          | n/a                 | n/a                              | Tables 2b and 3                               |      | rd        |
| Time control of water heating (separate programming)                                                         | n/a                 | n/a                              | Table 2b                                      |      |           |
| Table 4e continued                                                                                           |                     |                                  |                                               |      |           |

| Type of control                                                                                                                                                                                                                                                                                                                                                                                                                                | Control       | Temperature<br>adjustment,<br>°C | Reference to<br>other possible<br>adjustments | Code | Rd<br>SAP |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|-----------------------------------------------|------|-----------|--|--|--|--|
| Adjustments for features other than controls:                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                  |                                               |      |           |  |  |  |  |
| Temperature adjustment for integrated thermal store                                                                                                                                                                                                                                                                                                                                                                                            | n/a           | -0.1                             | n/a                                           |      | rd        |  |  |  |  |
| GROUP 3: COMMUNITY HEATING SCHEMES                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                  |                                               |      |           |  |  |  |  |
| Flat rate charging*, no thermostatic control of room temperature                                                                                                                                                                                                                                                                                                                                                                               | 1             | +0.3                             | Table 4c(3)                                   | 2301 | rd        |  |  |  |  |
| Flat rate charging*, programmer, no room thermostat                                                                                                                                                                                                                                                                                                                                                                                            | 1             | +0.3                             | Table $4c(3)$                                 | 2302 | rd        |  |  |  |  |
| Flat rate charging*, room thermostat only                                                                                                                                                                                                                                                                                                                                                                                                      | 1             | 0                                | Table $4c(3)$                                 | 2303 | rd        |  |  |  |  |
| Flat rate charging*, programmer and room thermostat                                                                                                                                                                                                                                                                                                                                                                                            | 1             | 0                                | Table $4c(3)$                                 | 2304 | rd        |  |  |  |  |
| Flat rate charging*, TRVs                                                                                                                                                                                                                                                                                                                                                                                                                      | 2             | 0                                | Table $4c(3)$                                 | 2307 |           |  |  |  |  |
| Flat rate charging*, programmer and TRVs                                                                                                                                                                                                                                                                                                                                                                                                       | 2             | 0                                | Table $4c(3)$                                 | 2305 | rd        |  |  |  |  |
| Charging system linked to use of community heating,<br>room thermostat only                                                                                                                                                                                                                                                                                                                                                                    | 2             | 0                                | Table $4c(3)$                                 | 2308 |           |  |  |  |  |
| Charging system linked to use of community heating,                                                                                                                                                                                                                                                                                                                                                                                            | 2             | 0                                | Table 4c(3)                                   | 2309 |           |  |  |  |  |
| Charging system linked to use of community heating,                                                                                                                                                                                                                                                                                                                                                                                            | 3             | 0                                | Table 4c(3)                                   | 2310 |           |  |  |  |  |
| Charging system linked to use of community heating,                                                                                                                                                                                                                                                                                                                                                                                            | 3             | 0                                | Table 4c(3)                                   | 2306 | rd        |  |  |  |  |
| programmer and TRVs<br>* 'Flat rate charging' means that households pay for the heat according to a fixed monthly or annual amount, not<br>depending on the amount of heat actually used. If the charges vary within a scheme for other reasons, for example<br>according to dwelling size, it is still classified as flat rate. Other entries refers to a system in which the charges are<br>substantially related to the amount of heat used |               |                                  |                                               |      |           |  |  |  |  |
| <b>GROUP 4: ELECTRIC STORAGE SYSTEMS</b>                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                  |                                               |      |           |  |  |  |  |
| Manual charge control                                                                                                                                                                                                                                                                                                                                                                                                                          | 3             | +0.3                             | n/a                                           | 2401 | rd        |  |  |  |  |
| Automatic charge control                                                                                                                                                                                                                                                                                                                                                                                                                       | 3             | 0                                | n/a                                           | 2402 | rd        |  |  |  |  |
| Celect-type controls                                                                                                                                                                                                                                                                                                                                                                                                                           | 3             | 0                                | n/a                                           | 2403 |           |  |  |  |  |
| GROUP 5: WARM AIR SYSTEMS (including heat pur                                                                                                                                                                                                                                                                                                                                                                                                  | nps with warn | n air distribution               | )                                             |      |           |  |  |  |  |

| GROUP 5: WARM AIR SYSTEMS (including hear    | t pumps with warm | n air distribution) |     |      |    |
|----------------------------------------------|-------------------|---------------------|-----|------|----|
| No thermostatic control of room temperature  | 1                 | +0.3                | n/a | 2501 | rd |
| Programmer, no room thermostat               | 1                 | +0.3                | n/a | 2502 | rd |
| Room thermostat only                         | 1                 | 0                   | n/a | 2503 | rd |
| Programmer and room thermostat               | 1                 | 0                   | n/a | 2504 | rd |
| Programmer and at least two room thermostats | 2                 | 0                   | n/a | 2505 | rd |
| Time and temperature zone control            | 3                 | 0                   | n/a | 2506 | rd |
| <b>GROUP 6: ROOM HEATER SYSTEMS</b>          |                   |                     |     |      |    |
| No thermostatic control of room temperature  | 2                 | +0.3                | n/a | 2601 | rd |
| Appliance thermostats                        | 3                 | 0                   | n/a | 2602 | rd |
| Programmer and appliance thermostats         | 3                 | 0                   | n/a | 2603 | rd |
| Room thermostats only                        | 3                 | 0                   | n/a | 2604 | rd |
| Programmer and room thermostats              | 3                 | 0                   | n/a | 2605 | rd |
| GROUP 7: OTHER SYSTEMS                       |                   |                     |     |      |    |
| No thermostatic control of room temperature  | 1                 | +0.3                | n/a | 2701 | rd |
| Programmer, no room thermostat               | 1                 | +0.3                | n/a | 2702 | rd |
| Room thermostat only                         | 1                 | 0                   | n/a | 2703 | rd |
| Programmer and room thermostat               | 1                 | 0                   | n/a | 2704 | rd |
| Temperature zone control                     | 2                 | 0                   | n/a | 2705 | rd |
| Time and temperature zone control            | 3                 | 0                   | n/a | 2706 | rd |

### Table 4f: Electricity for fans and pumps and electric keep-hot facility

| Equipment                                                                                                                                                            | kWh/year                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Heating system:                                                                                                                                                      |                                            |
| Central heating pump (supplying hot water to radiators or underfloor system)                                                                                         | 130 <sup>a)</sup>                          |
| Oil boiler <sup>b)</sup> - pump (supplying oil to boiler and flue fan) <sup>c)</sup>                                                                                 | 100 <sup>a)</sup>                          |
| Gas boiler - flue fan (if fan assisted flue)                                                                                                                         | 45                                         |
| Gas-fired heat pump - flue fan (if fan assisted flue)                                                                                                                | 45                                         |
| Warm air heating system fans <sup>d)</sup>                                                                                                                           | $0.6 \times V$                             |
| Keep-hot facility of a combi boiler:                                                                                                                                 |                                            |
| Electricity for maintaining keep-hot facility <sup>e) f)</sup><br>- keep-hot facility, controlled by time clock<br>- keep-hot facility, not controlled by time clock | 600<br>900                                 |
| Ventilation system:                                                                                                                                                  |                                            |
| Mechanical extract ventilation <sup>g)</sup>                                                                                                                         | $SFP \times 1.22 \times V$                 |
| Balanced whole house mechanical ventilation fans <sup>g)</sup>                                                                                                       | $SFP \times 2.44 \times n_{mech} \times V$ |
| Positive input ventilation (from loft space)                                                                                                                         | 0                                          |
| Positive input ventilation (from outside) <sup>g)</sup>                                                                                                              | $SFP \times 1.22 \times V$                 |
| Solar water heating pump:                                                                                                                                            |                                            |
| Solar water heating pump, electrically powered<br>Solar water heating pump, PV powered                                                                               | 75<br>0                                    |

Notes:

*a) Multiply by a factor of 1.3 if room thermostat is absent.* 

<sup>b)</sup> Applies to all oil boilers that provide main heating, but not if boiler provides hot water only.

<sup>c)</sup> The same motor operates both the pump and the flue fan.

d) If the heating system is a warm air unit and there is balanced whole house mechanical ventilation, the electricity for warm air circulation should not be included in addition to the electricity for mechanical ventilation. However it is included for a warm air system and MEV or PIV from outside. V is the volume of the dwelling in m<sup>3</sup>.

*e)* See notes to Table 3a for the definition of keep-hot facility.

<sup>f)</sup> In the case of an electrically powered keep-hot facility where the power rating of the keep-hot heater is obtained from the Boiler Efficiency database, the electric part of the total combi loss should be taken as:

LE = 8.76 x P (kWh/year) (subject to maximum of the value from Table 3a, 3b or 3c) where P is the power rating of the heater in watts

with the remainder (either 600 - LE or 900 - LE) provided by the fuel.

<sup>g)</sup> SFP is specific fan power in W/(litre/sec), see paragraph 2.6 and Table 4g, V is volume of the dwelling in  $m^3$ .  $n_{mech}$  is the throughput of the MVHR system, see paragraph 2.6.

# Table 4g: Default specific fan power for mechanical ventilation systems and heat recovery efficiency for MVHR systems

- 1. The data in Table 4g are used only where values for the specific product are not available.
- 2. The SFP values apply to both rigid and flexible ducting.
- Values of specific fan power and heat recovery efficiency are to be multiplied by the appropriate in-use factor for default data (Table 4h).

| Type of mechanical ventilation                                                                            | SFP,<br>W/(litre/sec) | Heat recovery<br>efficiency |
|-----------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|
| Mechanical extract ventilation (centralised or decentralised), or positive input ventilation from outside | 0.8                   | -                           |
| Balanced whole house mechanical ventilation, without heat recovery                                        | 2.0                   | -                           |
| Balanced whole house mechanical ventilation, with heat recovery                                           | 2.0                   | 66%                         |

### Table 4h: In-use factors for mechanical ventilation systems

| Type of mechanical ventilation                                                                         | In-<br>Spec      | In-use factor for<br>Specific fan power |            |                      | In-use factor for<br>Efficiency  |  |  |
|--------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|------------|----------------------|----------------------------------|--|--|
|                                                                                                        | Flexible<br>duct | Rigid<br>duct                           | No<br>duct | Uninsulated<br>ducts | Insulated<br>ducts <sup>c)</sup> |  |  |
| Mechanical extract ventilation or positive input ventilation from outside, centralised <sup>a)</sup>   | 1.70             | 1.40                                    | -          | -                    | -                                |  |  |
| Mechanical extract ventilation or positive input ventilation from outside, decentralised <sup>a)</sup> | 1.45             | 1.30                                    | 1.15       | -                    | -                                |  |  |
| Balanced whole house mechanical ventilation, without heat recovery <sup>a)</sup>                       | 1.70             | 1.40                                    | -          | -                    | -                                |  |  |
| Balanced whole house mechanical ventilation, with heat recovery <sup>a)</sup>                          | 1.70             | 1.40                                    | -          | 0.70                 | 0.85                             |  |  |
| Default data from Table 4g (all types) <sup>b)</sup>                                                   |                  | 2.5                                     |            | 0.7                  | 0                                |  |  |

<sup>a)</sup> Use these values for data from the database or from data sheets obtained from <u>www.sap-appendixq.org.uk</u>

<sup>b)</sup> Use these values for data from Table 4g.

<sup>c)</sup> This column applies when <u>all</u> ductwork is within the insulated envelope of the building even though ductwork is not itself insulated.

Tables - 19

## Table 5: Internal heat gains (in watts)

| Source         | (A) Typical gains                                             | (B) Reduced gains                                             |
|----------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Metabolic      | $60 \times N$                                                 | $50 \times N$                                                 |
| Lighting       | equation (L8) in Appendix L                                   | equation (L8a) in Appendix L                                  |
| Appliances     | equation (L11) in Appendix L                                  | equation (L11a) in Appendix L                                 |
| Cooking        | $35 + 7 \times N$                                             | $23 + 5 \times N$                                             |
| Water heating  | $1000 \times (52)_{\mathrm{m}} \div (\mathrm{n_m} \times 24)$ | $1000 \times (52)_{\mathrm{m}} \div (\mathrm{n_m} \times 24)$ |
| Losses         | $-40 \times N$                                                | $-40 \times N$                                                |
| Pumps and fans | Table 5a                                                      | Table 5a                                                      |

Notes:

- 1. N is the assumed number of occupants, based on floor area.
- 2. Losses comprise heat to incoming cold water and evaporation.
- 3. Column (A) applies for the calculation of ratings. Column (B) applies to the calculation of the DER for new dwellings.

### Table 5a: Gains from pumps and fans

| Function                                                                   | Gains (W)                  |
|----------------------------------------------------------------------------|----------------------------|
| Central heating pump in heated space <sup>a)</sup>                         | 10                         |
| Oil boiler pump, inside dwelling <sup>b)</sup>                             | 10                         |
| Warm air heating system fans <sup>a) c)</sup>                              | $0.06 \times V$            |
| Fans for positive input ventilation from outside                           | $SFP \times 0.12 \times V$ |
| Fans for balanced whole house mechanical ventilation without heat recovery | $SFP \times 0.06 \times V$ |

Notes:

*a)* Does not apply to community heating

<sup>b)</sup> Only for boiler providing main heating. In addition to central heating pump, but not if oil pump is outside dwelling.

*c)* If the heating system is a warm air unit and there is balanced whole house mechanical ventilation, the gains for the warm air system should not be included.

V is the volume of the dwelling.

Gains are not added in for MVHR systems (because their effect is included in the MVHR efficiency), nor for MEV systems.

# Table 6a: Mean global solar irradiation on a horizontal plane (latitude $53.4^\circ N)$ and solar declination

| Solar radiation on the horizontal (W/m <sup>2</sup> ) |                                                  |      |     |      |      |      |      |     |      |       |       |
|-------------------------------------------------------|--------------------------------------------------|------|-----|------|------|------|------|-----|------|-------|-------|
| JanFebMarAprMayJunJulAugSepOctNovDec                  |                                                  |      |     |      |      |      |      |     |      |       |       |
| 26                                                    | 54                                               | 94   | 150 | 190  | 201  | 194  | 164  | 116 | 68   | 33    | 21    |
|                                                       |                                                  |      |     |      |      |      |      |     |      |       |       |
|                                                       | Solar declination (°)                            |      |     |      |      |      |      |     |      |       |       |
| Jan                                                   | Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec |      |     |      |      |      |      |     |      |       |       |
| -20.7                                                 | -12.8                                            | -1.8 | 9.8 | 18.8 | 23.1 | 21.2 | 13.7 | 2.9 | -8.7 | -18.4 | -23.0 |

### Solar radiation on vertical surfaces for solar gain through windows and roof windows

Solar radiation is obtained from the data in Table 6a as follows.

 $F_{x}(m) = R_{htov}(\theta) S_{h}$  where  $R_{htov}(\theta) = A + B \cos(\theta) + C \cos(2\theta)$ 

$$\begin{split} &A=\ 0.702\ -0.0119\ (\varphi-\delta)+0.000204\ (\varphi-\delta)^2\\ &B=-0.107+0.0081\ (\varphi-\delta)\ -0.000218\ (\varphi-\delta)^2\\ &C=\ 0.117\ -0.0098\ (\varphi-\delta)+0.000143\ (\varphi-\delta)^2\\ &\text{and}\\ &Fx_i(m)\ is\ the\ vertical\ solar\ flux\ for\ an\ element\ in\ month\ m\ with\ orientation\ \theta\ (W/m^2)\\ &R_{htov}(\theta)\ is\ the\ factor\ for\ converting\ from\ horizontal\ to\ vertical\ solar\ flux\\ &\theta\ is\ the\ orientation\ of\ the\ opening\ measured\ eastwards\ from\ North\ (e.g.\ East=90^\circ)\ (^\circ)\\ &\varphi\ is\ the\ latitude\ of\ the\ site\ (^\circ)=53.4^\circ\ o\ Table\ 10\ for\ summer\ calculations\\ &\delta\ is\ the\ solar\ declination\ for\ month\ m\ (^\circ)\ (Table\ 6a)\\ &S_h\ is\ the\ horizontal\ solar\ flux\ (W/m^2)\ (Table\ 6a\ o\ Table\ 10) \end{split}$$

For roof windows

- if orientated within  $\pm 30^\circ$  of North, the value for a North-facing vertical surface

- otherwise the value for a horizontal surface (i.e. as tabulated)

Angles may need to be converted to radians depending on the software implementation of the cosine function.

### Table 6b: Transmittance factors for glazing

| Type of glazing                                                      | <b>Total solar energy</b><br><b>transmittance, g</b> ^<br>(for calculation of solar gains in<br>section 6 of the worksheet) | <b>Light transmittance, g</b> <sub>L</sub><br>(for calculation of lighting<br>requirement in Appendix L) |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Single glazed                                                        | 0.85                                                                                                                        | 0.90                                                                                                     |
| Double glazed (air or argon filled)                                  | 0.76                                                                                                                        | <u>}</u>                                                                                                 |
| Double glazed (low-E, hard-coat)<br>Double glazed (low-E, soft-coat) | 0.72<br>0.63                                                                                                                | 0.80                                                                                                     |
| Window with secondary glazing                                        | 0.76                                                                                                                        | 0.80                                                                                                     |
| Triple glazed (air or argon filled)                                  | 0.68                                                                                                                        | J                                                                                                        |
| Triple glazed (low-E, hard-coat)                                     | 0.64                                                                                                                        | 0.70                                                                                                     |
| Triple glazed (low-E, soft-coat)                                     | 0.57                                                                                                                        |                                                                                                          |

Notes:

1. The values are for normal incidence of solar radiation and they are multiplied by 0.9 (both solar and light transmittance) in calculations.

2 When the window U-value is declared by the manufacturer (rather than from Table 6e) the solar transmittance should also be obtained from the manufacturer. In this case, ascertain whether the solar transmittance is related to the glazing only or to the whole window: see section 6.1.

3. Light transmittance should always be taken from Table 6b, irrespective of the source of the U-value and solar transmittance.

### Table 6c: Frame factors for windows and glazed doors

| Frame type           | Frame factor (proportion of opening that is glazed) |     |  |  |  |  |
|----------------------|-----------------------------------------------------|-----|--|--|--|--|
|                      | (A) Typical (B) Default values                      |     |  |  |  |  |
| Wood                 | 0.7                                                 | 0.6 |  |  |  |  |
| Metal                | 0.8                                                 | 0.7 |  |  |  |  |
| Metal, thermal break | 0.8                                                 | 0.7 |  |  |  |  |
| PVC-U                | 0.7                                                 | 0.6 |  |  |  |  |

Notes:

1. Column (A) applies for the calculation of ratings. Column (B) applies to the calculation of the DER for new dwellings.

2. If known, the actual frame factor should be used instead of the data in Table 6c. Frame factors can be assigned per window (or per group of similar windows) or as an average for each façade of the dwelling.

### Table 6d: Solar and light access factors

| Overshading        | % of sky<br>blocked by<br>obstacles. | Winter solar<br>access factor<br>(for calculation of<br>solar gains for<br>heating) | Summer solar access<br>factor<br>(for calculation of<br>solar gains for<br>cooling and summer<br>temperatures in<br>Appendix P) | Light<br>access factor<br>(for calculation of<br>lighting requirement<br>in Appendix L) |
|--------------------|--------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Heavy              | > 80%                                | 0.3                                                                                 | 0.5                                                                                                                             | 0.5                                                                                     |
| More than average  | >60% - 80%                           | 0.54                                                                                | 0.7                                                                                                                             | 0.67                                                                                    |
| Average or unknown | 20% - 60%                            | 0.77                                                                                | 0.9                                                                                                                             | 0.83                                                                                    |
| Very little        | < 20%                                | 1.0                                                                                 | 1.0                                                                                                                             | 1.0                                                                                     |

Notes

1. The overshading category of "very little" is not appropriate for new dwellings.

2. A solar access factor of 1.0 and a light access factor of 1.0 should be used for roof windows.

## Table 6e: Default U-values (W/m<sup>2</sup>K) for windows, doors and roof windows

The values apply to the entire area of the window opening, including both frame and glass, and take account of the proportion of the area occupied by the frame and the heat conducted through it. Unless known otherwise, double and triple glazing should be taken as air-filled without low-E coating. If the U-value of the components of the window (glazed unit and frame) are known, window U-values may alternatively be taken from the tables in Annex F of BS EN ISO 10077-1, using the tables for 20% frame for metal-framed windows and those for 30% frame for wood or PVC-U framed windows.

When available, the manufacturer's certified U-values for windows or doors should be used in preference to the data in this table. Adjustments for roof windows as in Notes 1 and 2 to the table should be applied to manufacturer's window U-values unless the manufacturer provides a U-value specifically for a roof window.

These U-values to be reviewed to ensure consistency with EN 14351-1 and ISO 10077-1.

|                                             | Type of frame                                                    |       |               |                            |                                                                                  |               |  |  |
|---------------------------------------------|------------------------------------------------------------------|-------|---------------|----------------------------|----------------------------------------------------------------------------------|---------------|--|--|
|                                             | Window with<br>wood or PVC-U frame<br>(use adjustment in Note 1) |       |               | <b>W</b><br><b>v</b><br>(1 | Window with metal frame<br>with 4mm thermal break<br>(use adjustments in Note 2) |               |  |  |
|                                             | 6 mm                                                             | 12 mm | 16 or more mm | 6 mm                       | 12 mm                                                                            | 16 or more mm |  |  |
|                                             | gap                                                              | gap   | gap           | gap                        | gap                                                                              | gap           |  |  |
| double-glazed, air filled                   | 3.1                                                              | 2.8   | 2.7           | 3.7                        | 3.4                                                                              | 3.3           |  |  |
| double-glazed, air filled                   | 2.7                                                              | 2.3   | 2.1           | 3.3                        | 2.8                                                                              | 2.6           |  |  |
| (low-E, $\varepsilon_n = 0.2$ , hard coat)  |                                                                  |       |               |                            |                                                                                  |               |  |  |
| double-glazed, air filled                   | 2.7                                                              | 2.2   | 2.0           | 3.3                        | 2.7                                                                              | 2.5           |  |  |
| (low-E, $\varepsilon_n = 0.15$ , hard coat) |                                                                  |       |               |                            |                                                                                  |               |  |  |
| double-glazed, air filled                   | 2.6                                                              | 2.1   | 1.9           | 3.2                        | 2.6                                                                              | 2.4           |  |  |
| (low-E, $\varepsilon_n = 0.1$ , soft coat)  |                                                                  |       |               |                            |                                                                                  |               |  |  |
| double-glazed, air filled                   | 2.6                                                              | 2.0   | 1.8           | 3.2                        | 2.5                                                                              | 2.3           |  |  |
| (low-E, $\varepsilon_n = 0.05$ , soft coat) |                                                                  |       |               |                            |                                                                                  |               |  |  |
| double-glazed, argon filled                 | 2.9                                                              | 2.7   | 2.6           | 3.5                        | 3.3                                                                              | 3.2           |  |  |
| double-glazed, argon filled                 | 2.5                                                              | 2.1   | 2.0           | 3.0                        | 2.6                                                                              | 2.5           |  |  |
| (low-E, $\varepsilon_n = 0.2$ , hard coat)  |                                                                  |       |               |                            |                                                                                  |               |  |  |
| double-glazed, argon filled                 | 2.4                                                              | 2.0   | 1.9           | 3.0                        | 2.5                                                                              | 2.4           |  |  |
| (low-E, $\varepsilon_n = 0.15$ , hard coat) |                                                                  |       |               |                            |                                                                                  |               |  |  |
| double-glazed, argon filled                 | 2.3                                                              | 1.9   | 1.8           | 2.9                        | 2.4                                                                              | 2.3           |  |  |
| (low-E, $\varepsilon_n = 0.1$ , soft coat)  |                                                                  |       |               |                            |                                                                                  |               |  |  |
| double-glazed, argon filled                 | 2.3                                                              | 1.8   | 1.7           | 2.8                        | 2.2                                                                              | 2.1           |  |  |
| (low-E, $\varepsilon_n = 0.05$ , soft coat) |                                                                  |       |               |                            |                                                                                  |               |  |  |
| triple glazed, air filled                   | 2.4                                                              | 2.1   | 2.0           | 2.9                        | 2.6                                                                              | 2.5           |  |  |
| triple-glazed, air filled                   | 2.1                                                              | 1.7   | 1.6           | 2.6                        | 2.1                                                                              | 2.0           |  |  |
| (low-E, $\varepsilon_n = 0.2$ , hard coat)  |                                                                  |       |               |                            |                                                                                  |               |  |  |
| triple-glazed, air filled                   | 2.1                                                              | 1.7   | 1.6           | 2.5                        | 2.1                                                                              | 2.0           |  |  |
| (low-E, $\varepsilon_n = 0.15$ , hard coat) |                                                                  |       |               |                            |                                                                                  |               |  |  |
| triple-glazed, air filled                   | 2.0                                                              | 1.6   | 1.5           | 2.5                        | 2.0                                                                              | 1.9           |  |  |
| (low-E, $\varepsilon_n = 0.1$ , soft coat)  |                                                                  |       |               |                            |                                                                                  |               |  |  |
| triple-glazed, air filled                   | 1.9                                                              | 1.5   | 1.4           | 2.4                        | 1.9                                                                              | 1.8           |  |  |
| (low-E, $\varepsilon_n = 0.05$ , soft coat) |                                                                  |       |               |                            |                                                                                  |               |  |  |
| triple-glazed, argon filled                 | 2.2                                                              | 2.0   | 1.9           | 2.8                        | 2.5                                                                              | 2.4           |  |  |
| triple-glazed, argon filled                 | 1.9                                                              | 1.6   | 1.5           | 2.3                        | 2.0                                                                              | 1.9           |  |  |
| (low-E, $\varepsilon_n = 0.2$ , hard coat)  |                                                                  |       |               |                            |                                                                                  |               |  |  |
| triple-glazed, argon filled                 | 1.8                                                              | 1.5   | 1.4           | 2.3                        | 1.9                                                                              | 1.8           |  |  |
| (low-E, $\varepsilon_n = 0.15$ , hard coat) |                                                                  |       |               |                            |                                                                                  |               |  |  |
| triple-glazed, argon filled                 | 1.8                                                              | 1.5   | 1.4           | 2.2                        | 1.9                                                                              | 1.8           |  |  |
| (low-E, $\varepsilon_n = 0.1$ , soft coat)  |                                                                  |       |               |                            |                                                                                  |               |  |  |

#### DRAFT SAP 2009 version 9.90 (April 2009)

| triple-glazed, argon filled                 | 1.7 | 1.4 | 1.3 | 2.2 | 1.8 | 1.7 |
|---------------------------------------------|-----|-----|-----|-----|-----|-----|
| (low-E, $\varepsilon_n = 0.05$ , soft coat) |     |     |     |     |     |     |
| Windows and doors, single-                  |     | 4.8 |     |     | 5.7 |     |
| glazed                                      |     |     |     |     |     |     |
| Window with secondary                       |     | 2.4 |     |     |     |     |
| glazing                                     |     |     |     |     |     |     |
| Solid wooden door to                        |     | 3.0 |     |     |     |     |
| outside                                     |     |     |     |     |     |     |
| Solid wooden door to                        |     | 1.4 |     |     |     |     |
| unheated corridor                           |     |     |     |     |     |     |

Notes:

1. For roof windows with wooden or PVC-U frames apply the following adjustments to U-values:

| Wood or PVC-U frame | U-value adjustment for roof window, $W/m^2 K$ |
|---------------------|-----------------------------------------------|
| Single glazed       | +0.3                                          |
| Double glazed       | +0.2                                          |
| Triple glazed       | +0.2                                          |

2. For windows or roof windows with metal frames apply the following adjustments to U-values:

| Metal frames               | Adjustment to U-value, $W/m^2K$ |             |  |  |
|----------------------------|---------------------------------|-------------|--|--|
|                            | Window                          | Roof window |  |  |
| Metal, no thermal break    | +0.3                            | +0.7        |  |  |
| Metal, thermal break 4 mm  | 0                               | +0.3        |  |  |
| Metal, thermal break 8 mm  | -0.1                            | +0.2        |  |  |
| Metal, thermal break 12 mm | -0.2                            | +0.1        |  |  |
| Metal, thermal break 20 mm | -0.3                            | 0.0         |  |  |
| Metal, thermal break 32 mm | -0.4                            | -0.1        |  |  |

3. For doors which are half-glazed (approximately) the U-value of the door is the average of the appropriate window U-value and that of the non-glazed part of the door (e.g. solid wooden door [U-value of  $3.0 \text{ W/m}^2\text{K}$ ] half-glazed with double glazing [low-E, hard coat, argon filled, 6 mm gap, U-value of  $2.5 \text{ W/m}^2\text{K}$ ] has a resultant U-value of  $0.5(3.0+2.5) = 2.75 \text{ W/m}^2\text{K}$ ).

### Table 7: Wind speed (in m/s)

| Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|------|------|-----|------|-----|-----|-----|
| 5.4 | 5.1 | 5.1 | 4.5 | 4.1 | 3.9  | 3.7  | 3.7 | 4.2  | 4.5 | 4.8 | 5.1 |

### Table 8: Mean external temperature (°C)

| Jan | Feb | Mar | Apr | May  | June | July | Aug  | Sept | Oct  | Nov | Dec |
|-----|-----|-----|-----|------|------|------|------|------|------|-----|-----|
| 4.5 | 5.0 | 6.8 | 8.7 | 11.7 | 14.6 | 16.9 | 16.9 | 14.3 | 10.8 | 7.0 | 4.9 |
|     |     |     |     |      |      |      |      |      |      |     |     |

### Calculation of mean internal temperature

Calculation of mean internal temperature is based on the heating patterns defined in Table 9.

## **Table 9: Heating periods and heating temperatures**

| Livi                                                                                                                           | ing area                                 | Elsewhere                        |                                   |                                                                |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|-----------------------------------|----------------------------------------------------------------|--|--|--|
| Temperature<br>T <sub>h1</sub> (°C)                                                                                            | Hours of heating off<br>t <sub>off</sub> | Heating<br>control<br>(Table 4e) | Temperature<br>T <sub>h2</sub> °C | Hours of heating off $t_{off}$                                 |  |  |  |
|                                                                                                                                | Weekday: 7 and 8 <sup>a</sup>            | 1                                | 21 – 0.5 HLP                      | Weekday: 7 and 8 <sup>a</sup><br>Weekend: 0 and 8 <sup>b</sup> |  |  |  |
| 21                                                                                                                             | Weekend: 0 and 8 <sup>b</sup>            | 2                                | 21 – HLP + 0.085 HLP <sup>2</sup> | Weekday: 7 and 8 <sup>a</sup><br>Weekend: 0 and 8 <sup>b</sup> |  |  |  |
|                                                                                                                                |                                          | 3                                | 21 - HLP + 0.085 HLP <sup>2</sup> | All days: 9 and 8 <sup>c</sup>                                 |  |  |  |
| <sup>a</sup> heating 0700-0900 and 1600-2300<br><sup>b</sup> heating 0700-2300<br><sup>c</sup> heating 0700-0900 and 1800-2300 |                                          |                                  |                                   |                                                                |  |  |  |
| If HLP > 6.0 use H                                                                                                             | LP = 6.0 for calculation of              | of T <sub>h2</sub>               |                                   |                                                                |  |  |  |

During heating periods the temperature is as given in Table 9 and at other times it falls towards the temperature that would apply without heating ( $T_{sc}$  as defined in Table 9b). The calculation is done separately for the living area and for elsewhere and the two values combined in proportion to the respective floor areas.

## Table 9a: Utilisation factor for heating

| H = heat transfer coefficient, $(37)_m$                                                               |
|-------------------------------------------------------------------------------------------------------|
| $G = total gains, (66)_m$                                                                             |
| $T_i = internal temperature$                                                                          |
| $T_e = external temperature, (7)_m$                                                                   |
| TMP = Thermal Mass Parameter, (33g), in kJ/m <sup>2</sup> K (= $C_m$ for building / total floor area) |
| HLP = Heat Loss Parameter, $(38)_m$ , in W/m <sup>2</sup> K                                           |
| $\tau = time \ constant$                                                                              |
| $\eta = utilisation factor$                                                                           |
| $\tau = \text{TMP} / (3.6 \times \text{HLP})$                                                         |
| $a = 1 + \tau / 15$                                                                                   |
| $L = H (T_i - T_e)$                                                                                   |
| $\gamma = G / L$                                                                                      |
| if $\gamma > 0$ and $g \neq 1$ : $\eta = \frac{1 - \gamma^a}{1 - \gamma^{a+1}}$                       |
| if $g = 1$ : $\eta = \frac{a}{a+1}$                                                                   |
| if $g \le 0$ : $\eta = 1$                                                                             |

### Table 9b: Temperature reduction when heating is off

| $\tau = time \ constant$ | (from Table 9a)    |  |
|--------------------------|--------------------|--|
| v – unie constant        | (IIOIII I uoic )u) |  |

 $t_{off}$  = number of hours that heating is off

 $T_h$  = temperature during heating period (Table 9)

T<sub>sc</sub> = internal temperature without heating

R = responsiveness of heating system (Table 4a or Table 4d)

 $t_c = 4 + 0.25 \tau$ 

 $T_{sc} = (1-R) \times (T_h \!\!- 2.0) + R \; (Te + \eta \; G \; / \; H)$ 

if  $t_{off} \le t_c$   $u = 0.5 t_{off}^2 \times (T_h - T_{sc}) / (24 \times t_c)$ 

if  $t_{off} > t_c$ .  $u = (T_h - T_{sc}) \times (t_{off} - 0.5 t_c) / 24$ 

### **Table 9c: Heating requirement**

The following is done using data for the applicable month.

### Living area

- 1. Set  $T_i$  to the temperature for the living area during heating periods (Table 9)
- 2. Calculate the utilisation factor (Table 9a)
- 3 Calculate the temperature reduction (Table 9b) for each off period (Table 9), u<sub>1</sub> and u<sub>2</sub>, for weekdays
- 4.  $T_{\text{weekday}} = T_h (u_1 + u_2)$
- 5 Calculate the temperature reduction (Table 9b) for each off period (Table 9), u<sub>1</sub> and u<sub>2</sub>, for weekends
- $6. \qquad T_{weekend} = T_h (u_1 + u_2)$
- 7. Mean temperature (living area)  $T_1 = (5 T_{weekday} + 2 T_{weekend}) / 7$

Rest of dwelling

- 8. Set  $T_i$  to the temperature for elsewhere during heating periods (Table 9)
- 9. Repeat steps 2 to 7 above to obtain the mean temperature (rest of dwelling), T<sub>2</sub>
- 10. Mean internal temperature =  $f_{LA} \times T_1 + (1 f_{LA}) \times T_2$  $f_{LA}$  is the living area fraction, (74)
- 11. Apply adjustment to the mean internal temperature from Table 4e, where appropriate
- 12. Set T<sub>i</sub> to the mean internal temperature obtained at step 11 and re-calculate the utilisation factor
- 13. Heat requirement for month in kWh is  $Q_{heat} = 0.024 \times (L_m \eta_m G_m) \times n_m$  $n_m$  is the number of days in the month
- Set Q<sub>heat</sub> to 0 if negative.

Include the heating requirement for each month from October to May (disregarding June to September).

## **Calculation of cooling requirements**

# Table 10: Mean global solar irradiation on a horizontal plane and mean external temperature in summer

| Region                                      | Representative | Solar r<br>horiz | adiation o<br>ontal (W/ | on the<br>m <sup>2</sup> ) | Mean external<br>temperature (°C) |      |      |
|---------------------------------------------|----------------|------------------|-------------------------|----------------------------|-----------------------------------|------|------|
|                                             | latitude ("N)  | Jun              | Jul                     | Aug                        | Jun                               | Jul  | Aug  |
| Thames                                      | 51.5           | 214              | 204                     | 177                        | 15.4                              | 17.8 | 17.8 |
| South East England                          | 51.0           | 225              | 213                     | 186                        | 15.2                              | 17.6 | 17.8 |
| Southern England                            | 50.8           | 225              | 213                     | 190                        | 15.2                              | 17.4 | 17.6 |
| South West England                          | 50.6           | 218              | 208                     | 186                        | 14.7                              | 16.8 | 17.0 |
| Severn                                      | 51.5           | 218              | 208                     | 184                        | 15.2                              | 17.4 | 17.3 |
| Midlands                                    | 52.7           | 204              | 194                     | 168                        | 14.9                              | 17.2 | 17.1 |
| West Pennines                               | 53.4           | 196              | 186                     | 159                        | 14.5                              | 16.6 | 16.5 |
| North West England /<br>South West Scotland | 54.8           | 192              | 187                     | 156                        | 13.5                              | 15.5 | 15.4 |
| Borders                                     | 55.5           | 186              | 178                     | 149                        | 13.4                              | 15.5 | 15.4 |
| North East England                          | 54.5           | 188              | 183                     | 154                        | 14.0                              | 16.2 | 16.1 |
| East Pennines                               | 53.4           | 201              | 194                     | 164                        | 14.6                              | 16.9 | 16.9 |
| East Anglia                                 | 52.3           | 212              | 203                     | 173                        | 15.0                              | 17.5 | 17.6 |
| Wales                                       | 52.5           | 209              | 198                     | 172                        | 14.3                              | 16.4 | 16.3 |
| West Scotland                               | 55.8           | 186              | 183                     | 154                        | 13.1                              | 14.9 | 14.8 |
| East Scotland                               | 56.4           | 187              | 177                     | 146                        | 13.2                              | 15.2 | 15.0 |
| North East Scotland                         | 57.2           | 187              | 170                     | 142                        | 12.8                              | 14.9 | 14.7 |
| Highland                                    | 57.5           | 181              | 163                     | 140                        | 12.5                              | 14.5 | 14.4 |
| Western Isles                               | 58.0           | 189              | 175                     | 147                        | 11.7                              | 13.7 | 13.7 |
| Orkney                                      | 59.0           | 199              | 178                     | 141                        | 11.2                              | 13.3 | 13.6 |
| Shetland                                    | 60.2           | 183              | 163                     | 138                        | 10.6                              | 12.7 | 13.0 |
| Northern Ireland                            | 54.7           | 188              | 175                     | 152                        | 13.4                              | 15.4 | 15.2 |

(See map on next page)

Convert data in Table 10 to the radiation on vertical surfaces using the procedure below Table 6a.



Tables - 28

Table 10a: Utilisation factor for cooling  $H = heat transfer coefficient, (37)_m$  $G = total gains, (66)_m$  $T_i = internal temperature = 25^{\circ}C$  $T_e$  = external temperature, for the region and month concerned from Table 10 TMP = Thermal Mass Parameter, (33g), in kJ/m<sup>2</sup>K (=  $C_m$  for building / total floor area) HLP = Heat Loss Parameter,  $(38)_{m}$ , in W/m<sup>2</sup>K  $\tau = time \ constant$  $\eta$  = utilisation factor  $\tau = \text{TMP} / (3.6 \times \text{HLP})$  $a = 1 + \tau / 15$  $L = H (T_i - T_e)$  $\gamma = G / L$ if  $\gamma > 0$  and  $g \neq 1$ :  $\eta = \frac{1 - \gamma^{-a}}{1 - \gamma^{-(a+1)}}$  $\eta = \frac{a}{a+1}$ if g = 1: if  $g \le 0$ :  $\eta = 1$ 

### **Table 10b: Cooling requirement**

1. Cooling requirement for continuous cooling of whole house for month in kWh is  $0.024 \times (G_m \text{ - } \eta_m L_m) \times n_m$  $\boldsymbol{n}_{m}$  is the number of days in the month Multiply by the fraction of the total floor area that is cooled,  $f_{cool}$ . 2. Multiply by an intermittency factor,  $\mathbf{f}_{\text{intermittent}}$  where 3  $f_{intermittent}$  =  $1-3.0\times0.75\times\gamma\times15$  /r (based on procedure in ISO 13790 for 6 hours/day operation) subject to  $f_{intermittent} \,{\geq}\, 0.25$  and  $f_{intermittent} \,{\leq}\, 1.0$ The cooling requirement for the part of the dwelling that is cooled allowing for standard hours of operation 4. is:  $Q_{cool} = 0.024 \times (G_m \text{ - } \eta_m L_m) \times n_m \times f_{cool} \times f_{intermittent}$ Set  $Q_{cool}$  to zero if negative. 5. Divide by the System Energy Efficiency Ratio (SEER), see Table 10c. Include the cooling requirements for each month from June to August (disregarding September to May). The fuel cost, CO<sub>2</sub> emission factor and primary emission factor are those for electricity in Table 12.

| Energy label classSplit and Multi-split systemsPackaged systemsA3.23.0B3.02.8C2.82.6D2.62.4E2.42.2F2.22.0G2.01.8The energy label class is that applied to the product in terms of the Energy Information (Household A<br>Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners,<br>liquid chilling packages and heat pumps with electrically driven compressors for space heating and<br>cooling by an independent accredited laboratory at conditions T1 'moderate', may be used.                                       | Ensure 1-h -1 -1                                                                                                                                                                                                        | Defa                                                                                                                                                                                                                      | ult EER                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A3.23.0B3.02.8C2.82.6D2.62.4E2.42.2F2.22.0G2.01.8The energy label class is that applied to the product in terms of the Energy Information (Household A Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling by an independent accredited laboratory at conditions T1 'moderate'. may be used.                                                                                                               | Energy label class                                                                                                                                                                                                      | Split and Multi-split systems                                                                                                                                                                                             | Packaged systems                                                                                                                                                              |
| B3.02.8C2.82.6D2.62.4E2.42.2F2.22.0G2.01.8The energy label class is that applied to the product in terms of the Energy Information (Household A<br>Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners,<br>liquid chilling packages and heat pumps with electrically driven compressors for space heating and<br>cooling by an independent accredited laboratory at conditions T1 'moderate'. may be used.                                                                                                             | Α                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                       | 3.0                                                                                                                                                                           |
| C       2.8       2.6         D       2.6       2.4         E       2.4       2.2         F       2.2       2.0         G       2.0       1.8         The energy label class is that applied to the product in terms of the Energy Information (Household & Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.         Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling by an independent accredited laboratory at conditions T1 'moderate', may be used. | В                                                                                                                                                                                                                       | 3.0                                                                                                                                                                                                                       | 2.8                                                                                                                                                                           |
| D       2.6       2.4         E       2.4       2.2         F       2.2       2.0         G       2.0       1.8         The energy label class is that applied to the product in terms of the Energy Information (Household A Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.         Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling by an independent accredited laboratory at conditions T1 'moderate', may be used.                               | С                                                                                                                                                                                                                       | 2.8                                                                                                                                                                                                                       | 2.6                                                                                                                                                                           |
| E         2.4         2.2           F         2.2         2.0           G         2.0         1.8           The energy label class is that applied to the product in terms of the Energy Information (Household A Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.         Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling by an independent accredited laboratory at conditions T1 'moderate', may be used.                                           | D                                                                                                                                                                                                                       | 2.6                                                                                                                                                                                                                       | 2.4                                                                                                                                                                           |
| F         2.2         2.0           G         2.0         1.8           The energy label class is that applied to the product in terms of the Energy Information (Household A Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.         Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling by an independent accredited laboratory at conditions T1 'moderate', may be used.                                                                               | Е                                                                                                                                                                                                                       | 2.4                                                                                                                                                                                                                       | 2.2                                                                                                                                                                           |
| G         2.0         1.8           The energy label class is that applied to the product in terms of the Energy Information (Household A Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.         Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling by an independent accredited laboratory at conditions T1 'moderate', may be used.                                                                                                                   | F                                                                                                                                                                                                                       | 2.2                                                                                                                                                                                                                       | 2.0                                                                                                                                                                           |
| The energy label class is that applied to the product in terms of the Energy Information (Household A Conditioners) (No. 2) Regulations 2005 (SI 2005 No. 1726). If unknown class G is assumed.<br>Alternatively the EER measured in accordance with BS EN14511:2004 Parts 1-4 Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling by an independent accredited laboratory at conditions T1 'moderate', may be used.                                                                                                                                                            | G                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                                       | 1.8                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The energy label class is that                                                                                                                                                                                          | applied to the product in terms of the                                                                                                                                                                                    | Energy Information (Household)                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The energy label class is that<br>Conditioners) (No. 2) Regula<br>Alternatively the EER measur<br><i>liquid chilling packages and a</i><br><i>cooling</i> by an independent ac                                          | applied to the product in terms of the tions 2005 (SI 2005 No. 1726). If unkred in accordance with BS EN14511:2 <i>heat pumps with electrically driven co</i> credited laboratory at conditions T1 'r                     | Energy Information (Household A<br>mown class G is assumed.<br>2004 Parts 1-4 Air conditioners,<br>ompressors for space heating and<br>noderate', may be used.                |
| The SEER is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The energy label class is that<br>Conditioners) (No. 2) Regula<br>Alternatively the EER measur<br><i>liquid chilling packages and cooling</i> by an independent ac<br>The SEER is:                                      | applied to the product in terms of the tions 2005 (SI 2005 No. 1726). If unkred in accordance with BS EN14511:2 <i>heat pumps with electrically driven co</i> credited laboratory at conditions T1 'r                     | Energy Information (Household A<br>mown class G is assumed.<br>2004 Parts 1-4 Air conditioners,<br>compressors for space heating and<br>noderate', may be used.               |
| The SEER is: $SEER = 1.25 \times EER$ for systems with on/off controlSEER = 1.25 × EER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The energy label class is that<br>Conditioners) (No. 2) Regula<br>Alternatively the EER measur<br><i>liquid chilling packages and a</i><br><i>cooling</i> by an independent ac<br>The SEER is:<br>for systems with on/o | applied to the product in terms of the tions 2005 (SI 2005 No. 1726). If unk red in accordance with BS EN14511:2 <i>heat pumps with electrically driven co</i> credited laboratory at conditions T1 'r off control SEER = | Energy Information (Household A<br>mown class G is assumed.<br>2004 Parts 1-4 Air conditioners,<br>compressors for space heating and<br>noderate', may be used.<br>1.25 × EER |

## Table 10c: Energy Efficiency Ratio (EER) and System Energy Efficiency Ratio (SEER)

Note: If the air conditioner is reversible so as to provide heating it should be assessed as a heat pump in heating mode (Appendix G).

## Table 11: Fraction of heat supplied by secondary heating systems

| Main heating system                                                               | Secondary system      | Fraction from secondary |
|-----------------------------------------------------------------------------------|-----------------------|-------------------------|
| All gas, oil and solid fuel systems                                               | all secondary systems | 0.10                    |
| Micro-cogeneration                                                                | all secondary systems | see Appendix N          |
| Heat pump                                                                         | all secondary systems | 0.10                    |
| Electric storage heaters (not integrated)<br>- not fan-assisted<br>- fan-assisted | all secondary systems | 0.15<br>0.10            |
| Integrated storage/direct-acting electric systems                                 |                       | 0.10                    |
| Electric CPSU                                                                     |                       | see Appendix F          |
| Electric room heaters                                                             |                       | 0.20                    |
| Other electric systems                                                            |                       | 0.10                    |
| Community heating                                                                 | all secondary systems | 0.10                    |

Notes:

See also Appendix A.
 If an off-peak tariff is present, an electric secondary heater uses the on-peak tariff.

# Table 12: Fuel prices, additional standing charges, emission factors and primary energy factors

| 98<br>67<br>98    | 2.82<br>5.24<br>7.37<br>2.82<br>4.01<br>5.33<br>5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94         | 0.206<br>0.251<br>0.251<br>0.251<br>0.251<br>0.284<br>0.098<br>0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                  | 1.15<br>1.10<br>1.10<br>1.10<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>2<br>3<br>9<br>4<br>71<br>72<br>73<br>74<br>75<br>11 |
|-------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 98<br>67<br>98    | 2.82<br>5.24<br>7.37<br>2.82<br>4.01<br>5.33<br>5.33<br>5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94 | 0.206<br>0.251<br>0.251<br>0.251<br>0.284<br>0.098<br>0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                           | $ \begin{array}{c} 1.15\\ 1.10\\ 1.10\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.02$ | 1<br>2<br>3<br>9<br>4<br>71<br>72<br>73<br>74<br>75<br>11 |
| 67<br>98          | 5.24<br>7.37<br>2.82<br>4.01<br>5.33<br>5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                 | 0.251<br>0.251<br>0.251<br>0.284<br>0.098<br>0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                    | $ \begin{array}{c} 1.10\\ 1.10\\ 1.10\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.19\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.02$ | 2<br>3<br>9<br>4<br>71<br>72<br>73<br>74<br>75<br>11      |
| 98                | 7.37<br>2.82<br>4.01<br>5.33<br>5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                         | 0.251<br>0.251<br>0.284<br>0.098<br>0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                             | 1.10<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3<br>9<br>4<br>71<br>72<br>73<br>74<br>75<br>11           |
| 98                | 2.82<br>4.01<br>5.33<br>5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                                 | 0.251<br>0.284<br>0.098<br>0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                                      | 1.10<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9<br>4<br>71<br>72<br>73<br>74<br>75<br>11                |
|                   | 4.01<br>5.33<br>5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                                         | 0.284<br>0.098<br>0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                                               | 1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>71<br>72<br>73<br>74<br>75                           |
|                   | 4.01<br>5.33<br>5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                                         | 0.284<br>0.098<br>0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                                               | 1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>71<br>72<br>73<br>74<br>75                           |
|                   | 5.33<br>5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                                                 | 0.098<br>0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                                                        | 1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71<br>72<br>73<br>74<br>75                                |
|                   | 5.33<br>5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                                                         | 0.019<br>0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                                                                 | 1.19<br>1.19<br>1.19<br>1.19<br>1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72<br>73<br>74<br>75                                      |
|                   | 5.33<br>4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                                                                 | 0.058<br>0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                                                                          | 1.19<br>1.19<br>1.19<br>1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73<br>74<br>75<br>11                                      |
|                   | 4.01<br>4.40<br>2.55<br>2.50<br>3.28<br>2.94                                                                         | 0.284<br>0.205<br>0.382<br>0.365<br>0.402                                                                                                                                                                   | 1.19<br>1.19<br>1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74<br>75<br>11                                            |
|                   | 4.40<br>2.55<br>2.50<br>3.28<br>2.94                                                                                 | 0.205<br>0.382<br>0.365<br>0.402                                                                                                                                                                            | 1.19<br>1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75<br>11                                                  |
|                   | 2.55<br>2.50<br>3.28<br>2.94                                                                                         | 0.382<br>0.365<br>0.402                                                                                                                                                                                     | 1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                        |
|                   | 2.55<br>2.50<br>3.28<br>2.94                                                                                         | 0.382<br>0.365<br>0.402                                                                                                                                                                                     | 1.07<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                        |
|                   | 2.50<br>3.28<br>2.94                                                                                                 | 0.365<br>0.402                                                                                                                                                                                              | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 A A                                                     |
|                   | 3.28                                                                                                                 | 0.402                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                        |
|                   | 2.04                                                                                                                 |                                                                                                                                                                                                             | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                        |
|                   | 2.94                                                                                                                 | 0.018                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                        |
|                   | 5.46                                                                                                                 | 0.037                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                        |
|                   | 4.94                                                                                                                 | 0.037                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                        |
|                   | 2.14                                                                                                                 | 0.015                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                        |
|                   | 2.77                                                                                                                 | 0.243                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                        |
|                   |                                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |
|                   | 10.61                                                                                                                | 0.591                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                        |
|                   | 11.59                                                                                                                | 0.591                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32                                                        |
| 31                | 4.43                                                                                                                 | 0.591                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                                        |
|                   | 11.79                                                                                                                | 0.591                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34                                                        |
| 32                | 6.52                                                                                                                 | 0.591                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                        |
| 83                | 6.21                                                                                                                 | 0.591                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                                        |
|                   | 8.49 <sup>(h)</sup>                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                        |
|                   |                                                                                                                      | $0.591^{(h)}$                                                                                                                                                                                               | $2.5^{(h)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37                                                        |
|                   |                                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39                                                        |
| 98 <sup>(k)</sup> |                                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |
|                   | 3.44                                                                                                                 | 0.206                                                                                                                                                                                                       | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                        |
|                   | 3.44                                                                                                                 | 0.251                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                                        |
|                   | 3.44                                                                                                                 | 0.291 <sup>(1)</sup>                                                                                                                                                                                        | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                        |
|                   | 3 44                                                                                                                 | 0.391 <sup>(m)</sup>                                                                                                                                                                                        | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                                        |
|                   | 3.44                                                                                                                 | 0.591                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                                                        |
|                   | 3.44                                                                                                                 | 0.047                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                        |
|                   | 3.44                                                                                                                 | $0.019^{(n)}$                                                                                                                                                                                               | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                        |
|                   | 3 44                                                                                                                 | 0.024                                                                                                                                                                                                       | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44                                                        |
|                   | 2.41                                                                                                                 | 0.058 <sup>(o)</sup>                                                                                                                                                                                        | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                        |
|                   | 2.41                                                                                                                 | 0.041                                                                                                                                                                                                       | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                        |
|                   | 2.41                                                                                                                 | as above <sup>(p)</sup>                                                                                                                                                                                     | as above <sup>(p)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | as above <sup>(p)</sup>                                   |
|                   |                                                                                                                      | 0.591 <sup>(h)</sup>                                                                                                                                                                                        | 2.5 <sup>(h)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49                                                        |
|                   |                                                                                                                      | 0.591                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                        |
|                   | 31<br>32<br>83<br>98 <sup>(k)</sup>                                                                                  | 2.94<br>5.46<br>4.94<br>2.14<br>2.77<br>10.61<br>11.59<br>31 4.43<br>11.79<br>32 6.52<br>83 6.21<br>8.49 <sup>(h)</sup><br>98 <sup>(k)</sup><br>3.44<br>3.44<br>3.44<br>3.44<br>3.44<br>3.44<br>3.44<br>3.4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      |

Note to Table 12:

(a) The standing charge given for electricity is extra amount for the off-peak tariffs, over and above the amount for the standard domestic tariff, as it is assumed that the dwelling has a supply of electricity for reasons other than

space and water heating. The standing charge for off-peak electricity is added to space and water heating costs where either main heating or hot water uses off-peak electricity. The standing charge for gas is added to space and water heating costs where gas is used for space heating (main or secondary) or for water heating.

- $(b) \ \underline{www.ofgem.gov.uk/networks/gas distr/otherwork/Documents1/7940-Independent networksopen letter.pdf$
- (c) Fuel verified as wholly derived from biomass sources
- (d) Fuel verified as wholly derived from used cooking oil
- (e) For appliances that specifically use a 70:30 blend of kerosene:biodiesel from cooking oil and relates to a fuel specification being developed by OFTEC
- (f) The specific fuel should be assumed for those appliances that can only burn the particular fuel (including Exempted Appliances within Smoke Control Areas).

Where a main heating appliance is classed as dual fuel (i.e mineral and wood), the data for dual fuel should be used, except where the dwelling is in a Smoke Control Area, when the data for solid mineral fuel should be used. Wood should be specified as fuel for a main heating system only if there is adequate provision (at least 1.5 m<sup>3</sup>) for storage of the fuel.

Outside Smoke Control Areas an open fire should be considered as dual fuel, and a closed room heater without boiler if capable of burning wood as burning wood logs.

- (g) With certain appliances using an off-peak tariff, some of the consumption is at the off-peak rate and some at the on-peak rate. The on-peak percentages to be used are given in Table 12a, the remainder being provided at the off-peak rate.
- (h) Deducted from costs, emissions or primary energy
- (i) This code is used to define the fuel for any electric system. Other codes for electricity are to provide cost data, depending on the applicable electricity tariff.
- (j) Cost is per unit of heat supplied, emission and primary factors are per unit of fuel used
- (k) Include half this value if the community scheme is for DHW only
- (1) Based on the mix of petroleum products used to generated heat in the UK (predominantly gas oil).
- (m) Value for non-domestic coal
- (n) Based on the mix of biomass sources used to generate heat in the UK.
- (o) Takes account of the reduction in electricity generation that occurs where heat is produced at a high enough temperature to provide community heating.
- (p) Use factor for community heat from boilers according to fuel used.
- (q) An energy cost deflator term is applied before the rating is calculated. It will vary with the weighted average price of heating fuels in future so that the SAP rating is not affected by the general rate of fuel price inflation. However, individual SAP ratings are affected by relative changes in the price of particular heating fuels.

# Table 12a: On-peak fractions for systems using 7-hour and 10-hour tariffs

This table is used for electric space and water heating systems which take electricity at both off-peak and on-peak rates. Use an electricity price for the main heating system weighted between the on-peak and off-peak unit price using the fraction from the table. Secondary heating with fraction according to Table 11 is applied as well.

| System                                                                                                                                                                                                     | Tariff                                                                           | Fraction at on-peak rate               |                                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|--------------------------------|--|--|
|                                                                                                                                                                                                            |                                                                                  | Space heating                          | Water heating                  |  |  |
| Integrated (storage+direct-acting) systems<br>(storage heaters and underfloor heating)                                                                                                                     | 7-hour                                                                           | 0.20                                   | -                              |  |  |
| Direct-acting electric boiler <sup>(a)</sup>                                                                                                                                                               | 7-hour<br>10-hour                                                                | 0.90<br>0.60                           | -                              |  |  |
| Electric CPSU                                                                                                                                                                                              | 10-hour                                                                          | Fraction from<br>Appendix F            | Fraction from<br>Appendix F    |  |  |
| Underfloor heating<br>(in screed above insulation, in timber floor or<br>immediately below floor covering)                                                                                                 | 7-hour<br>10-hour                                                                | 0.90<br>0.60                           | -                              |  |  |
| Ground/water source heat pump:<br>water heating with off-peak immersion<br>water heating without immersion heater<br>space heating with on-peak auxiliary<br>do.<br>space heating without auxiliary<br>do. | 7-hour or 10-hour<br>7-hour or 10-hour<br>7-hour<br>10-hour<br>7-hour<br>10-hour | -<br>0.80<br>0.60<br>0.70<br>0.60      | 0.17<br>0.70<br>-<br>-<br>-    |  |  |
| Air source heat pump:<br>space heating<br>do.<br>water heating with off-peak immersion<br>water heating without immersion heater<br>Other direct-acting electric heating                                   | 7-hour<br>10-hour<br>7-hour or 10-hour<br>7-hour or 10-hour<br>7-hour            | 0.90<br>0.60<br>-<br>-<br>1.00<br>0.80 | -<br>0.17<br>0.70              |  |  |
| Immersion water heater                                                                                                                                                                                     | 7-hour or 10-hour                                                                | -                                      | -<br>Fraction from<br>Table 13 |  |  |

Note

(a) An electric boiler can provide space heating only, with a separate cylinder and immersion heater for DHW, or the DHW cylinder can be within the boiler casing. The calculation is the same for both cases.

| Other electricity uses                  | Tariff            | Fraction at on-peak rate |
|-----------------------------------------|-------------------|--------------------------|
| Fans for mechanical ventilation systems | 7-hour<br>10-hour | 0.71<br>0.58             |
| All other                               | 7-hour<br>10-hour | 0.90<br>0.80             |

## Table 12b: Solid Fuels

The table shows the fuels that can normally be used on the different types of solid fuel appliance. It should be regarded as only indicative: it is always necessary to follow the appliance manufacturer's instructions. See also section 10.3.3 and note (g) to Table 12 as regards fuel selection for SAP calculations.

|                                | Possible fuels                     |                             |  |  |
|--------------------------------|------------------------------------|-----------------------------|--|--|
| Appliance                      | Within Smoke Control Area          | Outside Smoke Control Area  |  |  |
| Auto (gravity) feed boiler     | Anthracite grains and beans        | Anthracite grains and beans |  |  |
| Manual feed boiler             | Anthracite nuts                    | Anthracite nuts             |  |  |
|                                | Authorised Smokeless               | Smokeless                   |  |  |
|                                |                                    | Wood logs                   |  |  |
| Wood chip boiler               | Wood chips if Exempted Appliance   | Wood chips                  |  |  |
| Wood pellet boiler             | Wood pellets if Exempted Appliance | Wood pellets                |  |  |
| Open fire                      | Authorised Smokeless               | House coal                  |  |  |
| (with or without back boiler)  |                                    | Smokeless                   |  |  |
|                                |                                    | Wood logs                   |  |  |
| Closed room heater             | Anthracite nuts                    | House coal                  |  |  |
| (with or without boiler)       | Authorised Smokeless               | Anthracite nuts             |  |  |
|                                | Wood logs if Exempted Appliance    | Smokeless                   |  |  |
|                                |                                    | Wood logs                   |  |  |
| Pellet-fired stove             | Wood pellets if Exempted Appliance | Wood pellets                |  |  |
| Range cooker boiler Anthracite |                                    | Anthracite                  |  |  |
|                                |                                    | Wood logs                   |  |  |

### Table 12c: Distribution loss factor for group and community heating schemes

| Heat distribution system                                                                                                                  | Factor |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Mains piping system installed in 1990 or earlier, not pre-insulated medium or high temperature distribution (120-140°C), full flow system | 1.20   |
| Pre-insulated mains piping system installed in 1990 or earlier, low temperature distribution (100°C or below), full flow system.          | 1.10   |
| Modern higher temperature system (up to 120°C), using pre-insulated mains installed in 1991 or later, variable flow system.               | 1.10   |
| Modern pre-insulated piping system operating at 100°C or below, full control system installed in 1991 or later, variable flow system      | 1.05   |

Note: A full flow system is one in which the hot water is pumped through the distribution pipe work at a fixed rate irrespective of the heat demand (usually there is a bypass arrangement to control the heat delivered to heat emitters). A variable flow system is one in which the hot water pumped through the distribution pipe work varies according to the demand for heat.

[The final version of SAP 2009 may include higher factors for schemes with low linear heat density: see C3 in Appendix C.]

| Table 13: On-peak fraction fo | r electric DHW heating |
|-------------------------------|------------------------|
|-------------------------------|------------------------|

| Dwelling total             | Cylinder size, litres |             |      |                |             |             |     |
|----------------------------|-----------------------|-------------|------|----------------|-------------|-------------|-----|
| floor area, m <sup>2</sup> | 7-hour tariff         |             |      | 10-hour tariff |             |             |     |
|                            | 110                   | 160         | 210  | 245            | 110         | 160         | 210 |
|                            |                       |             |      |                |             |             |     |
| 40 or less                 | 0.12 (0.56)           | 0.07 (0.18) | 0.02 | 0              | 0.06 (0.15) | 0           | 0   |
| 60                         | 0.14 (0.58)           | 0.09 (0.21) | 0.03 | 0              | 0.08 (0.19) | 0           | 0   |
| 80                         | 0.17 (0.60)           | 0.10.(0.24) | 0.04 | 0              | 0.10 (0.22) | 0           | 0   |
| 100                        | 0.19 (0.62)           | 0.12 (0.27) | 0.05 | 0              | 0.11 (0.25) | 0.00 (0.02) | 0   |
| 120                        | 0.21 (0.63)           | 0.14 (0.30) | 0.06 | 0              | 0.13 (0.28) | 0.01 (0.05) | 0   |
| 140                        | 0.24 (0.65)           | 0.15 (0.33) | 0.06 | 0.01           | 0.14 (0.30) | 0.02 (0.09) | 0   |
| 160                        | 0.26 (0.66)           | 0.16 (0.35) | 0.07 | 0.01           | 0.16 (0.33) | 0.02 (0.12) | 0   |
| 180                        | 0.27 (0.68)           | 0.18 (0.37) | 0.08 | 0.02           | 0.17 (0.35) | 0.02 (0.15) | 0   |
| 200                        | 0.29 (0.69)           | 0.19 (0.40) | 0.09 | 0.02           | 0.18 (0.38) | 0.03 (0.18) | 0   |
| 220                        | 0.31 (0.70)           | 0.20 (0.42) | 0.10 | 0.02           | 0.19 (0.40) | 0.03 (0.21) | 0   |
| 240                        | 0.32 (0.71)           | 0.21 (0.43) | 0.11 | 0.03           | 0.20 (0.41) | 0.04 (0.23) | 0   |
| 260                        | 0.33 0.(72)           | 0.22 (0.45) | 0.11 | 0.03           | 0.21 (0.43) | 0.04 (0.25) | 0   |
| 280                        | 0.35 (0.73)           | 0.23 (0.47) | 0.11 | 0.03           | 0.22 (0.45) | 0.04 (0.27) | 0   |
| 300                        | 0.36 (0.74)           | 0.24 (0.48) | 0.12 | 0.03           | 0.23 (0.46) | 0.05 (0.29) | 0   |
| 320                        | 0.37 (0.75)           | 0.24 (0.49) | 0.12 | 0.04           | 0.23 (0.47) | 0.05 (0.30) | 0   |
| 340                        | 0.38 (0.75)           | 0.25 (0.50) | 0.13 | 0.04           | 0.24 (0.48) | 0.05 (0.32) | 0   |
| 360                        | 0.38 (0.76)           | 0.26 (0.51) | 0.13 | 0.04           | 0.24 (0.49) | 0.05 (0.33) | 0   |
| 380                        | 0.39 (0.76)           | 0.26 (0.52) | 0.13 | 0.04           | 0.25 (0.50) | 0.05 (0.34) | 0   |
| 400                        | 0.39 (0.76)           | 0.26 (0.52) | 0.13 | 0.04           | 0.25 (0.51) | 0.05 (0.35) | 0   |
| 420 or more                | 0.39 (0.77)           | 0.26 (0.52) | 0.13 | 0.04           | 0.25 (0.51) | 0.06 (0.35) | 0   |

Notes:

1) Table 13 shows fractions of electricity required at on-peak rates for cylinders with dual immersion heaters, and in brackets for cylinders with single immersion heaters, for tariffs providing at least 7 hours of heating per day at the off-peak rate and for tariffs providing at least 10 hours of heating per day at the off-peak rate.

2) Alternatively, the fraction may be calculated (for V between 110 and 245 litres) from the following equations: tariffs providing at least 7 hours of heating per day at the off-peak rate Dual immersion: [(6.8 - 0.024V)N + 14 - 0.07V]/100 Single immersion: [(14530 - 762N)/V - 80 + 10N]/100

 $\begin{array}{ll} \mbox{tariffs providing at least 10 hours of heating per day at the off-peak rate} \\ \mbox{Dual immersion:} & [(6.8 - 0.036V)N + 14 - 0.105V]/100 \\ \mbox{Single immersion:} & [(14530 - 762N)/(1.5V) - 80 + 10N]/100 \end{array}$ 

where V is the cylinder volume and N is as defined below Table 1. (If these formulae give a value less than zero, set the on-peak fraction to zero; if greater than one, set to one.)

- 3) Do not use this table to obtain the on-peak fraction for an electric CPSU. Calculate the on-peak fraction using the procedure described in Appendix F.
- 4) Do not use this table for the on-peak fraction for domestic hot water heated by a heat pump. Use on-peak fraction given in Table 12a.

## Table 14 : Rating bands

The rating is assigned to a rating band according to the following table. It applies to both the SAP rating and the Environmental Impact rating.

| Rating     | Band |
|------------|------|
| 1 to 20    | G    |
| 21 to 38   | F    |
| 39 to 54   | Е    |
| 55 to 68   | D    |
| 69 to 80   | С    |
| 81 to 91   | В    |
| 92 or more | А    |