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Abstract. We study methods to obtain the consistency of forcing axioms,
and particularly higher forcing axioms. We first force over a model with a
supercompact cardinal ◊ > Ÿ to get the consistency of the forcing axiom for
Ÿ-strongly proper forcing notions which are also Ÿ-lattice, and then eliminate
the need for large cardinals. The proof goes through a natural reflection prop-
erty for Ÿ-strongly proper forcings. We also produce a model of this forcing
axiom with 2Ÿ arbitrarily large, and prove the inconsistency of certain natural
strengthenings of the axiom.

1. Introduction

Forcing axioms are set-theoretic axioms which state that the universe is “rich
with filters” for forcing notions in a particular class. More technically, forcing
axioms are statements saying that given a forcing notion in a particular class, and
a “relatively small” collection of dense open subsets, there is a filter which meets
all dense open sets in the collection. Martin’s Axiom states that if P is c.c.c. (i.e.,
if P satisfies the countable chain condition) and {D– | – < Ÿ} is a family of dense
open subsets of P, where Ÿ < 2›0 , then there is a filter G such that G fl D– ”= ?
for all – < Ÿ. ZFC trivially proves that for Ÿ = ›0 such filters exist for any forcing
P, regardless of its combinatorial properties.

When we assume forcing axioms hold in the universe V , we can prove that there
are objects in V which exhibit “somewhat generic properties”. For instance, if we
assume Martin’s Axiom, and {f– | – < Ÿ} ™ Ê

Ê for Ÿ < 2›0 , then we may consider
P = Ê

<Ê and D
–

n
= {s œ Ê

<Ê | f–(m) < s(m) for some m œ |s|, m > n}, for
– < Ÿ and n < Ê, as our dense open sets. If G fl D

–

n
”= ? for all – and n, thent

G = g ”= f– for all –, and in fact for each –, g(m) > f–(m) holds infinitely often.
Therefore, Martin’s Axiom implies that d, the dominating number, equals 2›0 .

In the classical case, forcing axioms are phrased around ›1 as the main cardinal
of interest. In this context, the forcing notions themselves somehow revolve around
this (e.g., properness is defined with models of size less than ›1, i.e., countable).
Recent work on extensions of classical forcing axioms such as the Proper Forcing
Axiom, relative to collections of more than ›1 dense sets, deals with subclasses of
proper forcing notions, and tries to push the size of 2›0 to ›3 or higher. This is dif-
ficult, since amongst these “somewhat generic properties” we can find, for example,
closed and unbounded subsets of Ê2 contradicting club guessing on Ê2 fl cf(Ê),1 or
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functions Ê2 æ {0, 1} uniformising colourings for which there is no uniformisation
(see [6]).

Moving to higher cardinals is harder also because we lose our iteration theorems.
Iterating c.c.c. forcing notions with finite support is still c.c.c., and iterating proper
forcing notions with countable support is still proper. But moving to higher car-
dinals, even if we require the forcings to be very closed, might result in unwanted
cardinal collapsing (see [6]).

James Cummings, Mirna Dûamonja, and Itay Neeman proved in [1] the consis-
tency of a forcing axiom of this flavour by replacing c.c.c. by a more restrictive
form of the Ÿ

+-c.c. known as the strong Ÿ
+-c.c. In this note we deal with Ÿ-strong

properness, a more general notion than the strong Ÿ
+-c.c. from [1]. We show that

Neeman’s consistency proof of PFA using finite conditions can be generalised quite
easily to this context even when Ÿ is uncountable. We then prove that Ÿ-strongly
proper forcings satisfy a weak reflection property: to prove that enough filters exist
for any Ÿ-strongly proper forcing, it is enough to prove that enough filters exist
for Ÿ-strongly proper subforcings of size 2Ÿ. Using this reflection property, to-
gether with an argument involving the fact that all Ÿ-sequences of ordinals added
by a Ÿ-lattice and Ÿ-strongly proper forcing come from adding a Cohen subset of Ÿ

(Proposition 2.3), we show that the assumption of a supercompact cardinal (or any
large cardinal) is in fact unnecessary. We then modify our construction and show
the consistency of the forcing axiom together with 2Ÿ being arbitrarily large. This
modified construction actually shows the consistency of a slightly stronger form of
our forcing axiom and does not need the fact that Ÿ-sequences of ordinals added
by a Ÿ-lattice and Ÿ-strongly proper forcing come from a Ÿ-Cohen extension.

Our main result is thus the consistency relative to ZFC, for any given regular
cardinal Ÿ with Ÿ

<Ÿ = Ÿ, of the forcing axiom, for families of Ÿ
+-many dense sets,

for the family of forcing notions which are both Ÿ-lattice and Ÿ-strongly proper.
This is a rather small class, containing Ÿ-Cohen forcing and the natural forcing for
adding a club of Ÿ

+ with conditions of size less than Ÿ, but not much more. One
consequence of the corresponding forcing axiom, due to the inclusion in the class of
the above forcing for adding a club of Ÿ

+, is the failure of tail club-guessing on Ÿ
+

for ordinals of cofinality Ÿ; in other words, the forcing axiom implies that for every
sequence ÈC– | – œ Ÿ

+
, cf(–) = ŸÍ, where each C– is a club of –, there is a club

C ™ Ÿ
+ such that C– \ C is unbounded in – for every – < Ÿ

+ of cofinality Ÿ.2 One
could try to obtain a more useful forcing axiom by considering a slightly broader
class of forcing notions. We finish the paper observing that certain natural moves
in this direction lead to inconsistent principles.

Throughout the paper we work in ZFC+GCH for the sake of simplicity, although
many of these results can be proved without GCH if one is willing to collapse
cardinals, as long as one assumes that Ÿ

<Ÿ = Ÿ where appropriate.
The structure of the first part of the paper is what we may call an “onion proof”.

We start by sketching Neeman’s consistency proof of PFA in the present context,
using a supercompact cardinal. We then prove the weak reflection lemma, which
allows us to “peel o�” the consistency strength of the proof to a mere inaccessible
cardinal, and then we show that this too can be reduced to nothing more than ZFC.
In the second part of the paper we modify (in section 7) our final construction from
the first part so as to obtain a model of our forcing axiom with 2Ÿ arbitrarily large,
and in section 8 we prove that various natural strengthenings of the forcing axiom
are actually false.

2When Ÿ = Ê, the consistency of the above club-guessing failure is of course well-known. For
Ÿ > Ê, the consistency of the corresponding club-guessing failure is due to Shelah (e.g., [7]).
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2. Preliminaries

We say that a relation ª is a weak total order on X if the transitive closure
of ª is a total order on X. We say that a set M is Ÿ-closed if for every – < Ÿ,
every function f : – æ M is already in M . In the case of a forcing P, we say that
P is Ÿ-closed if every decreasing sequence of length less than Ÿ has a lower bound,
and that P is Ÿ-directed closed if every directed set of size less than Ÿ has a lower
bound. We will say that a forcing is Ÿ-lattice if every set of size less than Ÿ of
pairwise compatible conditions has a greatest lower bound.3

2.1. Strong properness.

Definition 2.1. Let M be a set and P a forcing in M . We say that a condition
q œ P is strongly M -generic (for P) if for every q

Õ Æ q there is fiM (qÕ) œ Pfl M such
that every condition in P fl M extending fiM (qÕ) is compatible with q

Õ.

Definition 2.2. Let Q be a forcing notion and let K be a class of models. We say
that Q is strongly proper for K if for every cardinal ‰ and every M œ K such that
M ª H(‰) and Q œ M , every p œ Q fl M can be extended to a strongly M -generic
condition.

When K is the class of all Ÿ-closed models M of size Ÿ, we simply say that Q is
Ÿ-strongly proper.

The following is a generalisation of an observation of Mitchell in [2].

Proposition 2.3. Suppose that Ÿ
<Ÿ = Ÿ, and let P be a Ÿ-lattice and Ÿ-strongly

proper forcing notion. Any Ÿ-sequence of ordinals added by P is Ÿ-Cohen generic.
Proof. Let ḟ be a P-name and p œ P such that p � ḟ is a Ÿ̌-sequence of ordinals.
Let M be a Ÿ-closed elementary submodel of H(‰), for some large enough ‰, such
that P, ḟ , p œ M . We let Q = P fl M . By elementarity of M and its Ÿ-closedness
we have that Q is a Ÿ-lattice forcing of size Ÿ, and therefore by a back-and-forth
argument, using Ÿ

<Ÿ = Ÿ, we have that Q is isomorphic to Ÿ
<Ÿ.

Let p
ú Æ p be a strongly M -generic condition. Let G be a V -generic filter with

p
ú œ G. Then G flQ is V -generic for Q, and this is forced by p

ú: given any q0 Æ p
ú

and any dense subset D ™ Q, we may extend the projection of q0 into M , fiM (q0),
to a condition q œ D, and since Q ™ M , q œ M and therefore compatible with q0
in P. Also, for every – < Ÿ the set D– of P-conditions deciding ḟ(–̌) is in M , and
by elementarity of M , D– fl M is a dense subset of Q. This means that ġ defined
by {Èq, È–̌, —̌ÍÍ | q �P ḟ(–̌) = —̌, q œ M} is a Q-name such that p

ú �P ḟ = ġ, and
therefore ḟ

G = ġ
GflQ œ V [G fl Q]. ⇤

The following is clear.

Proposition 2.4. The Ÿ-support iteration of Ÿ-lattice forcings is Ÿ-lattice. ⇤
It will be convenient to adopt the following notation: Given a class � of forcing

notions and a cardinal ⁄, FA⁄(�) is the assertion that for every P œ � and every
collection D = {D– | – < ⁄} of dense subsets of P there is a filter G ™ P such that
G fl D– ”= ? for all – < ⁄. We also say that G is a D-generic filter (of P).

3It would perhaps be more appropriate to call such a forcing notion a Ÿ-lower semi-lattice.
However, in the interest of keeping things simple, we will not use this terminology.
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Definition 2.5. The Ÿ-Strongly Proper Forcing Axiom (Ÿ-StrPFA) is
FAŸ+({P | P is Ÿ-lattice and Ÿ-strongly proper}).

We note that unlike the case with MA, where we allow D to have any size <2›0 ,
here we regard our forcing axiom as an analogue of PFA and therefore consider only
families D of size at most Ÿ

+.

3. The basic ingredients: supercompact cardinals

Theorem 3.1. Let Ÿ be a regular cardinal such that Ÿ
<Ÿ = Ÿ and let ◊ > Ÿ be

a supercompact cardinal. Then there is a Ÿ-lattice and Ÿ-strongly proper forcing P
which forces ◊ = Ÿ

++ together with Ÿ-StrPFA.
We prove this theorem by almost entirely repeating the consistency proof of PFA

by finite conditions given by Neeman in [4], to the point that the authors cannot
take credit for this theorem. We will omit most of the proofs of the subclaims, as
they are essentially the same as those of Neeman; instead we will indicate, at the
appropriate places, what the relevant claims from [4] are. The rest of this section
is devoted to the proof of this theorem.

Let F : ◊ æ V◊ be a Laver function for ◊ and let E denote the set of strong limit
cardinals in ◊ of cofinality at least Ÿ

+. Let S be the set of Ÿ-closed M ª H(◊)
such that |M | = Ÿ and let T = {H(–) | – œ E}. We define for each – œ E fi {◊}
a forcing P– such that P– is a complete subforcing of P— for all – Æ — in E fi {◊}.
Our forcing P will be P◊.

Given — œ E fi{◊}, we define P— as the collection of all the pairs Èp, sÍ such that:
(1) s œ [(S fi T ) fl H(—)]<Ÿ and œ is a weak total order on s.
(2) p is a function with dom(p) œ [E fl —]<Ÿ such that for all – œ dom(p),

(a) F (–) is a P–-name such that �– F (–) is a Ÿ-lattice, Ÿ-strongly proper
forcing notion whose conditions are ordinals,4

(b) H(–) œ s, and
(c) p(–) is a nice P–-name such that �– p(–) œ F (–).

(3) For every – œ dom(p) and every M œ s fl S such that – œ M , the pair
Èp�–, sflH(–)Í is a condition in P– which forces in P– that p(–) is a strong
F (–)-master condition for M [Ġ–].

We define Èp1, s1Í Æ— Èp0, s0Í if the following conditions hold:
• s0 ™ s1,
• dom(p0) ™ dom(p1), and
• for all – œ dom(p0), Èp1 � –, s1 fl H(–)Í �– p1(–) ÆF (–) p0(–).

To simplify the notation, if – œ E and Èp, sÍ œ P— for some — > –, we will write
Èp, sÍ � – to denote Èp � –, s fl H(–)Í.

Given — œ Efi{◊}, we denote by P�— the partial order {Èp, sÍ œ P | dom(p) ™ —}.
Note that there is no restriction on s.

Claim 3.2 (Claim 6.5 in [4]). Condition (3) in the definition of P— is equivalent
to, instead of considering (in the hypothesis) those M such that – œ M œ s fl S,
considering (in the hypothesis) those M such that M œ s fl S occurs above H(–) in
s and such that no model between H(–) and M is transitive.
Claim 3.3 (Claim 6.6 in [4]). Let – < — be two ordinals in E fi {◊}. Suppose
that Èp, sÍ œ P � — with H(–) œ s, and let Èq, tÍ œ Pfl H(–) be a condition extending
Èp, sÍ � –. Then Èp, sÍ and Èq, tÍ are compatible in P � —, as witnessed by Èr, s fi tÍ,
where r = q fi p � [–, —).

4It is not really necessary to require conditions in the forcing named by F (–) to be ordinals,
but it simplifies things to do so.
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Claim 3.4 (Claim 6.7 in [4]). Let — œ E fi {◊}.
(1) Let Èp, sÍ œ P�— and – œ E be such that H(–) œ s. Then Èp, sÍ is a strongly

H(–)-generic condition for P � —.
(2) Let Èp, sÍ œ P � — and – œ E, and suppose that Èp, sÍ œ H(–). Then

Èp, s fi {H(–)}Í œ P � —.
(3) P � — is strongly proper for T .

Claim 3.5 (Claim 6.8 in [4]). Let Q be a Ÿ-lattice Ÿ-strongly proper forcing.
Fix ⁄ such that Q œ H(⁄) and an œ-chain ÈMi | i < µÍ of Ÿ-closed elementary
submodels of H(⁄) with Q œ Mi, with µ < Ÿ. Suppose that i

ú
< µ and q œ Miú

is a strongly Mi-generic condition for all i < i
ú. Then there is some q

Õ Æ q which
is a strongly Mi-generic for all i < µ. In particular, there is a condition q œ Q
extending any given q0 œ M0 which is strongly Mi-generic for all i < µ.
Sketch of Proof of Claim. We build a decreasing sequence, qj for i

ú
< j < µ, of

conditions extending q and such that qj œ Mj is a strongly Mj-generic for all
j > i

ú. At limit steps we use the assumption that Q is Ÿ-lattice and take qj to be
the greatest lower bound of Èqi | i < jÍ. At successor steps we simply use the fact
that there is an extension of qj to a strongly Mj-generic condition qj+1. We apply
elementarity to find qj+1 in Mj+1. Finally, by taking i

ú = 0, the last part of the
claim follows immediately. ⇤
Claim 3.6 (Claim 6.9 in [4]). Let Èp, sÍ œ P such that for some –, H(–) œ s but
– /œ dom(p). Moreover, let M œ s fl S and Èq, tÍ œ P fl M be such that – œ dom(q)
and Èp, sÍ Æ Èq � ◊ \ {–}, tÍ. If (s fl M) \ H(–) ™ t, then there is a function p

Õ

which extends p, with dom(pÕ) = dom(p) fi {–}, and such that ÈpÕ
, sÍ œ P and

ÈpÕ
, sÍ Æ Èq, tÍ.

Claim 3.7 (Claim 6.10 in [4]). Let Èp, sÍ and Èq, tÍ be conditions in P. Let
M œ s fl S such that Èq, tÍ œ M . Suppose there is some ” < ◊ such that:

(1) Èp, sÍ Æ Èq � ”, tÍ and (dom(p) fl dom(q)) \ ” = ?, and
(2) (s fl M) \ H(”) ™ t.

Then there is a function p
Õ extending p such that dom(pÕ) = dom(p) fi (dom(q) \ ”)

and such that ÈpÕ
, sÍ œ P extends Èq, tÍ.

Claim 3.8 (Corollary 6.11 in [4]). Let M œ S and let Èp, sÍ œ P fl M . Then
there is condition Èq, tÍ œ P that extends Èp, sÍ and is such that M œ t.
Claim 3.9. P is Ÿ-lattice.
Proof. Suppose that ÈÈpi, siÍ | i < µÍ is a directed system of conditions with µ < Ÿ.
Let p be the function with domain

t
i<µ

dom(pi) such that for each i < µ and
– œ dom(pi), p(–) is a canonical P–-name for a condition forced to be the greatest
lower bound of {pj(–) | i Æ j < µ} provided {pj(–) | i Æ j < µ} is a directed set of
conditions in F (–). Let also s be the closure of

t
i<µ

si under intersections. It is
then immediate to verify that Èp, sÍ is a lower bound of {Èpi, siÍ | i < µ}, and it is
indeed the greatest lower bound by construction. ⇤
Claim 3.10. Let — œ E, Èp, sÍ œ P, and M œ s fl S be such that — œ M . Suppose
that ÈpÕ

, s
ÕÍ œ P— extends Èp, sÍ � —. Then given any Èp̄, s̄Í œ P— fl M such that

ÈpÕ
, s

ÕÍ Æ Èp̄, s̄Í, there is fiM (pÕ
, s

Õ) œ P— fl M such that fiM (pÕ
, s

Õ) extends Èp̄, s̄Í and
such that every Èq, tÍ œ M which extends fiM (pÕ

, s
Õ) is compatible with ÈpÕ

, s
ÕÍ. In

particular, Èp, sÍ � — is a strongly M -generic condition for P— whenever — œ M œ s.
Proof. The case where Ÿ = Ê, i.e. when we deal with the usual notion of a strongly
proper forcing, was proved by Neeman in [4]. We therefore assume Ÿ > Ê. We
prove the claim by induction on —. Let Èp̄, s̄Í œ M be a condition such that
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ÈpÕ
, s

ÕÍ Æ Èp̄, s̄Í. Let È–i | i < µÍ, for some µ < Ÿ, be the strictly increasing
enumeration of dom(pÕ) fl M . Without loss of generality we may assume µ > 0, as
otherwise the conclusion is immediate.

Using the previous claim that P is Ÿ-lattice and suitable bookkeeping, we may
build a Æ-decreasing sequence in P, ÈÈpi, siÍ | i Æ µ ·ÊÍ, where Èp0, s0Í = ÈpÕ

, s
ÕÍ and

for every i < µ·Ê and – œ dom(pi)flM there is some j > i such that Èpj , sjÍ�– œ P–

decides, for some name ›̇
–

j
œ M for an ordinal, that ›̇

–

j
is a condition in F (–) such

that every F (–)-condition in M flF (–) extending ›̇
–

j
is F (–)-compatible with pj(–).

By suitable applications of the induction hypothesis we can make sure that for
every – and every increasing sequence of indices Èj÷ | ÷ < ‹Í such that ›̇

–

j÷
is defined,

È›̇–

j÷
| ÷ < ‹Í is forced to be a decreasing sequence of conditions in F (–).

Given any – < ◊, if a limit stage i of the construction is such that we have
dealt with – (i.e., ›̇

–

j
has been defined) cofinally often below i, then we let ›̇

–

i
be

a P–-name for the greatest lower bound of {›̇
–

j
| j œ I} in F (–)—where I is the

cofinal subset of j œ i for which ›̇
–

j
is defined. Since ›̇

–

i
is forced to be the greatest

lower bound of {›̇
–

j
| j œ I}, rather than an arbitrary lower bound of this set, the

greatest lower bound of {pj(–) | j œ I} is forced to be compatible with ›̇
–

i
, and

so the construction can keep going. This is the only place where we use the fact
that the forcings F (–) are forced to be Ÿ-lattice, rather than just Ÿ-closed or even
Ÿ-directed closed.

Let Èpú
, s

úÍ = Èpµ·Ê, sµ·ÊÍ. We may—and we do—set up our bookkeeping in such
a way that Èp̄ú

, s
ú fl MÍ œ M is a condition in P extending Èp̄, s̄Í. Èp̄ú

, s
ú fl MÍ will

be our fiM (pÕ
, s

Õ).
Suppose now that Èq, tÍ œ M is a condition in P extending Èp̄ú

, s
ú fl MÍ. It is

enough to prove that Èq, tÍ is compatible with Èpú
, s

úÍ. For this, we let È–i | i < µ
úÍ,

for some µ
ú

< Ÿ, be the strictly increasing enumeration of dom(pú) fi dom(q). We
may assume for simplicity that µ

ú is a limit ordinal. We build a decreasing sequence
ÈÈqi, tiÍ | i Æ µ

úÍ of P-conditions such that each Èqi+1, ti+1Í is a condition in P � –i

extending Èpú � –i, s
úÍ and Èq � –i, tÍ, taking greatest lower bounds at limit stages.

The desired common extension of Èq, tÍ and Èpú
, s

úÍ will be Èqµú , tµúÍ. At successor
stages i + 1 for which –i œ dom(q) fl dom(pú) we apply the fact that F (–i) is forced
to be Ÿ-directed closed to find pi(–i) which is forced to extend qi(–i) and p

ú(–i)
in F (–i), noting that p

ú(–i) is, by construction, a name forced to be the greatest
lower bound of a decreasing sequence in F (–i) of |i|-many conditions compatible
with q(–i). This completes the proof. ⇤

To complete the proof of Theorem 3.1 we observe that the following is a corollary
from the above (an analogous corollary appears in [4]).

Corollary 3.11. For every – Æ ◊, P– is Ÿ-strongly proper. ⇤
Finally, by standard reflection arguments using the Laver function and the fact

that unboundedly often we choose Col(Ÿ+
, –) and Add(Ÿ, 1) as F (–), we get the

following corollary.

Corollary 3.12. P forces ◊ = Ÿ
++ together with Ÿ-StrPFA. ⇤

The following fact is not needed for the proof of Theorem 3.1, but it will be
needed for the proofs of Theorem 5.1, Theorem 6.1, and Theorem 7.1.

Claim 3.13. P has the ◊-c.c.
Proof. Let Èp›, s›Í œ P for › < ◊. By a standard �-system argument we may find
I ™ of size ◊, together with ◊̄ < ◊, a function p̄, and s̄ œ [(S fi T ) fl H(◊̄)]<Ÿ such
that for all ›0 < ›1 in I:
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(1) dom(p›0) fl dom(p›1) = dom(p̄) and p›0 � ◊̄ = p›1 � ◊̄ = p̄,
(2) s›0 fl H(◊̄) = s›1 fl H(◊̄) = s̄, and
(3) there is – œ E such that Èp›0 , s›0Í œ H(–), p›1 �– = p̄, and s›1 fl H(–) = s̄.

Let us fix ›0 < ›1 in I and let – œ E as in (3) for this pair. We may assume that
s›1 \ H(–) ”= ? as otherwise the proof is simpler. If the member of minimal rank
in s›1 \ H(–) is in T , then Èp›0 fi p›1 , s›0 fi s›1Í is a condition in P extending both
Èp›0 , s›0Í and Èp›1 , s›1Í thanks to the fact that the members of T form an œ-chain.

Let us now consider the case that the member of minimal rank in s›1 \ H(–) is
a model M in S. Let –

ú = min((M fl Ord) \ –). Then –
ú œ E. To see this, we first

note that cf(–ú) Ø Ÿ
+. We then note that if – /œ M , then –

ú is a limit of members
of E as – < –

ú is above sup(M fl –
ú), and therefore it is a strong limit.

It now follows that Èp›0 fi p›1 , s›0 fi {H(–ú)} fi s›1Í is a condition in P extending
both Èp›0 , s›0Í and Èp›1 , s›1Í (again using the fact that the members of T form an
œ-chain). ⇤

4. Weak reflection of Ÿ-strongly proper forcings

Lemma 4.1 (Weak Reflection Lemma). Let Ÿ be a regular cardinal such that
Ÿ

<Ÿ = Ÿ. Suppose that P is Ÿ-lattice and Ÿ-strongly proper forcing and let D =
{D– | – < Ÿ

+} be a family of dense open sets. Then there is a Ÿ-lattice and
Ÿ-strongly proper forcing Pú ™ P of size 2Ÿ and a family of dense subsets of Pú,
Dú = {D

ú
–

| – < Ÿ
+}, such that there is a D-generic filter of P if and only if there

is a Dú-generic filter of Pú.
Proof. Let ◊ be a large enough regular cardinal and let N ª H(◊) be a Ÿ

+-closed
elementary submodel such that P, D œ N and |N | = 2Ÿ. Let Pú = P fl N and
Dú = {D– fl N | – < Ÿ

+}.

Claim 4.2. Pú is Ÿ-lattice and Ÿ-strongly proper.
Proof. The fact that Pú is Ÿ-lattice follows immediately from the closedness of N

and elementarity. We now prove that Pú is Ÿ-strongly proper. Let ⁄ œ H(◊) be a
large enough regular cardinal, which exists if we choose ◊ to be su�ciently large,5
and let M ª H(⁄) be Ÿ-closed, of cardinality Ÿ, and such that P œ M .

By Ÿ
+-closedness of N , we get that M fl N œ N , and of course |M fl N | = Ÿ and

M fl N is Ÿ-closed. Also, we may assume that H(⁄) œ N , and therefore M fl N is
an elementary submodel of H(⁄). Since ⁄ was large enough, by elementarity of N

it follows that whenever p œ P fl M fl N , there is an extension of p to a strongly
M fl N -generic condition q for P. By elementarity, we can find such a q in N . But
this implies in particular that q is also strongly M fl N -generic for Pú (as witnessed
by the restriction of the projection function fiM to Pú � q), which of course means
that q is strongly M -generic for Pú. ⇤

It is now trivial to see that there is a Dú-generic filter for Pú if and only if there
is a D-generic filter for P. ⇤

The above lemma should be compared with the well-known fact that if P is a
c.c.c. partial order, Ÿ Æ |P|, and {D– | – < Ÿ} is a collection of dense subsets of
P, then there is a c.c.c. suborder Q of P such that |Q| = Ÿ and such that D– fl Q
is a dense subset of Q for every – < Ÿ. This reflection property for c.c.c. forcings
is of course what enables one to force MAŸ, for a given infinite cardinal Ÿ, without
any large cardinals. As we will soon see, the present weak reflection lemma is one
of the two main ingredients that will allow us to force Ÿ-StrPFA without any use of
large cardinals.

5By which we mean ◊ > 22Ÿ , and of course we may assume to have chosen ◊ this way.
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5. Peeling off supercompactness to inaccessibility

Given regular cardinals Ÿ < ◊, we write S
◊

Ÿ
to denote {– < ◊ | cf(–) = Ÿ}. We

define S
◊

>Ÿ
similarly.

Theorem 5.1. Assume GCH holds in V . Suppose that Ÿ is a regular cardinal
and ◊ > Ÿ is an inaccessible cardinal such that ⌃(S◊

>Ÿ
) holds. Then there is a Ÿ-

lattice and Ÿ-strongly proper forcing P which forces that ◊ = Ÿ
++ = 2Ÿ and that the

Ÿ-StrPFA holds.
Proof. We repeat the same argument as in the proof of Theorem 3.1 with P = P◊

as described in that proof. The main di�erence is that here we use the diamond
sequence to guess the names for our partial orders. To be more precise, we fix a
bijection Ï : ◊ æ V◊ and a diamond sequence ÈA– | – œ ◊, cf(–) > ŸÍ on S

◊

>Ÿ
,

and let F : S
◊

>Ÿ
æ V◊ be the function defined by F (–) = Ï“A– ™ V◊ for each –.

We then proceed as before with this function F in place of the Laver function. It
is not di�cult to see that all relevant claims from section 3 apply to the present
construction.

Suppose now that Q is a Ÿ-lattice and Ÿ-strongly proper forcing in V [G], and
D is a sequence of length Ÿ

+ of dense open sets. By the weak reflection lemma
we can reduce Q to Qú of size Ÿ

++ = ◊ = 2Ÿ. Let Q̇ú and Ḋú be P-names for
Qú. Since P has the ◊-chain condition (Claim 3.13), we may assume that both Q̇ú

and Ḋú are included in V◊. By the choice of F , there is some large enough – such
that F (–) = Q̇ú fl V–, and for a large enough ‰ we can fix R ª H(‰) which is
Ÿ

+-closed, R fl V◊ = V–, and such that R contains all the relevant objects. The
rest of Neeman’s argument will be as before, and hence the proof will be complete,
provided we can show that P– forces F (–) to be Ÿ-lattice and Ÿ-strongly proper.

The fact that �– F (–) is Ÿ̌-lattice is straightforward, using that R is Ÿ
+-closed:

Given µ < Ÿ and a sequence ‡ = Èṙ– | – < µÍ of P-names for Q̇ú-conditions in R,
‡ is in R, and therefore, by elementarity of R and the fact that Q̇ú is forced to
be Ÿ-lattice, we may fix a P-name in R for a condition which is forced to be the
greatest lower bound of {ṙ– | – < µ} provided this set is directed in Q̇ú.

It remains to prove that F (–) is also forced to be Ÿ-strongly proper. For this,
let Ṅ be a P–-name for a Ÿ-closed elementary submodel of some large enough H(⁄)
such that �– F (–) œ Ṅ and |Ṅ | = Ÿ̌. We may assume for simplicity that ⁄ œ R.
Let Ṅ

Õ be a P–-name for Ṅ fl R[Ġ–], and let ṙ be a P–-name for a condition in
F (–) fl Ṅ

Õ. It su�ces to show that there is a name ṙ
ú, of an extension of ṙ in F (–),

forced to be a strongly Ṅ
Õ-generic condition for F (–).

The key point6 is that Ṅ
Õ may be identified with a P–-name Ṅ

† for a Ÿ-sequence
of ordinals,7 and since P– is Ÿ-lattice (by Claim 3.9 and the fact cf(–) > Ÿ) and
Ÿ-strongly proper (by Corollary 3.11), this means that Ṅ

† may be taken as a P̄-
name in a complete suborder P̄ of P– isomorphic to Ÿ

<Ÿ. But by P̄ ™ R and the
Ÿ

+-closedness of R, this means that Ṅ
† œ R and therefore also Ṅ

Õ œ R, and since
R fl V◊ = V–, R thinks that Ṅ

Õ is a P-name for a relevant model. Since Q̇ú is a
P-name of a Ÿ-strongly proper forcing, the same holds in R, and therefore ṙ can be
extended to a condition ṙ

ú as wanted. ⇤

6. Reducing the consistency strength to ZFC

The next step is to remove the inaccessible cardinal from our hypotheses, thereby
arriving at our first main result.

6This may be a key point in the present proof, but it is not needed in general for this type of
constructions (see Remark 7.4).

7Working in the P–-extension of V , we may fix an ordinal ⁄0 for which there is a bijection
Ï : H(⁄) æ ⁄0. But then we may identify Ṅ

Õ with an enumeration in length Ÿ of Ï“Ṅ
Õ.
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Theorem 6.1. Assume GCH, and let Ÿ < Ÿ
+

< ◊ be regular cardinals. Then there
is a Ÿ-lattice and Ÿ-strongly proper forcing P which forces 2Ÿ = Ÿ

++ = ◊ together
with Ÿ-StrPFA.

Since we can start by forcing with Col(Ÿ+
, <◊), we may as well assume that ◊ =

Ÿ
++, and that no cardinals are collapsed. More importantly, after this preliminary

forcing we may fix a ⌃(S◊

Ÿ+)-sequence Ą.
The proof of the theorem is the same as in the inaccessible case, but we need to

find a substitute for the models H(–) (= V–) from the filtration ÈV– | – œ EÍ used
in the side conditions. For this we simply take a filtration N̨ = ÈN– | – < ◊Í of
H(◊) into transitive models such that N– is Ÿ-closed for every – of cofinality Ÿ

+,
which we can do thanks to 2Ÿ = Ÿ

+ and 2Ÿ
+ = ◊. We then let E = S

◊

Ÿ+ . We also
require that the models M in S be such that M ª ÈH(◊), œ, N̨ , ĄÍ. This way we
guarantee that the proof of Claim 3.13 goes through in the present situation.

7. Getting Ÿ-StrPFA together with 2Ÿ
large

In this section we generalise Theorem 6.1 by proving that Ÿ-StrPFA is consistent
with arbitrarily large values of 2Ÿ. The theorem is the following.

Theorem 7.1. Assume GCH, and let Ÿ < Ÿ
+

< ◊ be regular cardinals. Then there
is a Ÿ-lattice and Ÿ-strongly proper forcing P which forces 2Ÿ = ◊ together with
Ÿ-StrPFA.

Remark 7.2. Ÿ-StrPFA is the first forcing axiom we know of the form FAŸ+(�),
here � = {P | P is Ÿ-lattice and Ÿ-strongly proper}, such that FAŸ+(�) is consis-
tent with 2Ÿ arbitrarily large whereas FAŸ++(�) is false. To see that FAŸ++(�) is
false it su�ces to consider the poset P of <Ÿ-sized œ-chains of Ÿ-closed elementary
submodels N ª H(Ÿ++) such that |N | = Ÿ. P is Ÿ-lattice and Ÿ-strongly proper,
and an application of FAŸ++({P}) would cover Ÿ

++ by a Ÿ
+-chain of Ÿ-sized sets.

In order to prove Theorem 7.1 it will be convenient to actually prove a slightly
stronger result. Given a cardinal Ÿ, a ground model V0, a forcing P œ V0, and a
V0-generic filter H ™ P such that V = V0[H], let us call a forcing notion Q œ V

Ÿ-V0-H-strongly proper in the case that for every large enough cardinal ◊ and every
M œ H(◊)V0 , if M ª H(◊)V0 , |M |V0 = Ÿ, M is Ÿ-closed in V0, P œ M , and
Q œ M [H], then given any q œ Q œ M [H] there is an extension of q in Q which is
strongly M [H]-generic for Q.

We note that this is a more general notion than that of Ÿ-strong properness, so
that the FAŸ+ for the class of Ÿ-lattice posets with this property implies Ÿ-StrPFA.

Throughout the following proof of Theorem 7.1, given a forcing notion Q, ĠQ
will denote the canonical Q-name for the generic object.

Proof. We start out by letting ◊0 = Ÿ
++ and fixing, after forcing with Col(Ÿ+

, <◊0)
if necessary, a ⌃(S◊0

Ÿ+)-sequence Ą = ÈA– | – œ S
◊0
Ÿ+Í. Let us call this universe V .

Our goal will be to build a Ÿ-lattice and Ÿ-strongly proper poset P forcing 2Ÿ = ◊

together with FAŸ+(�Ÿ

GP), where �Ÿ

GP denotes the class of Ÿ-lattice forcing notions
which are Ÿ-V -ĠP-strongly proper. By the above observation, P will then force
Ÿ-StrPFA.

As in the proof of Theorem 6.1, we fix a filtration N̨ = ÈN– | – < ◊0Í of H(◊0)
into transitive models such that N– is Ÿ-closed for each – with cf(–) = Ÿ

+ and let
E = S

◊0
Ÿ+ . We consider a sequence ÈP— | — œ E fi {◊0}Í, built very much as in the

construction in section 6, except that at each stage – we look at whether A– codes,
not a P–-name for a relevant forcing, but a P– ◊ Add(Ÿ, Ÿ

+)-name for a forcing
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which is Ÿ-lattice and Ÿ-V -ĠP–◊Add(Ÿ,Ÿ+)-strongly proper (and if so, then working
parts at – are conditions in this forcing).

Our forcing P witnessing Theorem 7.1 will now be P◊0 ◊ Add(Ÿ, ◊). It is clear
that P forces 2Ÿ = ◊ and has the Ÿ

++-c.c. The proof that P forces FAŸ+(�Ÿ

GP) is
along the lines of the corresponding proof for Theorem 6.1. Specifically, suppose
Q̇ú is a P-name for a Ÿ-lattice Ÿ-V -ĠP-strongly proper forcing, and for – < Ÿ

+, Ḋ–

is a P-name for a dense subset of Q̇ú.

Claim 7.3. There is a P-name, Q̇, for a Ÿ-lattice Ÿ-V -ĠP-strongly proper suborder
of Q̇ú of size Ÿ

++ such that Ḋ– fl Q̇ is dense in Q̇ for each –.

Proof. For this, let G0 be V -generic for P◊0 and let us work in W = V [G0]. Let Ṙ

be an Add(Ÿ, ◊)-name for Q̇ú. As in the proof of Lemma 4.1, let N œ V be a Ÿ
+-

closed (in V ) elementary submodel of size 2Ÿ = Ÿ
++ containing everything relevant

(including Add(Ÿ, ◊)-names for Ḋ– for each – < Ÿ
+). In particular, P◊0 ™ N and

N [G0] is therefore Ÿ
+-closed in W . Let G be W -generic for Add(Ÿ, ◊). We claim

that it will su�ce to take a name, Q̇, for Q = Ṙ
G fl N [G0][G]. We also let H

be a V -generic filter for P such that W [G] = V [H], and we will use Qú to denote
(Q̇ú)H = Ṙ

G.
Using the Ÿ-closedness of Add(Ÿ, ◊) and the Ÿ

+-closedness of N [G0] in W it is
easy to see that Q is Ÿ-lattice. To see that it is Ÿ-V -H-strongly proper, let M œ V ,
M ª H(⁄)V , for large enough ⁄ œ N , be Ÿ-closed and of size Ÿ in V , and such
that Q œ M [H]. Given q œ Q fl M [H], we need to produce a strongly M -generic
condition for Q extending q. As in the proof of Lemma 4.1, we use the closedness
of N in W under Ÿ-sequences and get that M flN œ N is, in V , Ÿ-closed and of size
Ÿ. We then finish as in that proof, noting that any strongly (M flN)[G0][G]-generic
condition for Qú in N [G0][G] is a strongly M [H]-condition for Q. ⇤

By Ÿ
++-c.c. of P, we may identify Q̇ with a P◊0 ◊ Add(Ÿ, Ÿ

++)-name, which we
may code by a subset of Ÿ

++. Now we use our diamond Ą to capture Q̇ as in the
proof of Theorem 6.1.8 ⇤

Remark 7.4. Proposition 2.3, i.e., the fact that Ÿ-sequences of ordinals in generic
extensions by Ÿ-lattice Ÿ-strongly proper forcings belong to Ÿ-Cohen extensions,
is not needed in the proof of Theorem 7.1. This is thanks to the fact that at a
stage – œ E in the construction, the models M for which we need to prove strong
properness of the relevant forcing come in fact from V .

It is worth pointing out—and follows from a well-known result of Paul Larson—
that if MM

++ holds and we let Ÿ = Ê2, then the construction in Theorem 6.1 (and
Theorem 7.1) preserves MM

++ and so forces Ê2-StrPFA “on top” of this forcing
axiom. And the same thing is of course also true for natural weaker forcing axioms
like MM, PFA, and so on.

8. Relaxing strongness or g.l.b.’s?

Let �Ÿ be the class of Ÿ-lattice Ÿ-strongly proper posets. As we have seen, while
Ÿ-StrPFA, i.e. FAŸ+(�Ÿ), is consistent with ZFC, it is too weak to decide the size of
2Ÿ. In fact, this forcing axiom does not seem to have many applications. It does
imply certain weak failures of Club Guessing at Ÿ

+ (as pointed out in the introduc-
tion), as well as d(Ÿ) > Ÿ

+ and the covering number of natural meagre ideals being
greater than Ÿ

+, but we do not know of any other quotable consequences. In this

8When the capturing happens at a stage – œ E, we have that A– codes a P– ◊Add(Ÿ, –)-name,
which we can of course identify with a P– ◊ Add(Ÿ, Ÿ

+)-name.
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final section we address the prospect of (mildly) relaxing some of the constraints in
the definition of �Ÿ so as to obtain more powerful forcing axioms.

For the rest of this section, let us fix a regular cardinal Ÿ Ø Ê such that Ÿ
<Ÿ = Ÿ.

Given a model M and a set X œ M , let us call S ™ [X]Ÿ an M -stationary subset
of [X]Ÿ if for every function F : [X]<Ê æ X with F œ M there is some N œ S fl M

such that F“[N ]<Ê ™ N . This is the natural extension in the [X]Ÿ context of the
notion, due to Moore, of M -stationarity for collections of countable sets (see [3]).
Also, let us define the Ÿ-Ellentuck topology on [X]Ÿ by declaring basic open sets
to be of the form [s, Y ] = {Z œ [Y ]Ÿ | s ™ Z} for Y œ [X]Ÿ and s œ [Y ]<Ÿ. We
will next generalise Moore’s Mapping Reflection Principle (MRP) to the present
context.

Definition 8.1. Ÿ-MRP is the following statement: Let X be a set, let ◊ be a
cardinal such that X œ H(◊), and let � be a function defined on a club of [H(◊)]Ÿ
and such that for every M œ dom(�), �(M) is both an M -stationary subset of
[X]Ÿ and an open subset of [X]Ÿ in the Ÿ-Ellentuck topology. Then there is a ™-
continuous œ-chain ÈM– | – < Ÿ

+Í of elementary submodels of H(◊) of size Ÿ such
that for each – < Ÿ

+ of cofinality Ÿ, M– is Ÿ-closed and there is some –̄ < – such
that M— fl X œ �(M–) for all — œ [–̄, –).

Thus, MRP is just Ê-MRP. The following fact can be proved by a generalisation
of the argument showing that MRP implies the existence of a well-order of P(Ê1)
of length Ê2 �1-definable over H(Ê2) from any given ladder system on Ê1 and any
given Ê1-sequence of pairwise disjoint stationary subsets of Ê1.

Fact 8.2. Ÿ-MRP implies that 2Ÿ
+ = Ÿ

++. In fact, a stronger statement is true.
Given a club-sequence C̨ = ÈC– | – œ S

Ÿ
+

Ÿ
Í and a sequence S̨ = ÈS› | › < Ÿ

+Í
of pairwise disjoint stationary subsets of S

Ÿ
+

Ÿ
, Ÿ-MRP implies that there is a well-

order of P(Ÿ+) of length Ÿ
++ which is �1-definable over H(Ÿ++) from C̨ and S̨ as

parameters.

Definition 8.3. A forcing P is Ÿ-MRP-strongly proper if for every large enough ◊,
every Ÿ-closed M ª H(◊) of size Ÿ such that P œ M , and every p œ P fl M there is
q Æ p such that for every q

Õ ÆP q,
XqÕ = {X œ [P fl M ]Ÿ | ÷fiX(qÕ) œ P fl X’r ÆP fiX(qÕ), r œ X æ r || q

Õ}
is an M -stationary subset of [P]Ÿ.9

There is a natural forcing which, for a given open and stationary mapping � as in
the original statement of MRP, adds by finite approximations a reflecting sequence
for �. An immediate generalisation of the proof that PFA implies MRP using such
forcings yields the following.10

Fact 8.4. FAŸ+({P | P is Ÿ-lattice and Ÿ-MRP-strongly proper}) implies Ÿ-MRP.

The bad news is that, as Theorem 8.5 shows, this forcing axiom is inconsistent
when Ÿ is uncountable.

Theorem 8.5. Suppose Ÿ Ø Ê1 is such that Ÿ
<Ÿ = Ÿ. Then

FAŸ+({P | P is Ÿ-lattice and Ÿ-MRP-strongly proper})
is false.

9The notation r || q
Õ means that r is compatible with q

Õ in P, that is, they have a joint
extension.

10The relevant forcing this time is a natural one for adding a suitable reflecting sequence by
<Ÿ-sized approximations.
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When Ÿ is a successor cardinal, one can prove this inconsistency using the fol-
lowing theorem of Shelah (see [6], Appendix Chap. 3).

Theorem 8.6 (Shelah). Let Ÿ Ø Ê1 be a regular cardinal and let ÈC– | – œ S
Ÿ

+
Ÿ

Í
be a club-sequence with ot(C–) = Ÿ for all – œ S

Ÿ
+

Ÿ
. Then there is a sequence

Èf– | – œ S
Ÿ

+
Ÿ

Í of colourings, with f– : C– æ {0, 1} for all –, for which there is no
function G : Ÿ

+ æ 2 such that for all – œ S
Ÿ

+
Ÿ

, G(›) = f–(›) for club-many › œ C–.

The strategy in this case is to consider ÈC– | – œ S
Ÿ

+
Ÿ

Í and Èf– | – œ S
Ÿ

+
Ÿ

Í as
in Theorem 8.6 and to apply the forcing axiom to a natural forcing for adding by
<Ÿ-sized approximations a regressive function p on S

Ÿ
+

Ÿ
such that

(1) for all – œ dom(p), p(–) < –, and
(2) for all –0 < –1, if › œ (C–0 \ p(–0)) fl (C–1 \ p(–1)), then f–0(›) = f–1(›).

We then have that Èf– | – œ S
Ÿ

+
Ÿ

Í can be uniformised, in fact modulo co-bounded
sets, which is a contradiction.
Remark 8.7. P is also Ÿ

+-c.c., so this shows the failure of
FAŸ+({P | P is Ÿ-lattice, Ÿ

+-c.c., and Ÿ-MRP-strongly proper})
when Ÿ is a successor cardinal such that Ÿ

<Ÿ = Ÿ.
On the other hand, Theorem 8.6 does not seem to be available when Ÿ is inac-

cessible. We will now give a proof of Theorem 8.5 covering all cases. This proof
uses the following result of Shelah.
Theorem 8.8 (Shelah, Claim 3.3 in [5]). For every uncountable regular cardinal
Ÿ there is a club-sequence ÈC– | – œ S

Ÿ
+

Ÿ
Í such that for every club D of Ÿ

+ there is
some – œ D with {’ < Ÿ | C–(’ + 1) œ D} stationary (where ÈC–(’) | ’ < ŸÍ is the
strictly increasing enumeration of C–).

We are now ready to give the proof of Theorem 8.5 in the general case.

Proof. Given C̨ = ÈC– | – œ S
Ÿ

+
Ÿ

Í as in Theorem 8.8, let P be the following forcing:
Conditions in P are pairs ÈI, bÍ such that:

(1) I is a collection of <Ÿ-many pairwise disjoint intervals of the form [–, —]
with – Æ — < Ÿ

+,
(2) b is a regressive function with dom(b) ™ {min(I) | I œ I} fl S

Ÿ
+

Ÿ
,

(3) for each – œ dom(b), {min(I) | I œ I}fl{C–(’ +1) | ’ < Ÿ}fl(b(–), –) = ?,
and

(4) for each – œ dom(b) and each I œ I, if b(–) < min(I) < – and I
Õ œ I is

such that min(I) < min(I Õ) < –, then min(I) < C–(’) < min(I Õ) for some
’.

ÈI1, b1Í ÆP ÈI0, b0Í if
(1) for every I œ I0 there is I

Õ œ I1 with min(I Õ) = min(I) and max(I) Æ
max(I Õ) and

(2) b0 ™ b1.
Then P belongs to the relevant class and adds a club of Ÿ

+ violating the club-
guessing property of C̨. ⇤
Question 8.9. Suppose Ÿ is an inaccessible cardinal. Does it necessarily follow
that FAŸ+({P | P is Ÿ-lattice, Ÿ

+-c.c., and Ÿ-MRP-strongly proper}) fails?
Next we will show that the restriction to Ÿ-strongly proper forcing which, in

addition, are Ÿ-lattice is not just a technical artefact of our consistency proofs
but is in fact a necessary restriction. This result is essentially due to Shelah (see
Appendix Chap. 3, 3.4 in [6]). We include the proof for the reader’s convenience.
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Theorem 8.10 (Shelah). Let Ÿ be a successor cardinal. Then
FAŸ+({P | P is Ÿ-directed closed, Ÿ

+-c.c., and Ÿ-strongly proper})
is false.
Proof. This is similar to the proof on Theorem 8.5 for the case when Ÿ is a successor
cardinal. Let ÈC– | – œ S

Ÿ
+

Ÿ
Í be a club-sequence with ot(C–) = Ÿ for all – œ S

Ÿ
+

Ÿ

and let Èf– | – œ S
Ÿ

+
Ÿ

Í be a sequence of colourings, where f– : C– æ {0, 1} for all
–, which cannot be club-uniformised in the sense of Theorem 8.6. As in the proof
of Theorem 8.5 in the successor cardinal case, we will produce a forcing notion P
adding a uniformizing function and belonging to the relevant class. An application
of the forcing axiom to P yields then a contradiction.

Conditions in P are pairs p = Èap, d̨pÍ, where
(1) ap œ [SŸ

+
Ÿ

]<Ÿ;
(2) d̨p = Èd–

p
| – œ apÍ is such that, for some successor ordinal ip + 1 < Ÿ,

d
–

p
: ip + 1 æ C– is a strictly increasing and continuous function;

(3) for all –0, –1 œ ap and for all › œ range(d–0
p

) fl range(d–1
p

), f–0(›) = f–1(›).
The extension relation Æ on P is defined by letting q Æ p exactly when
(1) ap ™ aq,
(2) for every – œ ap, d

–

p
is an initial segment of d

–

q
, and

(3) if ip < iq, then (C–0 flC–1)\min{d
–0
q

(iq), d
–1
q

(iq)} = ? for all –0 ”= –1 œ ap.
Using Ÿ

<Ÿ = Ÿ it is straightforward to verify that P Ÿ-directed closed, Ÿ
+-c.c.,

and Ÿ-strongly proper. Hence, an application of the forcing axiom to P yields a
club-uniformising function for Èf– | – œ S

Ÿ
+

Ÿ
Í, which is a contradiction. On the

other hand, it is not di�cult to see that P is not Ÿ-lattice; in fact, one can easily find
compatible conditions p0, p1 œ P which do not have a greatest lower bound. ⇤

The following is now a natural question.

Question 8.11. Suppose Ÿ is an inaccessible cardinal. Does it necessarily follow
that FAŸ+({P | P is Ÿ-directed closed and Ÿ-strongly proper}) fails?

We will finish with the following question.

Question 8.12. Is it consistent that there is any uncountable regular Ÿ for which
Ÿ-MRP holds? More generally, and in view of Fact 8.2, is there any �2 sentence ‡

with the following properties?
(1) ZFC proves that if Ÿ Ø Ê1 is a regular cardinal and H(Ÿ+) |= ‡ holds, then

2Ÿ = Ÿ
+.

(2) Some reasonable extension of ZFC proves that one can force the existence
of a regular cardinal Ÿ Ø Ê1 such that H(Ÿ+) |= ‡.
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