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Abstract

Several situations are presented in which there is an ordinal � such

that {X 2 [�]@0
: X \ !1 2 S and ot(X) 2 T} is a stationary subset

of [�]@0
for all stationary S, T ✓ !1. A natural strengthening of the

existence of an ordinal � for which the above conclusion holds lies, in

terms of consistency strength, between the existence of the sharp of H!2

and the existence of sharps for all reals. Also, an optimal model separating

BSPFA and BMM is produced and it is shown that a strong form of

BMM involving only parameters from H!2 implies that every function

from !1 into !1 is bounded on a club by a canonical function.

1 Introduction

Given a class � of partially ordered sets (posets), the bounded forcing axiom
for � (BFA(�)) is the statement that for every P 2 � and every collection
{A

i

: i < !1} of maximal antichains of P of size at most @1 there is a filter
G ✓ P such that G\A

i

6= ; for each i. Recall that BFA(�) can be characterized,
in all naturally occurring cases, as a principle of generic absoluteness for ⌃1

formulas with parameters in H
!2 .

Theorem 1.1 (Bagaria ([B])) Given a class � of complete Boolean algebras,
BFA(�) holds if and only if for every a 2 H

!2 and every ⌃1 formula '(x),
H

!2 |= '(a) i↵ there is some P in � such that �P H
!2 |= '(ǎ).

Most natural classes � of posets, and in particular all classes of posets con-
sidered in this paper, are closed under completion.1 Notice that for these �,
BFA(�) is equivalent to the corresponding principle of generic absoluteness in
Theorem 1.1.

In this paper I look at combinatorial features that have arisen in the study of
Bounded Martin’s Maximum (BMM), the bounded forcing axiom for the class
of those posets that preserve all stationary subsets of !1. Notice that BMM
is the bounded form of the maximal forcing axiom Martin’s Maximum from
[Fo-M-S].

1That is, if P 2 � and B is the (unique up to isomorphism) complete Boolean algebra such
that P can be densely embedded in B, then B 2 �.

1
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Until fairly recently, an important open problem in set theory was whether
BMM decides the size of the continuum. A number of partial positive results–
usually of the form ‘BMM + (some extra hypothesis) implies (a certain state-
ment implying) 2@0 = 2@1 = @2’– were obtained2 before S. Todorčević found in
April 2002 a proof that BMM alone implies 2@0 = @2 ([T2]).

The particular statement implying 2@0 = 2@1 = @2 referred to in the last
paragraph is the following.

Definition 1.1 (Woodin ([Wo], Definition 5.12))  
AC

is the statement that
if S and T are stationary and co-stationary subsets of !1, then there are an
ordinal �, a surjection e : !1 �! � and a club C ✓ !1 such that S \ C = {⌫ 2
C : ot(e“⌫) 2 T}.

It is well–known (see for example [J], p. 445) that given any ordinal � < !2

and any surjective function e : !1 �! �, the function g : !1 �! !1 given
by g(⌫) = ot(e“⌫) represents � in the generic ultrapower derived from forcing
with P(!1)/NS

!1 (where NS
!1 denotes the nonstationary ideal over !1), i.e.,

P(!1)/NS
!1 forces that the set of M–ordinals below the class of g in M is

well–ordered in order type �, where M is the generic ultrapower (V !1 \ V )/G.
Such a function g is called the canonical function for � (derived from e). This
terminology is justified by the easily checked fact that if e0 : !1 �! � is any
other such surjection and g0 is defined as g with e0 instead of e, then g and g0

agree on a club. Throughout this paper, by a canonical function I will mean
a canonical function for some ordinal below !2. Also, in the context of forcing
with P(!1)/NS

!1 , M and j will denote the corresponding generic ultrapower
and generic elementary embedding, respectively.

It is easy to see that  
AC

is equivalent to the assertion that for all stationary
and co-stationary S, T ✓ !1 there is some � < !2 such that S �P(!1)/NS!1

� 2 j(T ) and !1\S �P(!1)/NS!1
� /2 j(T ), i.e., letting B be the regular open

completion of P(!1)/NS
!1 , the class [S]B– under the natural embedding of

P(!1)/NS
!1 inside B– of S is equal to [[�̌ 2 j(Ť )]]B, the Boolean value of the

formula � 2 j(T ). It is also easy to see that  
AC

implies 2@1 = @2 and also that
L(P(!1)) |= ZFC ([Wo], Lemma 5.13).  

AC

actually also implies 2@0 = 2@1 by
a harder argument ([Wo], Theorem 3.51).

Definition 1.2 The Club Bounding Principle (CBP ) is the statement that ev-
ery function from !1 into !1 is bounded on a club by a canonical function.

 
AC

implies CBP ([As-W]), which in turn implies, by a result of Deiser and
Donder ([D-Do]), the existence of an inner model with an inaccessible limit of
measurable cardinals.

In contrast to this, a particularly annoying fact about BMM is that nothing
nontrivial can be said so far about its consistency strength in general.3 On the

2See [As2] for these developments.
3Added in proof: The situation has changed quite dramatically since this paper was com-

pleted. Ralf Schindler has proved that BMM implies the existence, for every set X, of an
inner model containing X and with a strong cardinal ([Sc]).
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other hand, the Bounded Semiproper Forcing Axiom BSPFA, namely BFA(�)
for the class � of semiproper posets, is equiconsistent with the existence of a
reflecting cardinal (a regular cardinal  is reflecting if H



is correct about ⌃2

statements with parameters).4

It is easy to see that a cardinal is reflecting in L whenever it is reflecting in
the universe, and also that if  is a Mahlo cardinal, then there are stationarily
many � in  which are reflecting in V



. BMM certainly implies that !2 is
reflecting in L, but nothing better than that is yet known to hold in general.

However, it should be noted that  
AC

– and thus the existence of an inner
model with an inaccessible limit of measurable cardinals– follows from BMM
plus the existence of a cardinal with a certain weak Erdős property denoted by
 �! (<!1)

<!

2!1 ([As-W]).
The meaning of this notation is that for every first order structure A =

hL


[A],2, Ai there is a sequence (I
↵

: ↵ < !1) such that

(i) for all ↵ < !1, I↵ is a set of indiscernibles for A+ of order type !↵, where
A+ = (A, ⇠̇)

⇠<!1 , and

(ii) for all ↵, � < !1, all formulas '(v0, . . . , vn+m�1), ~⇠ 2 !n

1 , ~� 2 Im
↵

and
~�0 2 Im

�

, if ~� and ~�0 are strictly increasing,

A+ |= '(~⇠,~�) ! '(~⇠,~�0).

The consistency strength of this partition relation lies strictly below that of
an !1–Erdős cardinal. This fact was used in [As-W] to produce the first known
model of BSPFA in which BMM fails. Also, Schindler has observed that if

BMM holds and !1 is inaccessible to reals (i.e., !L[a]
1 < !1 for all reals a),

then X] exists for every set of ordinals X and there is an inner model with a
strong cardinal. These results indicate that BMM could have large consistency
strength by itself, though it is not yet known whether it implies that !1 is
inaccessible to reals.

In this paper I am mostly interested in a certain combinatorial property for
[�]@0– given some ordinal � � !2– which is relevant to the obtainment of  

AC

in the presence of BMM . As I will shortly show– this argument was given for
example also in [As-W], but I reproduce it here for the reader’s convenience–,
the existence of some � with that property implies, in the presence of BMM ,
that  

AC

holds.
Recall that, given a set X , C ✓ [X ]@0 is a club of [X ]@0 if and only if C is

an ✓–unbounded subset of [X ]@0 which is also closed, i.e., the union of every
countable ✓–increasing sequence of elements of C belongs to C. The following
well–known fact will be often used.

4The bounded form of the Proper Forcing Axiom was shown by Goldstern and Shelah in
[Go-S]– where it was introduced– to imply that !2 is reflecting in L. On the other hand, if 
is reflecting, then there is a semiproper iteration P ✓ V forcing BSPFA over V ([Go-S]).
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Lemma 1.2 ([Ku]) For every set X and every club E ✓ [X ]@0 there is a func-
tion F : [X ]<! �! X such that all X 2 [X ]@0 which are closed under F (i.e.,
are such that F“[X]<! ✓ X) belong to E.

A ✓ [X ]@0 is a stationary subset of [X ]@0 if A intersects each club of [X ]@0 . If
!1 ✓ X , A ✓ [X ]@0 is a projective stationary subset of [X ]@0 ([F-J]) if and only
if {X 2 A : X \ !1 2 S} is a stationary subset of [X ]@0 for every stationary
S ✓ !1.

Given a set X and A ✓ [X ]@0 , we define the following poset P
A

: p 2 P
A

if
and only if p is a strictly ✓–increasing and ✓–continuous (i.e., if ⌫ 2 dom(p) is a
limit ordinal, then p(⌫) =

S
⌫

0
<⌫

p(⌫0)) sequence of elements of A whose length
is some countable successor ordinal. q extends p if and only if p ✓ q.

The following fact is proved in [F-J].

Lemma 1.3 Let X be a set and let A be a stationary subset of [X]@0 . Then,
P
A

forces the existence of a strictly ✓–increasing and ✓–continuous sequence
hX

⌫

: ⌫ < !1i of elements of A such that X =
S

⌫<!1
X

⌫

. Suppose that
!1 ✓ X . Then P

A

preserves stationary subsets of !1 if and only if A is a
projective stationary subset of [X]@0 .

From Lemma 1.3 we get that the following bounded form of the Projective
Stationary Reflection principle ([F-J])5 is a consequence of BMM .

Definition 1.3 BPSR is the following statement.
Suppose � is an ordinal, a 2 H

!2 , ↵ < � and A ✓ [�]@0 is a projective
stationary subset of [�]@0 which is ⌃1 definable with a, ↵ and � as parameters
(i.e., there is some ⌃1 formula '(x, y, z) such that, for every set X, X 2 A
i↵ |=1 '(X, a,↵, �)6). Then there are some ↵ < � < !2 and some strictly ✓–
increasing and ✓–continuous sequence hX

⌫

: ⌫ < !1i such that � =
S

⌫<!1
X

⌫

and, for every ⌫ < !1, H!2 |= '(X
⌫

, a,↵, �).

Suppose BMM (or, more generally, BPSR) holds. In order to verify  
AC

it su�ces, by Lemma 1.3, to find some ordinal � � !2 so that, whenever S
and T are stationary and co-stationary subsets of !1, {X 2 [�]@0 : X \ !1 2
S i↵ ot(X) 2 T} is a projective stationary subset of [�]@0 . Then, byBPSR there
is � < !2 and a strictly ✓–increasing and ✓–continuous sequence hX

⌫

: ⌫ < !1i
of countable subsets of � such that, for each ⌫, X

⌫

\ !1 2 S if and only if
ot(X

⌫

) 2 T and such that � =
S

⌫

X
⌫

. Let e : !1 �! � be any surjection and
let C ✓ !1 be the club of all ordinals ⌫ such that ⌫ = (e“⌫)\!1 and e“⌫ = X

⌫

.
Then, for every ⌫ 2 C, ⌫ 2 S i↵ ot(e“⌫) 2 T .

Given an ordinal � and two subsets Y and Z of !1, let

X �

Y,Z

= {X 2 [�]@0 : X \ !1 2 Y and ot(X) 2 Z}
5The Projective Stationary Reflection principle is equivalent to Todorčević’s Strong Re-

flection Principle (see also [F-J] for a proof).
6|=n denotes the definable satisfaction relation for ⌃n formulas.
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Now I define the Chang’s Conjecture type property I will focus on in most of
this paper.

Definition 1.4 For an ordinal � � !2, S� is the statement that for all station-
ary subsets S and T of !1, X �

S,T

is a stationary subset of [�]@0 .
Also, S is the statement that there is some ordinal � � !2 such that S� .

If there is some � � !1 such that S� , then � is obviously a limit ordinal and
it is at least !2 (see Remark 1).

The reason I am interested in S is that, as it easily follows from the para-
graph before Definition 1.4, this combinatorial property su�ces to prove– in
the presence of BPSR–  

AC

(actually, this argument is enough to establish the
more general version of  

AC

in which the conclusion of Definition 1.1 holds for
all stationary S, T ✓ !1 such that T is also co-stationary). In fact, S� is equiv-
alent to {X 2 [�]@0 : X \ !1 2 S i↵ ot(X) 2 T} being a projective stationary
subset of [�]@0 for all stationary S, T ✓ !1 such that T is also co-stationary.

Besides its convenience, S appears to be quite a reasonable principle in itself:
Let � be a fixed uncountable ordinal and consider a countable subset of �. Let us
look for parameters describing X which are, moreover, countable ordinals. One
such parameter is– if X is in the club of countable subsets whose intersection
with !1 is a countable ordinal– X\!1. Another countable parameter describing
X is of course its order type. X \ !1 and ot(X) appear to be the most obvious
countable parameters describing a “typical” X 2 [�]@0 . It is then natural to
ask for the largeness of the subsets of [�]@0 obtained by considering all X 2
[�]@0 whose describing parameters are combined in several ways. The result of
demanding that X �

S, T

be large– where “large” means stationary– for large– i.e.,
stationary– S, T ✓ !1 is precisely S� .

So far, S has been known to hold in a variety of situations. For example,
Woodin proved that if  is a measurable cardinal, then S. He also proved
S� for � = (22

@1 )+ in [Wo], Lemma 10.95, from the assumption that NS
!1

is precipitous. There he uses this to argue that, if BMM holds and either
there is a measurable cardinal or NS

!1 is precipitous, then  
AC

also holds.
Also, P. Larson and Woodin independently proved that if NS

!1 is presaturated–
actually, it su�ces to assume that NS

!1 is precipitous and that P(!1)/NS
!1

forces j(!V

1 ) = !V

2 –, then S!2 (see [L] or the proof of [Wo], Theorem 5.14).
I proved that if  is an !1–Erdős cardinal, then there are unboundedly many
inaccessible cardinals � below  such that S� . Then, P. Welch lowered the large
cardinal hypothesis in this result: S� holds for unboundedly many inaccessible
� <  in case  is a cardinal with the partition property  �! (<!1)

<!

2!1 ([As-
W]). Welch’s proof can be adapted to show that S also holds for such a cardinal
.

The following observation– which was noticed before by P. Larson ([L])– will
be crucial at a couple of places in this paper.

Lemma 1.4 (Absoluteness Lemma) Let M ✓ N be two transitive models of
enough set theory, let � be an ordinal in M , let ↵ and � be two countable
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ordinals in M such that ↵ < � < � and let F : [�]<! �! � be a function in M .
Then, in M there is a countable subset of � closed under F whose intersection
with !M

1 is ↵ and whose order type is � if and only if there is such a set in N .

Proof: Letting g : ! �! ↵ and h : ! �! � be bijections in M , we have a
poset P in M of finite approximations to a set X 2 [�]@0 such that X is closed
under F , X \ !M

1 = ↵ and ot(X) = �:
A condition p in P is some triple (n

p

, x
p

, h
p

) such that

(a) n
p

is a natural number,

(b) x
p

2 [�]<!,

(c) g“n
p

✓ x
p

\ !M

1 ✓ ↵, and

(d) h
p

: x
p

�! � is order preserving and h“n
p

✓ range(h
p

).

q  p i↵ p = q or else

(e) n
p

< n
q

,

(f) x
p

✓ x
q

, h
p

✓ h
q

, and

(g) F : [x
p

]<! ✓ x
q

.

It is easily seen that P is well–founded if and only if there is no X 2 [�]@0

closed under F such that X \!M

1 = ↵ and ot(X) = �. Now, the absoluteness of
well–foundedness between transitive models of set theory establishes the lemma.
2

The rest of the paper is divided into four sections. In Section 2, I give
several consequences of S showing that it implies the consistency of small large
cardinals with ZFC. In Section 3 it is shown that S holds in various situations.
The main result in Section 4 is that a natural strengthened version of S implies
that the sharp of every real exists (on the other hand, from the results of Section
3 it follows that this version of S holds in L[H

!2 ] provided H]

!2
exists). Section

5 is somewhat independent of the rest of the paper. It starts with a result
showing that a certain principle of generic absoluteness forH

!2 extendingBMM
implies CBP . Then, an optimal model separatingBSPFA fromBMM is given.
Finally, a certain strengthening of the negation of CBP is presented and it is
shown that it and its negation follow from }

!1 and BMM , respectively.

Acknowledgment. I thank Philip Welch for his interest and his many useful
comments on this paper.
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2 Large cardinal consequences of S
I will start by considering local versions of S. The ordinals arising naturally
from these weaker versions– i.e., those defined as the first ordinal � such that
the property holds for [�]@0– build a hierarchy.

Definition 2.1 Let Y and Z be subsets of !1.

(a) S
Y,Z

is the statement that there is some ordinal � � !1 such that X �

Y,Z

is

a stationary subset of [�]@0 .

(b) Assuming S
Y,Z

, �(Y, Z) is the first ordinal � witnessing this.

Notice that for every � � !1 and every nonstationary Y ✓ !1, letting C be
any club of !1 disjoint from Y , {X 2 [�]@0 : X \ !1 2 C} is a club of [�]@0

disjoint from X �

Y,Z

for every Z ✓ !1. Therefore, X �

Y,Z

can only be stationary
for stationary Y and– also trivially– for unbounded Z ✓ !1.

Fact 2.1 Let S, Z and Z 0 be subsets of !1, S stationary, and suppose that
Z 0 consists of limit points of Z. Assume S

S,Z

0 . Then, S
S,Z

. Moreover, below
�(S,Z 0) there are unboundedly many ordinals � witnessing S

S,Z

.

Proof: Assume otherwise. Then there is some �0 < �(S,Z 0) := � such
that X ⇠

S,Z

is nonstationary for every ⇠ such that �0 < ⇠ < �. Letting ✓ > |�| be a
cardinal, there is a witness F

⇠

: [⇠]<! �! ⇠ to this in H
✓

for every such ⇠. Then,
since X �

S,Z

0 is stationary, there is some N 4 H
✓

containing �0 and F
⇠

for each
⇠ in N between �0 and �, and such that N \ !1 2 S and ↵ := ot(N \ �) 2 Z 0.
↵ is a limit point of Z, and so there is some ⇠ in N \ � above �0 such that
ot(N \ ⇠) 2 Z. But then, N \ ⇠ is an element of X ⇠

S,Z

closed under F
⇠

, which is
a contradiction. 2

Lemma 2.2 Let S and Z be subsets of !1, S stationary, and let � be an ordinal
between !1 and !2. If S �P(!1)/NS!1

� 2 j(Z), then X �

S,Z

is stationary and in

fact there is a club E ✓ [�]@0 such that every element of E whose intersection
with !1 is in S has its order type in Z.

Proof: Fix any surjective function e : !1 �! �. The canonical function
g for � derived from e is such that for some club C ✓ !1, if ⌫ 2 C \ S, then
(e“⌫) \ !1 = ⌫ and g(⌫) = ot(e“⌫) 2 Z. Therefore we can take E = {e“⌫ : ⌫ 2
C}. 2

Now the following fact, showing that some X �

S,Z

may be stationary even if
Z is nonstationary, holds trivially.

Fact 2.3 Let S be a stationary subset of !1 such that S �P(!1)/NS!1
j(!̌1) =

!̌2 (i.e., S forces that the set of M–ordinals below !M

1 – M being the generic



Large cardinal consequences of S 8

ultrapower– is well–ordered in order type !V

2 ). Then, for every stationary S0 ✓ S
and every unbounded Z ✓ !1 there are unboundedly many ordinals � < !2 for
which there is some stationary S

�

✓ S0 and some club E
�

✓ [�]@0 such that
every element of E

�

whose intersection with !1 is in S
�

has its order type in Z.

The conclusion of Fact 2.3– and in fact the apparently weaker version of it
where Z is required to be a club– is actually equivalent to S �P(!1)/NS!1

j(!̌1) =
!̌2. To see this, assume without loss of generality that S � j(!̌1) 6= !̌2. Then
there is some stationary S0 ✓ S and some function f : !1 �! !1 representing–
modulo S0– an ordinal above all ↵ < !V

2 in the generic ultrapower M (i.e., S0

forces that the class of f in M is an ordinal of M lying above the class of every
canonical function in V ). Let Z be a club of !1 in V so that min(Z\(⌫ +1)) >
f(⌫) for every ⌫ 2 S0. Since the identity on !1 represents !V

1 , S0 forces that the
least element of j(Z) above !V

1 lies above ↵ for all ↵ < !V

2 . Hence, for every �
such that !1 < � < !2, X �

S

0
,Z

is nonstationary.

There can be ordinals � > !2 such that X �

S,Z

is stationary in [�]@0 for
some stationary S and some nonstationary Z. For example, suppose we can
collapse some cardinal � to !1 while preserving !1 and forcing that there is
some stationary subset S of !1 as in the hypothesis of Fact 2.3. Now, given
any stationary S0 ✓ !1 and any unbounded subset Z of !1, S0 and Z in the
ground model, if S \ S0 is stationary, then there are unboundedly many � < �
such that X �

S

0
,Z

is a stationary subset of [�]@0 in the extension. But then, by
the absoluteness Lemma 1.4, the same is true in the ground model. If  is a so-
called almost <!1–Erdős cardinal, then by [Do-Ko], the Levy collapse turning
 into !2 with countable conditions forces �P(!1)/NS!1

j(!̌1) = !̌2 (see the
comment after the proof of Fact 2.5). Hence, if  is such a cardinal and S, Z
are unbounded subsets of !1, S stationary, then there are unboundedly many
ordinals � <  such that X �

S,Z

is a stationary subset of [�]@0 .
Notice also that there is no ordinal � � !1 such that X �

!1,Z
is stationary

for all unbounded Z ✓ !1, since otherwise {ot(X) : X 2 E} would be a
co-bounded subset of !1 for every club E ✓ [�]@0 .

The strengthening of  
AC

asserting that the conclusion of Definition 1.1
holds for (S,Z) whenever S ✓ !1 is a stationary and co-stationary subset of
!1 and Z ✓ !1 is unbounded, is false. In fact, letting Z be, for example, the
set of all countable successor ordinals, there obviously is no stationary and co-
stationary S ✓ !1 such that the conclusion of Definition 1.1 holds for (S,Z),
since being or not being a successor ordinal cannot be changed by forcing.
However, I do not know the answer to the following:

Question 2.1 Can there be a nonstationary Z ✓ !1 such that for every sta-
tionary and co-stationary S ✓ !1 there are a � with !1 < � < !2, a surjection
e : !1 �! � and a club C ✓ !1 such that S \ C = {⌫ 2 C : ot(e“⌫) 2 Z}?

Remark 1 There is no �, !1 < � < !2, such that X �

!1,C
is stationary for all

clubs C ✓ !1– in other words, such that {ot(X) : X 2 E} is a stationary subset
of !1 for every club E ✓ [�]@0 . In fact, there is no such � such that

S
X2E

{⌫ :
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!1 \ X 2 ⌫  ot(X)} is a stationary subset of !1 for every club E ✓ [�]@0 .
The reason is that such a � can be covered by an ✓–increasing ✓–continuous
sequence (X

⌫

: ⌫ < !1) of countable subsets of � such that X
⌫

\!1 = ⌫ for all ⌫
in some club D ✓ !1. Suppose Y =

S
⌫2D

(ot(X
⌫

) + 1)\(⌫ + 1) were stationary.
Then, since the mapping sending ⇠ 2 Y to the least ⌫ such that ⌫ < ⇠  ot(X

⌫

)
is regressive, there would be some ⌫0 such that ot(X

⌫0) is uncountable, which
is absurd.

S!2 is quite strong, in the sense that it implies the existence of 0] and more.
Consider the following forms of Chang’s Conjecture:

Definition 2.2 (a) P1(!1) is the statement that for every club E ✓ [!2]@0 ,
{ot(X) : X 2 E} includes a club of !1.

(b) P2(!1) is the statement that for every club E ✓ [!2]@0 , {ot(X) : X 2 E}
is a stationary subset of !1.

(c) P1(!1)+ is the statement that for every club E ✓ [!2]@0 there is a club
C ✓ !1 such that {ot(X) : X 2 E, X \ !1 = ⌫} includes a club for all
⌫ 2 C.

P1(!1)+ trivially implies S!2 . P1(!1) and P2(!1) are defined in [Do-Le],
Definition 2.17. There it is shown that P1(!1) and P2(!2) are equiconsistent
with the existence of a so-called nearly <!1–Erdős cardinal. This large cardinal
notion in particular implies that 0] exists. The following result follows trivially
from the fact that the conclusion of S!2 holds with S = !1 for all stationary
T ✓ !1.

Fact 2.4 S!2 implies P1(!1).

Welch has proved that P1(!1)+ is also equiconsistent with a nearly <!1–
Erdős cardinal: the Levy collapse of such a cardinal to !2 forces P1(!1)+. I do
not know whether P1(!1)+ is equivalent to S!2 .

P. Larson has proved that CBP implies P2(!1). In fact, it implies the strong
version of P2(!1) asserting that for every club E ✓ [!2]@0 there are club–many
⌫ < !1 such that {ot(X) : X 2 E, X \ !1 = ⌫} is stationary (see [As-W]).

Question 2.2 Does CBP imply S!2?

Let me turn briefly to a related remark. Suppose there is some stationary
S such that S �P(!1)/NS!1

j(!̌1) = !̌2. Let G be a P(!1)/NS
!1–generic filter

over V containing S and let M and j be, respectively, the corresponding generic
ultrapower and generic elementary embedding. If T is a stationary subset of !1

in V , then j(T ) is a subset of !M

1 = !V

2 which of course is stationary in M .
One may ask, however, whether j(T ) is also stationary in V [G], or whether it
intersects at least each club of !2 in V . As the following result shows, there are
models of � j(!̌1) = !̌2 in which these questions are answered negatively.
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Fact 2.5 There is a club D ✓ !2 whose minimum is above !1 such that

(a) if for every club C ✓ !1 there is some stationary S ✓ !1 such that
S �P(!1)/NS!1

D \ j(C) 6= ;, then P2(!1) holds,

(b) if for every stationary T ✓ !1 there is some stationary S ✓ !1 such that
S �P(!1)/NS!1

D \ j(T ) 6= ;, then P1(!1) holds,

(c) if �P(!1)/NS!1
D \ j(C) 6= ; for every club C ✓ !1, then {ot(X) : X 2

E, X \ !1 2 S} is stationary for every stationary S ✓ !1 and every club
E ✓ [!2]@0 , and

(d) if �P(!1)/NS!1
D \ j(T ) 6= ; for every stationary T ✓ !1, then S!2 holds.

Proof: Let G : [!2]<! �! !2 be a function such that every X 2 [!2]@0

closed under G is the intersection of some N 4 (H
!3 ,2, <) with !2, where

< is a well–order of H
!3 . Let D be the club of all ↵ < !2 above !1 which

are closed under G. Assume P2(!2) fails. Let (F0, C0) be the <–least pair
(F,C) such that F is a function from [!2]<! into !2 and C ✓ !1 is a club
disjoint from {ot(X) : X 2 [!2]@0 is closed under F}. Suppose there is some
stationary S ✓ !1 and some � in D such that S � � 2 j(C0). Since � is
closed under G, there is some X 2 [�]@0 which is closed under G and such that
X \ !1 2 S and ot(X) 2 C0. Then, there is some N 4 (H

!3 ,2, <) such that
N \!2 = X. Since F0 is in N , X is closed under F0, contradicting the fact that
ot(X) is in C0. Similarly one proves that D witnesses (b), (c) and (d) as well. 2

The assumption that P(!1)/NS
!1 forces that j(!̌1) = !̌2 is equiconsistent

with the existence of an almost <!1–Erdős cardinal ([Do-Ko], Theorems C and
D), whose consistency strength is strictly weaker than that of a nearly <!1–
Erdős cardinal. This shows the consistency of the existence of clubs C ✓ !1,
D ✓ !2 such that �P(!1)/NS!1

“j(!̌1) = !̌2 and j(C) \D = ;”.
Welch has remarked that if  � !2 is a successor cardinal and S

+
holds,

then x† exists for every real x, and that this already appears in [Do-Ko], where
the more general fact is proved that the existence of x† for every real x follows
from the existence of such a cardinal  such that the weak Chang’s Conjecture
at  holds, that is, such that for any first order structure M of countable
language and with universe + there is some ordinal � <  with the property
that {ot(X) : X 4 M, X \  = �, |X| = |�|} is unbounded in |�|+.

From S alone– actually a weak form of S su�ces– we can infer that !1 is
weakly compact in L[a] for every real a.

Fact 2.6 Suppose there is an ordinal � > !1 such that X �

!1,C
is a stationary

subset of [�]@0 for every club C ✓ !1. More generally, suppose that for every
club E ✓ [�]@0 ,

S
X2E

{⌫ : !1 \X 2 ⌫  ot(X)} is a stationary subset of !1.
Then, !1 is a weakly compact limit of weakly compact cardinals in L[a] for every
real a.
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Proof: A previous step will be to prove that !1 is inaccessible to reals.

Claim 2.7 !1 is inaccessible in L[r] for every real r.

Proof: Otherwise there is a real r such that !1 = !
L[r]
1 . Let C be the

club of !1 consisting of all ⌫ such that ⌫0 is countable in L
⌫

[r] for every ⌫0 < ⌫.
Let E = {X 2 [�]@0 : X = � \N for some countable N 4 L

�

[r], !1 2 N}. E
includes a club of [�]@0 , and so there is some N 4 L

�

[r] containing !1 such that
↵ := N\!1 is a countable ordinal and such that there is some ⌫ 2 C, ↵ < ⌫  �,
where L

�

[r] is the transitive collapse of N . Letting ⇡ be the collapsing function,
↵ = ⇡(!1). But since ⌫ is in C, ↵ must be countable in L

⌫

[r] and therefore also
in L

�

[r], contrary to ⇡ being an isomorphism. 2

Now let C be the set of all ordinals ⌫ in  := !1 such that for every ⌫0 < ⌫
and every tree T ✓ L

⌫

0 [a] in L[a], T has a cofinal branch in L
⌫

[a] in case it has
such a branch in L[a]. Since  is inaccessible in L[a], C is a club of . Fix a
–tree T in L[a]. Let � be some cardinal above �. We want to prove that in
L[a] there is some cofinal branch through T . By our assumption there is some
N 4 L

�

[a] containing T and some ⌫ 2 C such that the transitive collapse of
N \ L

�

[a] is L
�

[a] for some � such that ↵ < ⌫  �, where ↵ := N \ , and
such that, letting ⇡ be the collapsing function, ⇡(T ) is the union of all levels of
T before ↵. Since the ↵-th level of T is nonempty, in L[a] there is some cofinal
branch through ⇡(T ). But then there is some cofinal branch through ⇡(T ) in
L
⌫

[a], and obviously also in L
�

[a]. It follows that in L
�

[a] there is a cofinal
branch through T . This shows that  is weakly compact in L[a]. Now we can
prove by a similar argument that  is also a limit of weakly compact cardinals
in L[a]. 2

Welch has pointed out that from the hypothesis of Fact 2.6 it actually even
follows, given any real a, that !1 is a completely ine↵able7 cardinal in L[a] and
that in V there is a club of !1 consisting of completely ine↵able cardinals in
L[a]. It should be also noted that the assumption that there is some � > !1

such that X �

!1,C
is a stationary subset of [�]@0 for all clubs C ✓ !1 does not

imply the existence of 0] (see Theorem 4.3).
The following fact can be easily proved by an argument as in the above

proof.

Fact 2.8 Suppose there is an ordinal � > !1 such that
S

X2E

{⌫ : !1\X 2 ⌫ 
ot(X)} is a stationary subset of !1 for every club E ✓ [�]@0 (resp.,

S
X2E

{⌫ :
!1\X 2 S, !1\X < ⌫  ot(X)} is a stationary subset of !1 for every stationary
S ✓ !1 and every club E ✓ [�]@0). Then, given any real a and any countable (in
the universe) set Y of stationary subsets of  := !1 in L[a] there are stationarily
many (resp., club–many) ↵ <  such that in L[a] all S 2 Y reflect at ↵.

7A regular cardinal  is completely ine↵able i↵ there is an ◆–closed collection A of sta-
tionary subsets of  such that given any S 2 A and any � : [S]2 �! 2 there is an S

0 ✓ S,
S

0 2 A, such that � � [S0]2 is constant (see [A-H-K-Z]).
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Similarly it can be proved that if there is an ordinal � > !1 such that X �

S,C

is

a stationary subset of [�]@0 for every stationary S ✓ !1 and every club C ✓ !1,
then, for every real a, !1 is weakly compact in L[a] and there is a club of !1

consisting of weakly compact cardinals of L[a]. This is just a particular case of
Lemma 4.5.

3 Some exemplifications of S
The first theorem in this section gives as a corollary that the existence of the
sharp of some set of ordinals coding H

!2 implies the consistency of S with ZFC.
This theorem is the best upper bound I know for the consistency strength of S.

Theorem 3.1 Let A be a set of ordinals such that !
L[A]
1 = !1 and such that

every stationary subset of !1 in L[A] is stationary in the universe. If A] exists,
then S� holds in L[A] for every Silver indiscernible � for L[A]. In fact, the
following holds in L[A] for every such �: For every club E ✓ [�]@0 there is a
club C ✓ !1 such that {ot(X) : X 2 E, X \ !1 = ⌫} includes a club of !1 for
every ⌫ 2 C.

Proof: Let I be the class of Silver indiscernibles for L[A] and let (◆
⇠

: ⇠ 
!1 + !) be the strictly increasing enumeration of the !1 + ! + 1 first elements
of I. By indiscernibility, it will su�ce to show that the conclusion holds in L[A]
for � := ◆

!1 . Working towards a contradiction, suppose in L[A] there are a
stationary S ✓ !1 and F : [�]<! �! � with the property that for every ↵ 2 S
there is a stationary T

↵

✓ !1 in L[A] such that there is no X 2 [�]@0 in L[A]
which is closed under F and such that X \ !1 = ↵ and ot(X) 2 T

↵

. In the
universe, let ✓ be a cardinal above � and let E be the club of all countable
N 4 H

✓

containing F and A. Since S is really stationary, there is some N 2 E
such that ↵ := N \ !1 is in S. Now we build a strictly ✓–increasing and
✓–continuous sequence hX

⌫

: ⌫ < !1i of countable subsets of L
✓

[A] such that

(a) X0 = N \ L
◆!1+! [A],

(b) for every ⌫, X
⌫+1 is the closure, under Skolem terms for L[A] involving

only constants for elements of A \X0, of X⌫

[ {◆
⌫

}, where ◆
⌫

is the least
◆ 2 I \ � above X

⌫

\ �.

The choice of ◆
⌫

in (b) makes sense since � is a limit of uncountable cofinality
of elements of I and all X

⌫

are countable. Notice also that, since N contains
A, it also contains A], and therefore all X

⌫

contain all ◆
!1+n

.

Claim 3.2 For every ⌫ < !1, X⌫

\ � is a proper initial segment of X
⌫+1 \ �.

Proof: This is a standard argument using the remarkability property
of the Silver indiscernibles for L[A] which involves the !–length tail of indis-
cernibles above �. Let ⇠ be some ordinal in X

⌫+1 \ sup(X
⌫

\ �). Then there is
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some Skolen term t for L[A] mentioning only constants for members of A \X0

and some indiscernibles ◆
⇣0 < . . . < ◆

⇣k�1 < ◆
⌫

and ◆
!1+n0 < . . . < ◆

!1+nl�1 (all
of them in X

⌫

) such that

⇠ = tL[A](◆
⇣0 , . . . ◆⇣k�1 , ◆⌫ , ◆!1+n0 , . . . ◆!1+nl�1)

But, since ⇠ is below ◆
⌫

, by the remarkability property it is also equal to
tL[A](◆

⇣0 , . . . ◆⇣k�1 , ◆!1 , . . . ◆!1+l

), which belongs to X
⌫

. 2

Since (ot(X
⌫

\ �) : ⌫ < !1) is a strictly increasing and continuous se-
quence of countable ordinals and T

↵

is stationary, there is some ⌫0 such that
� := ot(X

⌫0 \ �) 2 T
↵

. Since F 2 X
⌫0 , X := X

⌫0 \ � is a countable subset of
� closed under F . But then, since ↵ and � are countable ordinals in L[A], by
Lemma 1.4 it follows that in L[A] there is some Y 2 [�]@0 closed under F such
that Y \ !1 = ↵ 2 S and ot(Y ) = � 2 T

↵

, which is a contradiction. 2

By simple indiscernibility arguments it follows that, under the hypotheses of
Theorem 3.1, for every Silver indiscernible � for L[A], the set of ordinals � < �
such that the conclusion of Theorem 3.1 holds for � is a stationary subset of �.

Welch has observed that if A codes H
!2 and A] exists, then actually � �!

(<!1)
<!

2!1 holds in L[A] for every Silver indiscernible � for L[A]. This is due to the
fact that all types of countable sequences of indiscernibles are in L[A]: Using
sequences of Silver indiscernibles for L[A] one can construct in the universe
homogeneous sets of the kind specified in the above Erdős property for any
structure M in L[A] on some large indiscernible . But then, since the model-
theoretic type ⌧ of such sequences is in L[A], by an absoluteness argument as
in the proof of Theorem 3.1 one can find in L[A] sequences of indiscernibles of
arbitrarily large countable order type and with model-theoretic type ⌧ .

Question 3.1 Does the conclusion for � in Theorem 3.1 follow from S�?

The following result involves a certain game on I+ corresponding to a given
ideal I over some cardinal, as defined in [G-J-M].

Definition 3.1 Let  be an infinite cardinal and let I be an ideal over . GI
is the following !–length game with two players I and II, I moving first: I and
II alternately choose I–positive subsets S

i

of  such that S
i+1 ✓ S

i

for all i. I
wins if and only if

T
i

S
i

is empty.

In [G-J-M] it is shown, for example, that player I fails to have a winning
strategy in GI if and only if I is precipitous, that if   2@0 , then player II does
not have any winning strategy for GI , and that player II never has a winning
strategy for G

NS , where  � !1 is any regular cardinal.
Also, given  and I as in Definition 3.1, let G0

I be a game exactly as GI ,
except that player II moves first. Obviously, if player II has a winning strategy
in GI , then she has one for G0

I .
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Simple variants of the proofs in [G-J-M] show that the negative results for
player II in the games GI mentioned above also hold for her in the corre-
sponding games G0

I . Also, player I has a winning strategy in G0
I if and only if

�I+“The generic ultrapower is ill–founded”.
The proof of the following result can be found in [As2].

Lemma 3.3 Suppose  is a regular cardinal carrying a –complete ideal I such
that player II has a winning strategy in G0

I . Then there is a normal –complete
ideal J over  such that player II has a winning strategy in G0

J .

Consider the following generalization of the Strong Chang’s Conjecture.

Definition 3.2 Given an ordinal � of uncountable cofinality, CC⇤
!1
(�) is the

statement that given any club E ✓ [�]@0 there is a club E0 of [�]@0 , E0 ✓ E with
the property that for every X 2 E0 there is some Y 2 E0 such that X \ !1 =
Y \ !1 and X is a proper initial segment of Y .

Obviously, CC⇤
!1
(�) for � as in Definition 3.2 implies that every first order

structure M with a countable language and universe � has an elementary sub-
structure N of size @1 such that N \ !1 is countable, and also S� . In fact it
also implies the strong form of S� saying that for every club E ✓ [�]@0 there
is a club C ✓ !1 such that {ot(X) : X 2 E, X \ !1 = ⌫} includes a club for
every ⌫ 2 C.

Theorem 3.4 Suppose  is a cardinal carrying a –complete ideal I such that
player II has a winning strategy in G0

I . Then, CC⇤
!1
().

The proof of Theorem 3.4, which can be found in [As2], generalizes Woodin’s
proof that S holds for a measurable .

Corollary 3.5 Suppose there is some cardinal  carrying a –complete ideal I
for which the second player has a winning strategy in GI . If BPSR holds, then
so does  

AC

.

In [G-J-M] it is proved that, after forcing with the Levy collapse of a mea-
surable cardinal to !2, !2 carries a normal !2–complete ideal I such that player
II has a winning strategy in GI . By Theorem 3.4, S!2 holds in this model.
However, by the observation of Welch mentioned after Fact 2.4, a much weaker
hypothesis su�ces to prove the consistency of S!2 .

Corollary 3.6 Suppose � is a measurable cardinal. Then, Coll(!2, <�
+) forces

that � is an ordinal such that !2 < � < !3, cf(�) = !2 and S� .

Proof: Generalizing the proof of [G-J-M], we deduce that Coll(!2, <�)
forces that there is a normal �–complete ideal I over !3 = � such that player
II has a winning strategy in GI . Let G be Coll(!2, <�)–generic over V and let
Q = Coll(!2, <�

+)/G in V [G]. Work in V [G]. We will derive a contradiction
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from the assumption that there is a Q–term Ḟ for a function from [�]<! into �,
stationary sets S, T ✓ !1 and a condition p in Q forcing that there is no count-
able subset X of � closed under Ḟ such that X \!1 2 S and ot(X) 2 T (this is
enough since Coll(!2, <�) does not add new subsets of !1). Letting ✓ be a large
enough cardinal, we obtain from Theorem 3.4 that there is a countable elemen-
tary substructure N of H

✓

containing p and Ḟ such that, letting X = N \ �,
X \ !1 2 S and ot(X) 2 T . Let q be an (N, Q)–generic condition extending
p. Then, q forces that X 2 [�]@0 is closed under Ḟ , contrary to the choice of p. 2

Of course, if S!2 fails in the ground model– and this can certainly be always
forced by small forcing (see for example [J-S])–, by the Absoluteness Lemma it

fails in the V Coll(!2, <

+) of Corollary 3.6. Hence, it is consistent that there is
an ordinal � such that S� holds but S |�| fails.

Question 3.2 Can there be an ordinal � of countable cofinality such that S�?
Of cofinality !1?

The following game appears in [S], XII, 2. It was first considered by Galvin.

Definition 3.3 Given a cardinal �, G
!

(�,!1) is the following game of length !
with two players I and II. At stage n, player I plays a function F

n

: � �! !1

and then player II plays a countable ordinal ⌫
n

. Player II wins if and only if
|{⇠ < � : F

n

(⇠) < sup
k

⌫
k

for all n < !}| = �.

The following is established by the same argument as in [S], XII, Theorem
2.5 (2).

Fact 3.7 (Shelah) Let � be an uncountable regular cardinal. If player II has a
winning strategy in G

!

(�,!1), then CC⇤
!1
(�) holds.

The first part of the following result is proved in [S], XII, Theorem 2.6.

Fact 3.8 Let � � !2 be a regular cardinal and suppose there is a semiproper
forcing notion P such that �P cf(�̌) = !. Then, II has a winning strategy in
G

!

(�,!1). In particular, CC⇤
!1
(�) holds and if, in addition, BPSR holds, then

 
AC

also does.

This seems to be a good place to insert the following information on the
consistency strength of  

AC

.

Theorem 3.9  
AC

is equiconsistent with the existence of an inaccessible limit
of measurable cardinals.

Proof:  
AC

implies CBP ([As-W]), which in turn implies that there is
an inner model with an inaccessible limit of measurable cardinals ([D-Do]).

As to the other direction, suppose (�
↵

: ↵ < ) is a strictly increasing
sequence of measurable cardinals such that sup

↵<

�
↵

=  is inaccessible. Let
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f :  �!  ⇥  be a typical bookkeeping function– i.e., f is surjective and, if
f(↵) = h�, �i, then �  ↵– and perform the following RCS–iteration (P

↵

: ↵ 
) based on (Q̇

↵

: ↵ < ): Suppose P
↵

has been defined and fix an enumeration
(hṠ↵

�

, Ṫ↵

�

i : � < ) such that for all P
↵

–names Ṡ and Ṫ for subsets of !1

there is some � such that �
↵

“Ṡ = Ṡ↵

�

and Ṫ = Ṫ↵

�

”. Suppose f(↵) = h�, �i.
Then let Q̇

↵

be such that P
↵

forces that Q̇
↵

is the trivial forcing unless Ṡ�

�

and Ṫ �

�

are stationary and co-stationary subsets of !1, in which case Q̇
↵

is

the standard poset for shooting a club through X �↵+1

Ṡ

�
� ,Ṫ

�
�

:= {X 2 [�
↵+1]@0 :

X \ !1 2 Ṡ�

�

i↵ ot(X) 2 Ṫ �

�

} with countable conditions.8 In this case, Q̇
↵

forces that �
↵+1 is an ordinal less than !2 witnessing the conclusion of  

AC

for
(Ṡ�

�

, Ṫ �

�

).
By induction, we get that |P

↵

| < �
↵+1 for all ↵ < . Hence, after forc-

ing with P
↵

, �
↵+1 remains measurable and so, by Theorem 3.4, CC⇤

!1
(�

↵+1)

holds. In particular, if f(↵) = h�, �i and Ṡ�

�

and Ṫ �

�

are both stationary and
co-stationary subsets of !1, then given any large enough cardinal ✓ there are
club–many countable elementary substructures N of H

✓

for which there is a
countable N 0 4 H

✓

such that N ✓ N 0, N \ �
↵+1 is an initial segment of

N 0 \ �
↵+1 and N 0 \ �

↵+1 2 X �↵+1

Ṡ

�
� ,Ṫ

�
�
. Since any (N 0, Q̇

↵

)–generic condition

is (N, Q̇
↵

)–semigeneric, it follows that �
↵

“Q̇
↵

is semiproper”. By the gen-
eral theory of RCS–iterations, P



is semiproper and, since  is inaccessible and
|P

↵

| <  for all ↵ < , it is also –c.c. Using this, a standard argument shows
that  

AC

holds after forcing with P


. 2

4 Generalizations of S
In this section I consider versions of S involving more than two parameters.

Definition 4.1 Let ↵ be a countable ordinal and let (�
i

)
i<↵

be a one–to–one
sequence of uncountable ordinals. Then, S(�i)i<↵ is the statement that for every
sequence (S

i

)
i<↵

of stationary subsets of !1, {X 2 [sup
i<↵

�
i

]@0 : ot(X \ �
i

) 2
S
i

for all i < ↵} is a stationary subset of [sup
i<↵

�
i

]@0 .
S(↵) is the statement that there is a one–to–one sequence (�

i

)
i<↵

of un-
countable ordinals such that S(�i)i<↵

Hence, for every uncountable ordinal �, S� is the same as Sh!1,�i.
By slightly modifying the proof of Theorem 3.1, it can be easily seen that a

strengthening of 8n < ! S(n) holds in the L[A] from that theorem.

8Of course, here we are identifying the P�–names Ṡ

�
� , Ṫ

�
� with corresponding P↵–names

in a natural way (note that �  ↵).
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Theorem 4.1 Let A be a set of ordinals such that !
L[A]
1 = !1 and such that

every stationary subset of !1 in L[A] is stationary in the universe. If A] ex-
ists, then ZFC + ‘There is an inaccessible cardinal  with the property that
for every n < ! there are inaccessible cardinals 0 < . . .

n�1 <  such that
Sh!1,0,...n�1,i’ holds in L[A].

Question 4.1 Does S(!) hold in the L[A] of Theorem 3.1?

The strongest– not obviously absurd– version of S holds in case there are
@1–many measurable cardinals, for example.

Theorem 4.2 Suppose (�
⇠

)
⇠<!1 is a sequence of uncountable regular cardinals

such that CC⇤
!1
(�

⇠

) holds for each ⇠. Then, for every sequence (S
⇠

)
⇠<!1 of

stationary subsets of !1, every large enough cardinal ✓ and every countable el-
ementary substructure N of H

✓

containing (�
⇠

)
⇠<!1 there is some countable

N 0 4 H
✓

such that N ✓ N 0 and, for every ⇠ 2 N \ !1, N \ �
⇠

is an initial
segment of N 0 \ �

⇠

and ot(N 0 \ �
⇠

) 2 S
⇠

.

It turns out that the existence of 0] su�ces to prove the consistency of the
statement resulting from replacing, in the conclusion of Theorem 4.1, stationary
subsets of !1 by clubs.

Theorem 4.3 Suppose 0] exists. Then, for every uncountable regular cardinal
� in V , the Levy collapse Coll(!, <�) forces over L that there is a set modelling
ZFC + ‘There is an inaccessible  such that for all n < ! there are inaccessible
0 < . . . < 

n�1 < 
n

:=  such that {X 2 []@0 : X \ !1 2 C, ot(X \ 
i

) 2
C for all i  n} is a stationary subset of []@0 for each club C ✓ !1’.

Proof: It su�ces to prove the conclusion in L[G] for an arbitrary G which

is Coll(!, <�)–generic over V . Notice that !L[G]
1 = !

V [G]
1 = �. Let I be the

class of Silver indiscernibles for L.

Claim 4.4 In V [G], G] exists. Moreover, every ordinal in I\(�+1) is a Silver
indiscernible for L[G].

Proof: Fix a formula '(x0, . . . xn�1) and Silver indiscernibles ◆0 < . . . <
◆
n�1 and ◆00 < . . . < ◆0

n�1 above �. Suppose L[G] |= '(◆0, . . . ◆n�1), Then
there is some p 2 G forcing this over L. Since Coll(!, <�) is definable from
� over L, and since there are indiscernibles ◆0, . . . ◆k�1 below � + 1 such that
p = tL(◆0, . . . ◆k�1) for some Skolem term t, p forces '(◆0, . . . ◆n�1) over L if and
only if p forces '(◆00, . . . ◆

0
n�1) over L. Now, (I \ �+)\(�+ 1) is an uncountable

sequence of indiscernibles for L
�

+ [G]. Therefore, G] exists and every Silver in-
discernible for L above � is a Silver indiscernible for L[G]. 2

Let C be a club of � in L[G], let n < !, let �0 < . . . �
n�1 < � be su�ciently

large Silver indiscernibles for L[G] and let F : [�]<! �! � be a function in L[G].
Since C is a club of !1 in V [G], by an argument similar to the proof of Theorem
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3.1 in which L[G] plays the role of L[A] and V [G] plays the role of V , we obtain
a countable subset of � in L[G] closed under F and such that all ot(X \ �

i

) and
ot(X) are in C. 2

Finally, I will show show that 8n < ! S(n) su�ces to imply the existence of
the sharp of every real. The proof of Lemma 4.5 will be used in the proof of the
more general result.

Lemma 4.5 Suppose S(2) holds. More generally, suppose there are uncount-
able ordinals �0 < � such that {X 2 [�]@0 : ot(X \ �0) 2 S and ot(X) 2 C} is
a stationary subset of [�]@0 for every stationary S ✓ !1 and every club C ✓ !1.
Then, for every real a there is a club D ✓ !1 such that for every n, every
formula '(x0, . . . xn

), all ↵0 < . . .↵
n�1 < !1, and all ↵ 2 D, ↵

n�1 < ↵,

L
!1 [a] |= '(↵0, . . .↵n�1,↵) i↵ L

�

[a] |= '(↵0, . . .↵n�1, �0)

Proof: Let  = !1 and let C = {⌫ <  : L
⌫

[a] 4 L


[a]}. C is a club of
. Fix a formula '(x0, . . . xn

) and ↵0 < . . . < ↵
n�1 < . Fix also a stationary

S ✓ !1. By our assumption, there is someX 4 L
�

[a] containing ↵0, . . .↵n�1 and
�0 such that, letting L

⌫

[a] and ↵ be the transitive collapse of X and the image
of �0 under the collapsing map, respectively, ↵ 2 S and ⌫ 2 C. Then, L

�

[a] |=
'(↵0, . . .↵n�1, �0) i↵ L

⌫

[a] |= '(↵0, . . .↵n�1,↵) i↵ L


[a] |= '(↵0, . . .↵n�1,↵).
Since S was an arbitrary stationary set, there is a clubD'

↵0,...↵n�1
of !1 such that

for all ↵ 2 D'

↵0,...↵n�1
, L



[a] |= '(↵0, . . .↵n�1,↵) i↵ L
�

[a] |= '(↵0, . . .↵n�1, �0).

For every � < !1 let D', � =
T
{D'

↵0,...↵n�1
: ↵0 < . . . < ↵

n�1 < �}, and let

D' = �
�<!1D

', � . Finally, the intersection of all D' is a club of !1 with the
desired property. 2

Question 4.2 Does the existence of 0] follow from S(2)? Does it follow from
the existence of a club D ✓ !1 such that for every n, every formula '(x0, . . . xn

),
and all ↵0 < . . .↵

n�1 < ↵
n

< ↵
n+1 in D,

L
!1 |= '(↵0, . . .↵n�1,↵n

) i↵ L
!1 |= '(↵0, . . .↵n�1,↵n+1) ?

Welch has answered the second half of Question 4.2 negatively in case n is
fixed and has observed that, in this case, the corresponding statement can be
actually forced over L: Suppose n < ! and  is a cardinal with the property
that for every partition � : []n �! P(!) there is a stationary A ✓  which
is homogeneous for �. In particular there is a stationary A ✓  such that
L


|= '(↵0, . . .↵n�1) i↵ L


|= '(↵0
0, . . .↵

0
n�1) for all ↵0 < . . . < ↵

n�1 and ↵0
0 <

. . . < ↵0
n�1 in A and for every formula '(x0, . . . xn�1). A remains stationary

after Levy collapsing  to become !1. Finally, shooting a club through A yields
a club D of !1 of L

!1–indiscernibles for formulas with n free variables.9

9Note that the above argument shows that the existence of a club D ✓ !1 such that
L!1 |= '(↵) i↵ L!1 |= '(↵0) for all ↵, ↵0 2 D can be forced just in ZFC.
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Now suppose 0] exists and let  be a Silver indiscernible for L. In the
universe there is a filter U10 on PL() such that U is amenable to L– in the
sense that f�1(U) 2 L for every constructible f :  �! P()– and such that
(L(+)L ,2, U) satisfies that U is a normal measure on . Hence, U consists
of L–stationary subsets of , and for any n and any constructible regressive
function f : []n �! , one can find ⌧ < (+)L such that U \L

⌧

, which is in L,
contains a homogeneous set for f (this can be proved by induction on n, using
the amenability of U , by essentially the same standard argument for showing
that a measurable cardinal is Ramsey). This shows that, in L,  has actually
the property that for every n and every regressive f : []n �!  there is a
stationary subset of  homogeneous for f .

Theorem 4.6 Let n � 2 be a natural number and suppose !1  �0 < . . . <
�
n�1 are ordinals such that {X 2 [�

n�1]@0 : ot(X \ �0) 2 S and ot(X \ �
i

) 2
C for all i, 1  i < n} is a stationary subset of [�

n�1]@0 for every stationary
S ✓ !1 and every club C ✓ !1. Then, for every real a there is a club D ✓ !1

such that for every formula '(x0, . . . xn�2),

L
!1 [a] |= '(↵0, . . .↵n�2) ! '(↵0

0, . . .↵
0
n�2)

for all ↵0 < . . . < ↵
n�2 and ↵0

0 < . . . < ↵0
n�2 in D.

Proof: For n = 2 this follows from Lemma 4.5, so let us assume n � 3.
As in the proof of that lemma, let C be the club of all ⌫ <  := !1 such
that L

⌫

[a] 4 L


[a]. We know that there is a club D ✓  such that L


[a] |=
'(↵0, . . .↵n�3,↵n�2) ! '(↵0, . . .↵n�3,↵n�1) for each formula '(x0, . . . xn�2)
and for all ↵0 < . . . < ↵

n�1 in D.

Claim 4.7 For every j, 1  j < n� 1, there is a club Dj ✓ D such that

L


[a] |= '(↵0, . . .↵n�3�j

,↵0
0, . . .↵

0
j

) ! '(↵0, . . .↵n�3�j

,↵00
0 , . . .↵

00
j

)

for every formula '(x0, . . . xn�2) and for all ↵0 < . . . < ↵
n�3�j

, ↵0
0 < . . . < ↵0

j

and ↵00
0 < . . . < ↵00

j

in Dj such that ↵
n�3 < ↵0

0, ↵
00
0 .

Proof: By induction on j. For j = 1, (fix ↵0 < . . . < ↵
n�4 in D and) sup-

pose there are stationary S0, S1 ✓ D such that for all ↵0
0 2 S0, ↵00

0 2 S1 and all
↵0
1 and ↵00

1 in D such that ↵0
0 < ↵0

1 and ↵00
0 < ↵00

1 , L

[a] |= '(↵0, . . .↵n�4,↵
0
0,↵

0
1)

and L


[a] |= ¬'(↵0, . . .↵n�4,↵
00
0 ,↵

00
1 ) for some formula '(x0, . . . xn�2). With-

out loss of generality, say that L
�n�1 [a] |= '(↵0, . . .↵n�4, �0, �1). Then, by our

hypothesis there is some X 4 L
�n�1 [a] (containing ↵0, . . .↵n�4) and such that

↵00
0 := ot(X \ �0) 2 S1, ↵00

1 := ot(X \ �1) 2 D and � := ot(X) 2 C. But then,
L


[a] |= '(↵0, . . .↵n�4,↵
00
0 ,↵

00
1 ), which contradicts our choice of S1. Hence,

there is a club D1
↵0,...↵n�4

✓ D such that L


[a] |= '(↵0, . . .↵n�4,↵
0
0,↵

0
1)  !

'(↵0, . . .↵n�4,↵
00
0 ,↵

00
1 ) for every formula '(x0, . . . xn�2) and all ↵0

0 < ↵0
1 and

10Given an elementary embedding j : L �! L with critical point , a constructible X ✓ 

is in U i↵  2 j(X).
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↵00
0 < ↵00

1 in D1
↵0,...↵n�4

. For every � < !1 let D1,� =
T
{D1

↵0,...↵n�4
: ↵0 <

. . .↵
n�4 < �} and let D1 = �

�<!1D
1,� .

Now suppose that 1 < j < n�1 and that there is a club Dj�1 satisfying the
claim for j�1. Fix ↵0 < . . . < ↵

n�3�j

in Dj�1 and suppose there are stationary
S0, S1 ✓ !1 such that for all ↵0

0 2 S0 and ↵00
0 2 S1 and all ↵0

1 < . . . < ↵0
j

and ↵00
1 < . . . < ↵00

j

in Dj�1 such that ↵0
0 < ↵0

1 and ↵00
0 < ↵00

1 , L


[a] |=
'(↵0, . . .↵n�3�j

,↵0
0,↵

0
1, . . .↵

0
j

) and L


|= ¬'(↵0, . . .↵n�3�j

,↵00
0 ,↵

00
1 , . . .↵

00
j

).
Without loss of generality, say that L

�n�1 [a] |= '(↵0, . . .↵n�3�j

, �0, . . . �j). As
in the j = 1 case, applying our hypothesis we find ↵00

0 < ↵00
1 < . . . < ↵00

j

such that
↵00
0 2 S1 and ↵00

1 , . . .↵
00
j

2 Dj�1 and L


[a] |= '(↵0, . . .↵n�3�j

,↵00
0 ,↵

00
1 , . . .↵

00
j

).
This contradicts our choice of S1. Hence, there is a club Dj

↵0,...↵n�3�j
✓ D

such that for all ↵0
0 < . . . < ↵0

j

and ↵00
0 < . . . < ↵00

j

in Dj

↵0,...↵n�3�j
, L



[a] |=
'(↵0,↵n�3�j

,↵0
0, . . .↵

0
j

) i↵ L


[a] |= '(↵0, . . .↵n�3�j

,↵00
0 , . . .↵

00
j

). Arguing as in
the j = 1 case, we end up with a club Dj ✓ D that satisfies the Claim for j. 2

Finally, D := Dn�2 is as desired. 2

Corollary 4.8 Suppose that for every natural number n � 2 there are un-
countable ordinals �0 < . . . < �

n�1 such that {X 2 [�
n�1]@0 : ot(X \ �0) 2

S and ot(X \ �
i

) 2 C for all i < n} is a stationary subset of [�
n�1]@0 for every

stationary S ✓ !1 and every club C ✓ !1. Then, a] exists for every real a. Fur-
thermore, for every real a, a sentence '(c0, . . . cn�1) belongs to a] if and only
if L

�n [a] |= '(�0, . . . �n�1), where (�
i

)
in

is any strictly increasing sequence of
uncountable ordinals witnessing the hypothesis for n+ 1.

5 Strong forms of BMM and the Club Bounding

Principle

Definition 5.1 Given a stationary set S ✓ !1, the weak Chang’s Conjecture
at S (wCC(S)) is the statement that for every function f : !1 �! !1 there is
some canonical function g and some stationary T ✓ S such that g dominates f
on T .

Hence, the usual weak Chang’s Conjecture (see [Do-Ko]) is wCC(!1). Note
that �P(!1)/NS!1

j(!̌1) = !̌2 holds if and only if wCC(S) holds for all sta-
tionary S ✓ !1. The following observation shows that this statement– which
is equiconsistent with just the existence of an almost <!1–Erdős cardinal– and
the much stronger CBP are equivalent modulo BMM .

Lemma 5.1 Under BMM , CBP holds if and only if wCC(S) holds for every
stationary S ✓ !1.

Proof: One only has to prove the right to left implication, and for this is
it enough to prove that given any function f : !1 �! !1,
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{X 2 [!2]
@0 : ot(X) > f(X \ !1)}

is a projective stationary subset of [!2]@0 if wCC(S) holds for all stationary
S ✓ !1.

To see this, fix any stationary S ✓ !1 and any club E ✓ [!2]@0 . By wCC(S),
there is some stationary T ✓ S, some ↵ < !2 and some surjection ⇡ : !1 �! ↵
such that f(⌫) < ot(⇡“⌫) for every ⌫ 2 T . Now if N is a countable elementary
substructure of H

!2 containing ⇡ and such that � := N\!1 2 T and N\!2 2 E,
ot(N \ !2) > ot(N \ ↵) = ot(⇡“�) > f(�). 2

The following Lemma, which can be easily proved, shows that a principle of
generic absoluteness involving ⌃3 sentences for the structure (H

!2 ,2) implies
the corresponding generic absoluteness for ⌃2 sentences for the more expressive
structure (H

!2 ,2, NS
!1).

Lemma 5.2 Suppose that for every a 2 H
!2 and every ⌃3 formula '(x), if

there is some poset P preserving stationary subsets of !1 such that

(a) �P H
!2 |= '(ǎ), and

(b) for every P–name Q̇ for a poset preserving stationary subsets of !1, �P⇤Q̇
H

!2 |= '(ǎ),

then H
!2 |= '(a).

Then, for every a 2 H
!2 and every ⌃2 formula '(x) for the structure (H

!2 ,2, NS
!1),

if there is some poset P preserving stationary subsets of !1 such that

(1) �P (H
!2 ,2, NS

!1) |= '(ǎ), and

(2) for every P–name Q̇ for a poset preserving stationary subsets of !1,

�P⇤Q̇ (H
!2 ,2, NS

!1) |= '(ǎ),

then (H
!2 ,2, NS

!1) |= '(a).

All forms of generic absoluteness of this kind, meaning that they involve
some class of sentences for H

!2 (or (H
!2 ,2, NS

!1)) with parameters whose
truth– once they are forced by some poset preserving stationary subsets of !1–
is persistent under subsequent forcing extensions preserving stationary subsets
of !1, are consequences of the following statement:

Suppose a 2 H
!2 and '(x) is a ⌃2 formula. If there is some poset P pre-

serving stationary subsets of !1 such that

(1) �P '(ǎ), and
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(2) for every P–name Q̇ for a poset preserving stationary subsets of !1,

�P⇤Q̇ '(ǎ),

then |=2 '(a).

This statement– and much more– can be forced, very much like in the stan-
dard construction of a model of Martin’s Maximum ([Fo-M-S]), by a semiproper
poset P ✓ V



whenever  is a supercompact cardinal such that V


is cor-
rect about ⌃4 statements with parameters ([As1]).11 To see that this state-
ment su�ces to imply the above forms of generic absoluteness, notice that,
given any formula '(x) for (H

!2 ,2) (or for (H
!2 ,2, NS

!1)), ‘H
!2 |= '(a)’

(‘(H
!2 ,2, NS

!1) |= '(a)’) can be expressed by (9H)(H = H
!2 ^ H |= '(a))

(by (9H,X)(H = H
!2 ^ X = NS

!1 ^ (H,2, X) |= '(a))), and these are ⌃2

statements about a.

Theorem 5.3 Suppose that (H
!2 ,2, NS

!1) |= '(a) holds for every a 2 H
!2

and every ⌃2 formula '(x) for the structure (H
!2 ,2, NS

!1) with the property
that there is some poset P preserving stationary subsets of !1 such that

(1) �P (H
!2 ,2, NS

!1) |= '(ǎ), and

(2) for every P–name Q̇ for a poset preserving stationary subsets of !1,

�P⇤Q̇ (H
!2 ,2, NS

!1) |= '(ǎ).

Then CBP holds.

Proof: It is enough to prove that if S is any stationary subset of !1

and the generic absoluteness in the statement holds, then wCC(S) also holds.
Assume on the contrary that there is some f : !1 �! !1 which dominates
every canonical function on some club intersected with S. For every ⌫ < !1

let e
⌫

: ! �! f(⌫) be a surjection and let h
n

be given, for every n < !, by
h
n

(⌫) = e
⌫

(n). Then there must be some n such that

A = {↵ < !2 : T �P(!1)/NS!1
↵ = [h

n

]
Ġ

for some stationary T ✓ S}

is a stationary subset of !2. Pick, for each ↵ 2 A, some stationary S
↵

✓ S
such that S

↵

�P(!1)/NS!1
↵ = [h

n

]
Ġ

. Clearly, the S
↵

’s have pairwise nonsta-
tionary intersection. Extend B := {S

↵

: ↵ 2 A} to a maximal antichain A of
P(!1)\NS

!1 below S.

11The corresponding statement involving semiproper forcing can be forced from just the
existence of a regular  such that V 4⌃4 V , a large cardinal notion stronger than being
reflecting but weaker than being Mahlo (see also [As1]). It is not hard to see that these
considerations, together with the fact that wCC(!1) has relatively large consistency strength,
show the consistency (with BSPFA) of the existence of a function f : !1 �! !1 such that
{X 2 [�]@0 : f(X \ !1) < ot(X)} is nonstationary for every ordinal �.
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Claim 5.4 Given any T 2 A\B and any poset P preserving stationary subsets
of !1, P forces that every canonical function is di↵erent from h

n

on some club
intersected with T .

Proof: Otherwise, applying absoluteness for ⌃1 formulas for the struc-
ture (H

!2 ,2, NS
!1) to the poset P, there would be some counterexample in the

universe, which is a contradiction since T \S
↵

is nonstationary for every ↵ 2 A.
2

Now we apply the stipulated absoluteness to the poset P for sealing A. More
precisely, let (T

i

: i < !2) be an enumeration of A (note that 2@1 = @2, so that
there is such enumeration in length !2). Then, P is Coll(!1,!2) ⇤ Q̇, where,
letting Ḟ be a Coll(!1,!2)–name for the generic surjection from !1 onto !V

2 ,
Q̇ is, in V P, the poset for shooting a club with countable conditions through
{⌫ < !1 : ⌫ 2

S
⇠<⌫

T
Ḟ (⇠)} [ {S}.

It is a standard fact (see [Fo-M-S]) that, since A is a maximal antichain of
P(!1)\NS

!1 , P preserves stationary subsets of !1.
P forces the following statement:
(⇤): There is an ordinal � < !2, a sequence (T 0

i

: i < �) of subsets of S, a
surjection F : !1 �! � and a club C ✓ !1 such that for every ⌫ 2 C \ S there
is some ⇠ < ⌫ such that ⌫ 2 T 0

F (⇠) and, furthermore, given any i < �, either

(1) there is some ↵ < � and some canonical function g for ↵ such that h
n

(⌫) =
g(⌫) for every ⌫ 2 T 0

i

, or else

(2) h
n

dominates every canonical function on some club intersected with T 0
i

.

It is easily seen that (⇤) can be expressed by means of a ⌃2 sentence for
(H

!2 ,2, NS
!1) with h

n

and S as parameters which, by Claim 5.4, is persistent
under forcing extensions of V P preserving stationary subsets of !1. Hence, (⇤)
holds in the ground model. Let �, (T 0

i

: i < �), F and C be as given by (⇤) and
pick any ↵ 2 A above �. Then there is some ⇠ such that S

↵

\ T 0
F (⇠) is station-

ary. But this is a contradiction, since then both (1) and (2) must fail for F (⇠). 2

Theorem 5.3 is, as far as I know, the first result assigning consistency
strength beyond that of a reflecting cardinal to some principle stated entirely
in terms of generic absoluteness involving only parameters from H

!2 .
Although I do not know of any argument for showing large consistency

strength just from BMM alone, there is an optimal model separating BSPFA
and BMM .

Theorem 5.5 In L, there is no semiproper poset forcing BMM .

Proof: Suppose that P is semiproper in L, G is P–generic over L and
L[G] |= BMM . The idea of the argument is to force with Namba forcing, so
that !2 becomes of countable cofinality. In search of a contradiction, we want
to express in a ⌃1 way the fact that there is an L–regular cardinal which has
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countable cofinality. For this it is enough to say that there are some � < � such
that � has countable cofinality and such that � is regular in L

�

, provided we
can guarantee in addition that � is an L–cardinal. This can be achieved using a
trick, which I know from Todorčević, to convert the L–regularity of an ordinal
⌘ into a ⌃1–statement with ⌘ as parameter. That 0] does not exist makes sure
that the poset involved in this trick is proper, and actually of the form �–closed
⇤ ccc.12

Let Nm denote Namba forcing and work in V0, where V0 is L[G]Nm. Since
0] does not exist,  = @

!

is such that + = (+)L. In particular, all ordinals
between  and + are singular in L. Let Q be the �–closed collapse of + to !1

with countable conditions. In V Q
0 , let D be a club of (+)V0 of order type !1

consisting of L–singular ordinals. Let C = (C
↵

: ↵ is a singular ordinal in L)
be the canonical constructible ⇤–sequence. In particular, for every L–singular
ordinal ↵ < +,

(a) C
↵

is a club of ↵ of order type at most , and

(b) if � is a limit point of C
↵

, then � is L–singular and C
�

= C
↵

\ �.

It follows that, letting for all ↵, � 2 D, � � ↵ if and only if � < ↵ and � is
a limit point of C

↵

, T = (D,�) is a tree.

Claim 5.6 There is no branch through T of length !1 in V Q
0 .

Proof: Since there is no club C of + in V0 such that C \ ↵ = C
↵

for
unboundedly many ↵ below – for otherwise there would be some ↵ such that
ot(C

↵

) > – and since the union of every !1–branch through T is a club of
+, it is enough to see that for every Q–generic G0 over V0, the union of an
!1–branch through T in V0[G0] would be in V . Let G0 ⇥G1 be Q⇥Q–generic
over V0. Now let b0 and b1 be !1–branches through T in V0[G0] and V0[G0][G1],
respectively, b0 = ḃ0[G0] and b1 = ḃ1[G0 ⇥ G1] for suitable names ḃ0 and ḃ1.
Since (+)V0 has cofinality !1 in V0[G0][G1],

S
b0 and

S
b1 meet at arbitrarily

high points below (+)V0 , and therefore
S
b0 =

S
b1. But then,

S
b0 is the set

of ↵ < (+)V such that some condition in Q forces over V0 that ↵ is in
S

b0,
and therefore it is in V0.

To see this, suppose ↵ 2
S
ḃ0[G0] but some q 2 Q0 forces over V0 that ↵ is not

in
S
ḃ0. Then, the condition h;, qi forces that ↵ is not in

S
ḃ1. Hence, if G1 con-

tains q and is Q–generic over V [G0], then ↵ /2
S
ḃ1[G0 ⇥G1] =

S
ḃ0[G0], which

is a contradiction. Similarly, one can prove that if ↵ /2
S
b0, then �Q ↵ /2

S
ḃ0.

2

Now, if (T 0,�0) is any tree without !1–branches, then the poset S
T

0 (consist-
ing of finite functions p : D �! ! such that p(↵) 6= p(�) for all ↵ and � which

12The trick consists in using a proper poset for specializing the tree associated to a certain
⇤–sequence. The existence of a proper poset specializing the tree associated to any given
⇤–sequence was first proved by Todorčević ([T1]). That this can be done with a �–closed ⇤
ccc poset– and this is the argument presented here– was subsequently proved by Magidor.
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are �0–comparable) for specializing T 0 has the ccc (see the proof of [J], Lemma
24.2). Hence, S

T

has the ccc, and Q⇤S
Ṫ

is a �–closed ⇤ ccc poset adding a club
D of + of order type !1 and a function f : D �! ! such that for all ↵ < �
in D, ↵ and � are singular ordinals in L and, if ↵ is a limit point of C

�

, then
f(↵) 6= f(�). But then, in L[G], Nm ⇤ (Q̇ ⇤ S

Ṫ

) preserves stationary subsets of
!1 and forces that there are

(1) � < � < !2 such that � is a regular cardinal in L
�

,

(2) a sequence of length ! cofinal in �, and

(3) an !1–club D of � and a function f : D �! ! such that for all ↵ < � in D,
↵ and � are L–singular and, if ↵ is a limit point of C

�

, then f(↵) 6= f(�).

Since C
�

is �1 definable with � as parameter for every L–singular ordinal
�, the above statement can be expressed in a ⌃1 way with !1 as a parameter.
Hence, by BMM in L[G] it is true there and we may fix �, � and f witness-
ing it. But then, � is a regular cardinal in L, since otherwise f restricted to
the set of limit points of C

�

\ D would be a one–to–one function mapping an
uncountable set into ! (this is because, by the coherence property of C, ↵ is a
limit point of C

�

for all ↵ < � which are limit points of C
�

). It follows that
� is actually regular in L. Let p 2 G be a condition in P forcing that � has
countable cofinality. But then, in L, P � p is a semiproper poset forcing that
� has countable cofinality. Hence, in L, CC⇤

!1
(�) holds, and so in particular 0]

exists, which of course is a contradiction. 2

The following corollary now follows from Theorem 5.5 and the results of
[Go-S] mentioned in the introduction.

Corollary 5.7 If ZFC + BSPFA is consistent, then so is ZFC + BSPFA
+ ¬BMM .

As I mentioned in the introduction, a model separating BSPFA and BMM
had been previously presented in [As-W]. However, the starting assumption used
there, namely that of the existence of a cardinal  with a certain weak Erdős
property slightly stronger than  �! (<!1)

<!

2!1 , is far from optimal.
An application of the proof of Theorem 5.5 is that the quotable bounded

forcing axiom for the class of �–closed ⇤ ccc is as strong, in terms of consistency
strength, as BSPFA.

Fact 5.8 Let � be the class of �–closed ⇤ ccc posets. Then BFA(�) implies
that !2 is reflecting in L[a] for every real a.

Proof: This is just the conjunction of Todorčević’s alternative proof for
showing !2 reflecting in L from BPFA and the observation of Magidor men-
tioned in the proof of Theorem 5.5: Let a be a real. Pick b 2 L

!2 [a] and suppose
L |= '(b), where '(x) is a ⌃2 formula. Let  be a singular cardinal such that
L


contains a witness for '(b). We can assume that a] does not exist, since it
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is easy to see that every Silver indiscernible for L[a] is reflecting in L[a]. Hence,
the proof of Theorem 5.5 shows that an application of BFA(�) implies the ex-
istence of an L[a]–regular � < !2 such that L

�

[a] |= '(b). Since '(x) is ⌃2 and
� is regular in L[a], L

!2 [a] |= '(b). 2

Notice that, by the proof of Theorem 5.3, ¬CBP implies that there is an h :
!1 �! !1 and a stationary A ✓ !2 such that, given any ↵ 2 A, S �P(!1)/NS!1

↵ = [h]
Ġ

for some stationary S ✓ !1. Actually, the following equivalence is
easily proved.

Fact 5.9 CBP fails if and only if there are h
n

: !1 �! !1 (n < !) with the
property that for every ↵ < !2 there is some n and some stationary S ✓ !1

such that S �P(!1)/NS!1
↵ = [h

n

]
Ġ

.

The above characterization of ¬CBP motivates considering the following
notion.

Definition 5.2 Let h : !1 �! !1. h guesses all canonical functions if and only
if for every ↵ < !2 there is some stationary S ✓ !1 such that S �P(!1)/NS!1

↵ = [h]
Ġ

.

So, the existence of a function guessing all canonical functions is a strong
form of the failure of CBP .

Fact 5.10 }
!1 implies that there is a function guessing all canonical functions.

Proof: Let (X
⌫

: ⌫ < !1) be a }!1–sequence. Given any ⌫ < !1, suppose
X

⌫

codes, in some fixed way, a directed system D = (Y
⇠

, j
⇠,⇠

0 : ⇠  ⇠0 < ⌫) such
that each Y

⇠

is a subset of ⌫ and (j
⇠,⇠

0 : ⇠  ⇠0 < ⌫) is a commuting family
of strictly increasing functions, where j

⇠,⇠

0 : Y
⇠

�! Y
⇠

0 and j
⇠,⇠

= id
Y⇠ for all

⇠  ⇠0. If the direct limit Y of D is well–founded, then let h(⌫) be the order
type of Y .

To see that this function h guesses all canonical functions, pick ↵ < !2, let
⇡ : !1 �! ↵ be a surjection and let D = (Y

⇠

, j
⇠,⇠

0 : ⇠  ⇠0 < !1) be a directed
system such that for all ⇠ < ⇠0 < !1, the diagram

⇡“⇠
id�! ⇡“⇠0??y

??y

Y
⇠

j⇠,⇠0�! Y
⇠

0

commutes (where the downward arrows represent isomorphisms) and let A be
a subset of !1 coding D in such a way that there is a club C ✓ !1 such that
A \ ⌫ codes (Y

⇠

, j
⇠,⇠

0 : ⇠  ⇠0 < ⌫) for all ⌫ in C. S = {⌫ 2 C : A \ ⌫ = X
⌫

}
is stationary and, for all ⌫ 2 C, h(⌫) is the order type of the direct limit of
(Y

⇠

, j
⇠,⇠

0 : ⇠  ⇠0 < ⌫), which by construction is easily seen to be equal to the
order type of ⇡“⌫. Hence, modulo S, h equals a canonical function for ↵. 2
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Fact 5.11 BPSR implies that there is no function guessing all canonical func-
tions.

Proof: Given a function h : !1 �! !1, it is enough to see that

{X 2 [!2]
@0 : ot(X) 6= h(X \ !1)}

is a projective stationary subset of [!2]@0 . So fix a stationary S ✓ !1 and a
function F : [!2]<! �! !2. Pick ↵, !1 < ↵ < !2 such that ↵ is closed under F .
Let E be a club of [↵]@0 such that for every X 2 E there is some Y closed under
F such that ↵ 2 Y and Y \↵ = X. Pick any X in E such that X \!1 2 S and
X is closed under F . By the choice of E there is some Y 2 [!2]@0 such that Y
is closed under F , X ✓ Y , Y \!1 = X \!1 2 S, and ot(X) < ot(Y ). But then,
either ot(X) 6= h(X \ !1) or ot(Y ) 6= h(Y \ !1). 2

Question 5.1 Does the existence of a function guessing all canonical functions
follow from ¬CBP? 13
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