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Abstract. We prove that the forcing axiom MA1.5
@2

(stratified) im-
plies ⇤!1,!1 . Using this implication, we show that the forcing ax-
iom MM@2(@2-c.c.) is inconsistent. We also derive weak Chang’s
Conjecture from MA1.5

@2
(stratified) and use this second implication

to give another proof of the inconsistency of MM@2(@2-c.c.).

1. Introduction

Jensen’s square principle ⇤ at an infinite successor cardinal +, as
well as its natural weakenings ⇤,<�, are very well studied principles in
combinatorial set theory that can be naturally viewed as incompactness
or anti-reflection principles. For example, and as is well-known, ⇤

implies that for every stationary S ✓ 
+ there is a stationary S

0 ✓ S

which does not reflect (i.e., such that S 0\↵ is non-stationary for every
↵ < 

+). We recall the definition of these weakenings of ⇤.

Definition 1.1. Given a cardinal  � !1 and a cardinal �  
+,

⇤,<� holds if and only if there is a sequence (C↵ ; ↵ 2 Lim(+)) with
the following properties.

(1) For every ↵ 2 Lim(+),
(a) C↵ is a collection of clubs of ↵,
(b) ot(C)   for every C 2 C↵, and
(c) |C↵| < �.

(2) (Coherence) For every ↵ 2 Lim(+), C 2 C↵, and ↵̄ < ↵, if ↵̄
is a limit point of C, then C \ ↵̄ 2 C↵̄.

In the above definition, and throughout the paper, given an ordinal
µ, Lim(µ) will denote the set of nonzero limit ordinals in µ.
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We also write ⇤,� for ⇤,<�+ . We will be focusing our attention
on the weakest form of ⇤,� for  = !1, i.e., on ⇤!1,!1 . This principle
is also called weak square and, by a well-known result of Jensen, is
equivalent to the existence of a special @2-Aronszajn tree.

Forcing axioms are reflection principles, between forcing extensions
and the ground model, which tend to imply failures of square. For
example, a well-known of Todorčević ([12]) is that the Proper Forcing
Axiom (PFA) implies that ⇤ fails for every uncountable cardinal .

Given a cardinal  and a class K of partial orders, we denote the
forcing axiom for K with respect to families of -many dense sets by
FA(K). This is the assertion that for every P 2 K and every sequence
(Di : i < ) of dense subsets of P there is a filter G ✓ P such that
G\Di 6= ; for all i < . We will say that FA(K) is the forcing axiom
for K at .

In [2], a certain forcing axiom MA1.5
 extending Martin’s Axiom at 

(i.e., MA) is introduced. It is proved in that paper that if CH holds, 
is any closed enough cardinal, and a suitable diamond principle holds,
then MA1.5

 holds in some cardinal-preserving forcing extension. The
first half of the present paper is devoted to the study of the e↵ects,
on square principles at !2, of forcing axioms which are natural mild
strengthenings of MA1.5

@2
. The main result in this part of the paper is

that one such axiom, which we will refer to as MA1.5
!2
(stratified), implies

⇤!1,!1 . Moreover, MA1.5
!2
(stratified), and in fact MA1.5

 (stratified) for
any given  fixed in advance, is consistent by essentially the same
proof as in [2].

Certainly, weak forcing axioms such as MA, for any , are compati-
ble with square principles: any cardinal-preserving forcing extension of
a model with squares will preserve them, and MA can always be forced
by c.c.c. forcing. What is perhaps surprising, given that strong forcing
axioms at !1 like PFA prohibit squares, is the fact that strong enough
forcing axioms at !2, like MA1.5

!2
(stratified), outright imply square prin-

ciples at !2.
Similar results have been obtained by Neeman. One of the results

in [8] is that a forcing axiom MA1.5
!2
(U), whose definition involves a

certain parameter U ✓ [!2]@0 , implies both ⇤!1,<! and the following
strengthening ⇤ta

!1,! of ⇤!1,!:
1 Given cardinals �   such that  � !1,

⇤ta
,� holds if and only if there is a ⇤,�-sequence (C↵ : ↵ 2 Lim(+))

such that for every ↵ 2 Lim(+) and for all C, C 0 2 C↵, C and C
0 agree

on a tail, i.e., there is some � < ↵ such that C \ � = C
0 \ �.2

1On the other hand, the definition of MA1.5
!2

(stratified) is parameter-free.
2The superscript ta stands for ‘tail agreement’.
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Neeman also points out in [8] that both ⇤!1,! and ⇤ta
!1,! follow from

some of his strong high analogues of PFA. On a related vein,3 Sakai
shows in [9] that Martin’s Maximum proves that ⇤p

!1
(i.e, partial square

at !2) holds and that this is not the case for PFA.
Given a set N such that N \ !1 2 !1, we denote this ordinal by �N

and call it the height of N . Given a sequence ~e = (e↵ : ↵ 2 !2), where
e↵ : |↵| �! ↵ is a bijection for each ↵ < !2, we say that a set N is
closed under ~e if

(1) e↵ � ⇠ + 1 2 N whenever ↵ 2 !2 \N and ⇠ 2 |↵| \N , and
(2) e

�1
↵ (↵̄) 2 N whenever ↵ 2 !2 \N and ↵̄ 2 N \ ↵.

We will be using the following well-known fact repeatedly, sometimes
without mention.

Fact 1.2. Suppose ~e = (e↵ : ↵ 2 !2), where e↵ : |↵| �! ↵ is a bijec-
tion for each ↵ < !2, and suppose N0 and N1 are countable submodels
of H(!2) closed under ~e and such that �N0  �N1. Then N0 \ ↵ ✓ N1

for every ↵ 2 N0 \N1 \ !2.

Proof. Given any ↵̄ 2 N0 \ ↵, ⇠ = e
�1
↵ (↵̄) 2 N0 \ |↵|. But since ↵ and

⇠ are both members of N1 as |↵|  !1, we also have that ↵̄ = e↵(⇠) 2
N1. ⇤
Corollary 1.3. Suppose ~e = (e↵ : ↵ 2 !2), where e↵ : |↵| �! ↵

is a bijection for each ↵ < !2, and suppose N0 and N1 are countable
submodels of H(!2) closed under ~e of the same height. Then N0\N1\!2

is an initial segment of both N0 \ !2 and N1 \ !2.

As already mentioned, [2] introduces a strengthening MA1.5
 of MA,

for any given cardinal . MA1.5
 is the forcing axiom

FA({P : P has the @1.5-c.c.}),

where having the @1.5-c.c. is defined as follows.4

Definition 1.4. ([2]) A partial order P has the @1.5-c.c. if for every large
enough cardinal ✓ (i.e., every cardinal ✓ such that P 2 H(✓)) there is a
club E of [H(✓)]@0 such that for every finite N ✓ E and every N0 2 N ,
if N0 has minimum height within N , then for every p0 2 N0\P there is
some extension p 2 P of p0 such that p is (N,P)-generic for all N 2 N .

3One important aspect in which Sakai’s result is di↵erent from both Neeman’s
results and the first main result in the present paper is that Sakai’s theorem involves
strong forcing axiom at !1, whereas the others are implications from forcing axioms
at !2.

4One can also define MA1.5
< as MA1.5

� for all � < .
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It is easy to see (s. [2]) that every partial order with the countable
chain condition has the @1.5-c.c. and every partial order with the @1.5-
c.c. is proper and has the @2-c.c.

5

We can naturally strengthen MA1.5
 by restricting the definition to

finite families N ✓ E with some given nice structural property P . We
may then refer to the corresponding enlargement of

{P : P has the @1.5-c.c.}
as the class of partial orders with the @1.5-c.c. with respect to finite
families with property P , and may denote the corresponding forcing
axiom by MA1.5

 (P ).
The following notion of stratified family seems to give rise to a par-

ticularly useful form of MA1.5
 .

Definition 1.5. A collection N of countable elementary submodels
of H(✓), for some infinite cardinal ✓, is stratified in case for all N0,
N1 2 N , if �N0 < �N1 , then in fact ot(N0 \ !2) < �N1 .

Correspondingly, we say that a forcing notion P has the @1.5-c.c.
with respect to finite stratified families of models i↵ for every infinite
cardinal ✓ such that P 2 H(✓) there is a club E ✓ [H(✓)]@0 such that
for every finite stratified N ✓ E, if p 2 N0 \ P, where N0 2 N is of
minimal height within N , then there is an extension p

⇤ of p in P such
that p⇤ is (N,P)-generic for every N 2 N . Clearly, every partial order
with the @1.5-c.c. also has the @1.5-c.c. with respect to finite stratified
families of models. Also, given a cardinal , we write MA1.5

 (stratified)
to denote FA(K), where K is the class of partial orders P such that P
has the @1.5-c.c. with respect to finite stratified families of models. We
then have that MA1.5

 (stratified) implies MA1.5
 .

The following proposition extends the aforementioned fact that every
forcing with the @1.5-c.c. is proper and has the @2-c.c.

Proposition 1.6. If a forcing notion has the @1.5-c.c. with respect to
finite stratified families of models, then it is proper and has the @2-c.c.

Proof. Suppose P is a forcing notion with the @1.5-c.c. with respect
to finite stratified families of models. Let ✓ be a cardinal such that
P 2 H(✓) and let E ✓ [H(✓)]@0 be a club witnessing, for H(✓), that
P has the @1.5-c.c. with respect to finite stratified families of models.
Given any N 2 E, {N} is trivially stratified, and therefore for every
p 2 P\N there is an (N,P)-generic extension of p. This shows that P
is proper.

5Hence the @1.5 notation.
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To prove that P has the @2-chain condition let us assume, towards
a contradiction, that there is a maximal antichain A of P such that
|A| � @2, and let (pi : i < �) be a one-to-one enumeration of A, for
some � � !2. Let M be an elementary submodel of some large enough
H(�) such that

(1) E, (pi : i < �) 2 M and
(2) |M | = @1.

Let i0 2 !2 \M and let N 4 H(✓), N 2 E, be such that A, pi0 2 N .
By correctness of M we may find i1 2 !2 \M for which there is some
N

0 2 E \M such that �N 0 = �N and A, pi1 2 N
0. Indeed, the existence

of such an N
0 is expressed by a true sentence, as witnessed by i0 and

N , with �N , E and (pi : i < �) as parameters.
We note that N = {N,N

0} is a stratified family of members of E
as �N = �N 0 . It follows, since pi0 2 N and �N = �N 0 , that we may
find an (N 0

,P)-generic condition p extending pi0 . Then there must be
condition p

0 extending p and extending some p̄ 2 A \ N
0. But that is

impossible since A is an antichain and p̄ 6= pi0 as N 0 ✓ M . ⇤
Essentially the same forcing construction from [2] showing the con-

sistency of MA1.5
<, for any given closed enough , can be used to prove

the following theorem.6

Theorem 1.7. (CH) Let  � !2 be a regular cardinal such that µ@0 < 

for all µ <  and }({↵ <  : cf(↵) � !1}) holds. Then there is a
proper forcing notion P of size  with the @2-chain condition such that
the following statements hold in the generic extension by P.

(1) 2@0 = 

(2) For every � < , MA
1.5
� (stratified)

Let us write PFA@2(@2-c.c.) to denote FA@2(K), where K is the class
of proper forcing notions with the @2-chain condition.

Theorem 1.7, as well as other similar strengthenings of the main
result from [2], motivate the following question.7

Question 1.8. Is PFA@2(@2-c.c.) consistent?

We are not able to answer this question. However, in Section 3 we will
show that MM@2(@2-c.c.), a natural strengthening of PFA@2(@2-c.c.), is

6The main point is that all relevant systems of models coming up in the proof
from [2] turn out in fact to be stratified.

7This question is also motivated by the main result from [3], to the e↵ect that
it is consistent, for arbitrary choice of , that FA({P : P proper, |P| = @1}) holds.
It is worth pointing out that the proof of this theorem is very di↵erent from the
proof of the main result from [2].
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in fact inconsistent. MM@2(@2-c.c.) is FA@2(K⇤), where K⇤ is the class
of forcing notions that both preserve stationary subsets of !1 and have
the @2-chain condition.

One of the ingredients of this proof will be the fact thatMM@2(@2-c.c.)
implies ⇤!1,!1 (since MM@2(@2-c.c.) extends MA1.5

@2
(stratified)).

There are other results in the literature dealing with failures of forc-
ing axioms at @2 or above. In this respect we single out the following
theorem of Shelah ([11]), extended by the main result in Section 3.

Theorem 1.9. (Shelah) Given any regular cardinal � > !1, FA�(K�) is
false, where K� is the class of forcing notions preserving all stationary
subsets of µ for every uncountable regular cardinal µ  �.

We will actually give two proofs of the failure of MM@2(@2-c.c.). The
first one, in Section 3, we have already referred to. The second proof, in
Section 5, will make use of a consequence of MA1.5

@2
(stratified) regarding

canonical functions. We recall that if ↵ < !2 is a nonzero ordinal and
⇡ : !1 �! ↵ is a surjection, the function g↵ : !1 �! !1 defined by
letting g↵(⌫) = ot(⇡“⌫) is called a, or the, canonical function for ↵.
The use of the definite article when referring to canonical functions for
a given ↵ is justified by the following obvious observation, which in
particular implies that g↵ is uniquely determined modulo clubs.

Fact 1.10. Given ↵ < !2 and given surjections ⇡0, ⇡1 : !1 �! ↵ there
is a club of ⌫ < !1 such that ⇡0“⌫ = ⇡1“⌫.

Another standard fact about the canonical function for ↵ is that it
represents the ordinal ↵ in every generic ultrapower of V obtained from
forcing with P(!1)/NS!1 . In other words, if g is a canonical function
for ↵, then P(!1)/NS!1 forces that, letting M = ((!

V
1 V )\V )/Ġ be the

generic ultrapower of V obtained from Ġ, the set of M -ordinals below
the class [g]Ġ of g in M is well-ordered in order type ↵.

Club-bounding by canonical functions, CB, is the statement that ev-
ery function f : !1 �! !1 is bounded on a club by the canonical
function of some nonzero ↵ < !2. CB is a weakening of NS!1 being
saturated.

A natural weakening of CB is weak Chang’s Conjecture, wCC, which
is the statement that for every function f : !1 �! !1 there is some
↵ < !2 such that {⌫ < !1 : f(⌫) < g(⌫)} is stationary for every
canonical function g for ↵ (s. [4]). Martin’s Maximum implies the
saturation of NS!1 ([5]), and hence also CB. On the other hand, it is
not di�cult to see that not even wCC follows from PFA (s. e.g. [1] for
strong forms of this non-implication).
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In Section 4 we will prove that MA1.5
@2
(stratified) implies ¬wCC. Us-

ing this implication, in Section 5 we will give another proof of the
inconsistency of MM@2(@2-c.c.). Specifically, assuming this forcing ax-
iom, we will produce a sequence (fn)n<! of functions from !1 to !1

such that for each n, fn dominates fn+1 on a club. This is of course
impossible as then we are able to find an infinite decreasing sequence
of ordinals.

The rest of the paper is structured as follows. In the following section
we prove that MA1.5

@2
(stratified) implies ⇤!1,!1 . Using this result, in

Section 3 we prove that MM@2(@2-c.c.) is false. In Section 4 we prove
that MA1.5

@2
(stratified) implies ¬wCC. Finally, in Section 5, using the

implication in Section 4, we give another proof of the inconsistency of
MM@2(@2-c.c.).

Throughout the paper, we will write S
2
1 for {↵ < !2 : cf(↵) = !1},

and sometimes S
2
0 for {↵ < !2 : cf(↵) = !}. All undefined pieces of

notation are hopefully standard and may be found in [6] or [7].

2. MA1.5
@2
(stratified) implies ⇤!1,!1

The main theorem in this section is the following.

Theorem 2.1. MA
1.5
@2
(stratified) implies ⇤!1,!1.

Let ~e = (e↵ : ↵ < !2) be such that e↵ : |↵| �! ↵ is a bijection for
each ↵ < !2. We define the following forcing notion P .

Conditions in P are triples

p = (hp
, i

p
,Np)

with the following properties.

(1) h
p is a function such that dom(hp) 2 [Lim(!2)⇥!1⇥(!1+1)]<!

and such that for each (↵, ⌫, ⌧) 2 dom(hp), hp(↵, ⌫, ⌧) ✓ ⌧⇥↵ is
a finite function which can be extended to a strictly increasing
and continuous function f : ⌧ �! ↵ with range cofinal in ↵.

(2) For every (↵, ⌫, ⌧) 2 dom(hp):
(a) if cf(↵) = !1, then ⌧ = !1 and ⌫ = 0;
(b) if cf(↵) = !, then ⌧ 2 Lim(!1).

(3) For every ↵ and ⌫ there is at most one ⌧ such that (↵, ⌫, ⌧) 2
dom(hp).

(4) i
p is a function whose domain is the set of triples (↵, ⌫, ⌧̄) such
that (↵, ⌫, ⌧) 2 dom(hp) for some ⌧ and ⌧̄ 2 dom(hp(↵, ⌫, ⌧)) \
Lim(!1), and i

p(↵, ⌫, ⌧̄) 2 !1 for each (↵, ⌫, ⌧̄) 2 dom(ip).
(5) For every limit ordinal ⌧̄ 2 dom(hp(↵, ⌫, ⌧)),

(hp(↵, ⌫, ⌧)(⌧̄), ip(↵, ⌫, ⌧̄), ⌧̄) 2 dom(hp)
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and

h
p(hp(↵, ⌫, ⌧)(⌧̄), ip(↵, ⌫, ⌧̄), ⌧̄) = h

p(↵, ⌫, ⌧) � ⌧̄
(6) Np is a finite stratified collection of countable elementary sub-

models of (H(!2);2) closed under ~e.
(7) For every N 2 Np and every (↵, ⌫, ⌧) 2 dom(hp) such that ↵,

⌫ 2 N :
(a) ⌧ 2 N ;
(b) h

p(↵, ⌫, ⌧) � N ✓ N ;8

(c) If cf(↵) = !1, then

�N 2 dom(hp(↵, ⌫,!1))

and

h
p(↵, ⌫,!1)(�N) = sup(N \ ↵)

(d) For every ⌧̄ 2 dom(hp(↵, ⌫, ⌧))\Lim(!1)\N , ip(↵, ⌫, ⌧̄) 2
N .

Given P-conditions p0 and p1, p1 extends p0 if and only if:

(1) dom(hp0) ✓ dom(hp1);
(2) for every (↵, ⌫, ⌧) 2 dom(hp0),

(a) h
p0(↵, ⌫, ⌧) ✓ h

p1(↵, ⌫, ⌧), and
(b) i

p1(↵, ⌫, ⌧̄) = i
p0(↵, ⌫, ⌧̄) for each ⌧̄ 2 dom(hp0(↵, ⌫, ⌧)) \

Lim(!1).
(3) Np0 ✓ Np1 .

Given p 2 P , we denote {↵ 2 S
2
1 : (↵, 0,!1) 2 dom(hp)} by Xp.

Lemma 2.2. P has the @1.5-c.c. with respect to finite stratified families
of models.

Proof. Let ✓ be such that P 2 H(✓) and let N ⇤ be a finite stratified
collection of countable elementary submodels of H(✓) containing ~e. We
may assume that for each N

⇤ 2 N ⇤, N⇤ =
S

⌫<�N⇤ N
⇤
⌫ , where (N

⇤
⌫ )⌫<�N⇤

is a continuous 2-chain of countable elementary submodels of H(✓)
containing ~e. In fact, if there is any cardinal � > ✓ such that N

⇤ is
of the form N

⇤⇤ \H(✓) for a countable N
⇤⇤ 4 H(�) with ~e, ✓ 2 N

⇤⇤,
then N

⇤ is a continuous 2-chain of countable elementary submodels of
H(✓) as above. To see this, let (xn)n<! be an enumeration of N⇤ and
let (�n)n<! be a strictly increasing sequence converging to �N⇤ . Then,
by correctness of N⇤⇤, we may build a sequence ( ~N⇤

n)n<! of members
of N⇤⇤ such that

8In particular, hp(↵, ⌫, ⌧) 2 N since h
p(↵, ⌫, ⌧) is finite.
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(1) for each n, ~N
⇤
n = (N⇤

n,i)i�n is a continuous 2-chain of length
�n + 1 consisting of countable elementary submodesl of H(✓)
containing ~e and xn;

(2) ~N
⇤
n+1 extends ~N

⇤
n.S

n<!
~N

⇤
n is then as desired.

Let N = {N⇤ \H(!2) : N⇤ 2 N ⇤}. Let also N0 2 N be of minimal
height and let p0 2 N0 be a P-condition. Given any ↵ 2 Xp0 , let
(↵(k) : k < m↵) be the strictly increasing enumeration of

{sup(N \ ↵) : N 2 N , ↵ 2 N}
and, for every k < m↵, let �↵k = �N for any N 2 N such that ↵ 2 N

and sup(N \ ↵) = ↵(k). Note that by Fact 1.2, �↵k is well-defined for
every k < m↵ (i.e., �↵ is independent from the choice of N as long as
↵ 2 N and sup(N \ ↵) = ↵(k)) as in fact N \ ↵ = N

0 \ ↵ whenever
N , N 0 2 N are such that ↵ 2 N \N

0 and �N = �N 0 . For each ↵ 2 Xp0

and k < m↵, let i(↵, k) 2 �
↵
k \ range(ip0) be such that �N < i(↵, k) for

each N 2 N with �N < �
↵
k .

In order to prove the lemma, it su�ces to show that

p
⇤ = (hp⇤

, i
p⇤
,Np0 [N )

is an (N⇤
,P)-generic condition for each N

⇤ 2 N ⇤, where

dom(hp⇤) = dom(hp0) [ {(↵(k), i(↵, k), �↵k ) : ↵ 2 Xp0 , k < m↵}
and where for each (↵, ⌫, ⌧) 2 dom(hp⇤):

(1) if (↵, ⌫, ⌧) 2 dom(hp0) and cf(↵) = !, then
(a) h

p⇤(↵, ⌫, ⌧) = h
p0(↵, ⌫, ⌧) and

(b) i
p⇤(↵, ⌫, ⌧̄) = i

p0(↵, ⌫, ⌧̄) for each ⌧̄ 2 dom(hp0(↵, ⌫, ⌧)) \
Lim(!1);

(2) if (↵, ⌫, ⌧) 2 dom(hp0) and cf(↵) = !1,
9 then

(a) h
p⇤(↵, ⌫, ⌧) = h

p0(↵, ⌫, ⌧) [ {(�↵k ,↵(k)) : k < m↵},
(b) i

p⇤(↵, ⌫, ⌧̄) = i
p0(↵, ⌫, ⌧̄) for every ⌧̄ 2 dom(hp0(↵, ⌫, ⌧)) \

Lim(!1), and
(c) i

p⇤(↵, ⌫, �↵k ) = i(↵, k) for each k < m↵;
(3) if ↵ 2 Xp0 and k < m↵, then

(a) h
p⇤(↵(k), i(↵, k), �↵k ) = h

p0(↵, 0,!1) [ {(�↵j ,↵(j)) : j < k},
(b) i

p⇤(↵(k), i(↵, k), ⌧̄) = i
p0(↵, 0, ⌧̄) for every limit ordinal ⌧̄ 2

dom(hp0(↵, 0,!1)), and
(c) i

p⇤(↵(k), i(↵, k), �↵j ) = i(↵, j) for each j < k.

Claim 2.3. If ↵0 < ↵1 are such that ↵0, ↵1 2 Xp0, then ↵0(k0) < ↵0 <

↵1(k1) for all k0 < m↵0 and k1 < m↵1.
9In this case of course ⌫ = 0 and ⌧ = !1.
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Proof. The inequality ↵0(k0) < ↵0 is immediate given that ↵0(k0) =
sup(M\↵0) for some countableM . Also, we note that if N 2 N is such
that ↵1 2 N and ↵1(k1) = sup(N \ ↵1), then ↵0 2 N by Fact 1.2 since
↵1 2 N0 \N and �N0  �N . Hence ↵0 < sup(N \ ↵1) = ↵1(k1). ⇤
Claim 2.4. For every N 2 N , ↵ 2 Xp0 and k < m↵, if ↵(k), i(↵, k) 2
N and j < k, then ↵(j) 2 N .

Proof. Since i(↵, k) 2 N , we have that �N � �
↵
k . But ↵(j) 2 M \ ↵(k)

for every M 2 N such that ↵ 2 M and �M = �
↵
k (since ↵(j) =

sup(e↵“�↵j )), and M \ ↵(k) ✓ N \ ↵() for every such M , where the
inclusion follows from Fact 1.2 since �N � �

↵
k . ⇤

The proof of the following claim is essentially the same.

Claim 2.5. For all N 2 N and ↵ 2 Xp0, if ↵ 2 N , then h
p0(↵, 0,!1) 2

N and i
p0(↵, 0, ⌧̄) 2 N for every ⌧̄ 2 dom(hp0(↵, 0,!1)) \ Lim(!1).

Using the above three claims together with Fact 1.2, one can easily
verify that p

⇤ is a P-condition, and it obviously extends p0. Let now
N

⇤ 2 N ⇤ and let us prove that p
⇤ is (N⇤

,P)-generic. For this, let
D 2 N

⇤ be an open and dense subset of P and let p 2 D extend p
⇤.

We will prove that there is a condition r 2 D \N
⇤ compatible with p.

Let (N⇤
⌫ )⌫<�N⇤ be a continuous 2-chain of countable elementary sub-

models of H(✓) containing ~e such that N
⇤ =

S
⌫<�N⇤ N

⇤
⌫ . Since Np is

stratified and N
⇤ \H(!2) 2 Np, we may find some ⌫0 < �N⇤ such that

(1) (hp [ i
p) \N

⇤ ✓ N
⇤
⌫0 ,

(2) there is some ⌘ 2 N
⇤
⌫0 \ !2 such that [⌘, !2) \N

⇤
⌫0 \N = ; for

every N 2 Np with �N < �N⇤
⌫0
, and

(3) for every ↵ /2 N
⇤
⌫0 such that (↵, ⌫, ⌧) 2 dom(hp) for some ⌫, ⌧ ,

and such that ↵
⇤ = min((N⇤

⌫0 \ !2) \ ↵) exists, there is some
⌘↵ 2 N

⇤
⌫0 \↵

⇤ with [⌘↵, ↵)\N
⇤
⌫0 \N = ; for every N 2 Np such

that �N < �N⇤
⌫0
.

Given a P-condition q, let M(q) be a structure with universe

Uq := (
[

{{↵, ⌫, ⌧, ⇠, �} : (↵, ⌫, ⌧) 2 dom(hq), (⇠, �) 2 h
q(↵, ⌫, ⌧)})[iq

coding h
q and i

q in some fixed canonical way.
Let us denote N

⇤
⌫0 by N

+. Let R = Up \ N
+. Working in N

+ we
may find a condition r 2 D such that Up \ N

+ ✓ Ur, Xp \ N
+ ✓ Xr,

and for which there is an isomorphism

⇡ : M(p) �! M(r)

which is the identity on Up\Ur and is such that the following holds for
each (↵, ⌫, ⌧) 2 dom(hp):
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(1) if ↵ � sup(N+ \ !2), then ⇡(↵) > ⌘;
(2) if ↵ /2 N

+ and ↵
⇤ = min((N+ \!2) \↵) exists, then ⇡(↵) > ⌘↵;

(3) if ↵ 2 N
+ but ⌫ /2 N

+, then ⇡(⌫) > �N for each N 2 Np such
that �N < �N+ ;

(4) Np [Nr is stratified.

Such an r can indeed be found in N
+ since the existence of a con-

dition with the properties above is a true statement, as witnessed by
p, which can be expressed over H(✓) by a sentence with parameters in
N

+.
In order to finish the proof it su�ces to show that p and r can

be amalgamated into a condition p
0 2 P . This condition p

0 can be
obtained as p0 = (hp0

, i
p0
,Np [Nr) by the following construction, very

similar to that of p⇤ from p0.
For every ↵ 2 Xr, let (↵(k) : k < m↵) be the strictly increasing

enumeration of

{sup(N \ ↵) : N 2 Np, ↵ 2 N}
and, for every k < m↵, let �↵k = �N for any N 2 Np such that ↵ 2 N

and sup(N \↵) = ↵(k). As in the construction of p⇤ from p0, each �
↵
k is

well-defined. For each ↵ 2 Xr and k < m↵, let i(↵, k) 2 �
↵
k \ range(ip)

be such that �N < i(�, k) for each N 2 Np with �N < �
↵
k .

We define h
p0 and i

p0 by letting h
p0 be a function with

dom(hp0) = dom(hp)[dom(hr)[{(↵(k), i(↵, k), �↵k ) : ↵ 2 Xr, k < m↵}
and making the following definitions for each (↵, ⌫, ⌧) 2 dom(hp0)
(where, given a condition t 2 P and a tuple (↵, ⌫, ⌧) /2 dom(ht), we
define h

t(↵, ⌫, ⌧) = ; if (↵, ⌫, ⌧) /2 dom(ht), and similarly with i
t in

place of ht):

(1) if (↵, ⌫, ⌧) 2 dom(hp) [ dom(hr) and cf(↵) = !, then
(a) h

p0(↵, ⌫, ⌧) = h
p(↵, ⌫, ⌧) [ h

r(↵, ⌫, ⌧) and
(b) for each ⌧̄ in (dom(hp(↵, ⌫, ⌧))[dom(hr(↵, ⌫, ⌧)))\Lim(!1),

i
p0(↵, ⌫, ⌧̄) = i

p(↵, ⌫, ⌧̄) [ i
r(↵, ⌫, ⌧̄);

(2) if (↵, ⌫, ⌧) 2 dom(hp) and cf(↵) = !1,
10 then

(a) h
p0(↵, ⌫, ⌧) = h

p(↵, ⌫, ⌧) [ h
r(↵, ⌫, ⌧),

(b) i
p0(↵, ⌫, ⌧̄) = i

p(↵, ⌫, ⌧̄) for every ⌧̄ 2 dom(hp(↵, ⌫, ⌧)) \
Lim(!1), and

(c) i
p0(↵, ⌫, ⌧̄) = i

r(↵, ⌫, ⌧̄) for every ⌧̄ 2 dom(hr(↵, ⌫, ⌧)) \
Lim(!1);

(3) if (↵, ⌫, ⌧) 2 dom(hr) and cf(↵) = !1,
11 then

10In which case of course ⌫ = 0 and ⌧ = !1.
11Once again, in this case ⌫ = 0 and ⌧ = !1.
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(a) h
p0(↵, ⌫, ⌧) = h

r(↵, ⌫, ⌧) [ {(�↵k ,↵(k)) : k < m↵},
(b) i

p0(↵, ⌫, ⌧̄) = i
r(↵, ⌫, ⌧̄) for every ⌧̄ 2 dom(hr(↵, ⌫, ⌧)) \

Lim(!1), and
(c) i

p0(↵, ⌫, �↵k ) = i(↵, k) for each k < m↵;
(4) if ↵ 2 Xr and k < m↵, then

(a) h
p0(↵(k), i(↵, k), �↵k ) = h

r(↵, 0,!1) [ {(�↵j ,↵(j)) : j < k},
(b) i

p0(↵(k), i(↵, k), ⌧̄) = i
r(↵, 0, ⌧̄) for every limit ordinal ⌧̄ 2

dom(hr(↵, 0,!1)), and
(c) i

p0(↵(k), i(↵, k), �↵j ) = i(↵, j) for each j < k.

The choice of ⌘ and of ⌘↵, for ↵ 2 Xp\N+ such that min((N+\!2)\↵)
exists, together with the way r has been fixed, immediately yields the
following.

Claim 2.6. For every N 2 Np and every ↵ 2 Xr \Xp, if ↵ 2 N , then
�N � �N+.

Using Claim 2.6, we can prove the following versions of Claims 2.3
and 2.5.

Claim 2.7. If ↵0 < ↵1 are such that ↵0, ↵1 2 Xr \Xp, then ↵0(k0) <
↵0 < ↵1(k1) for all k0 < m↵0 and k1 < m↵1.

Claim 2.8. For all N 2 Np and ↵ 2 Xr \ Xp, if ↵ 2 N , then
h
r(↵, 0,!1) 2 N and i

r(↵, 0, ⌧̄) 2 N for every ⌧̄ 2 dom(hr(↵, 0,!1)) \
Lim(!1).

We also have the following counterpart of Claim 2.4, proved in ex-
actly the same way.

Claim 2.9. For every N 2 Np, ↵ 2 Xr and k < m↵, if ↵(k), i(↵, k) 2
N and j < k, then ↵(j) 2 N .

Using Claims 2.7, 2.8 and 2.9, together with Fact 1.2 and the partic-
ular choice of r, it is not di�cult to verify that p0 is a condition in P ,
which finishes the proof of the lemma since then p

0 of course extends
both p and r. ⇤

We will need the following four density lemmas.

Lemma 2.10. For every p 2 P, every ↵ < !2 of countable cofinality,
and every ⌫ < !1, if (↵, ⌫, ⌧) /2 dom(hp) for any ⌧ , then there is a
condition p

0 2 P extending p and such that (↵, ⌫,!) 2 dom(hp0).

Proof. We simply let p0 = (hp [ {((↵, ⌫,!), ;)}, ip,Np). ⇤
Lemma 2.11. For every ↵ 2 S

2
1 and every p 2 P there is a condition

p
0 2 P extending p and such that ↵ 2 Xp0.
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Proof. We may obviously assume ↵ /2 Xp. We may also assume that
↵ 2 N for some N 2 Np as the conclusion in the other case is im-
mediate. Let (↵(k) : k < m) be the strictly increasing enumeration
of

{sup(N \ ↵) : N 2 Np, ↵ 2 N}
and, for every k < m, let �

�
k = �N for any N 2 Np such that ↵ 2 N

and sup(N \ ↵) = ↵(k). As usual, using Fact 1.2 we have that each
�
↵
k is well-defined. For each k < m let i(↵, k) 2 �

↵
k \ range(ip) be such

that �N < i(↵, k) for each N 2 Np with �N < �
↵
k .

We can now easily verify that the following is a condition p
0 2 P as

required: p0 = (hp0
, i

p0
,Np), where

dom(hp0) = dom(hp) [ {(�, 0,!1)} [ {(↵(k), i(↵, k), �↵k ) : k < m}
and where:

(1) for each (�, ⌫, ⌧) 2 dom(hp),
(a) h

p0(�, ⌫, ⌧) = h
p(�, ⌫, ⌧) and

(b) i
p0(�, ⌫, ⌧̄) = i

p(�, ⌫, ⌧̄) for each ⌧̄ 2 dom(hp(�, ⌫, ⌧)) \
Lim(!1);

(2) h
p0(↵, 0,!1) = {(�↵k ,↵(k)) : k < m} and i

p0(↵, 0, �↵k ) = i(↵, k)
for each k < m;

(3) for each k < m,
(a) h

p0(↵(k), i(↵, k), �↵k ) = {�↵j : j < k} and

(b) i
p0(↵(k), i(↵, k), �↵j ) = i(↵, j) for each j < k.

⇤
Lemmas 2.12 and 2.13 are also easy.

Lemma 2.12. For every p 2 P, ↵ 2 Xp, and every ⌫ < !1 there is a
condition p

0 2 P extending p and such that ⌫ 2 dom(hp0(↵, 0,!1)).

Lemma 2.13. For every p 2 P, ↵ 2 Xp, every nonzero limit ordinal
� 2 dom(hp(↵, 0,!1)), and every ⌘ < h

p(↵, 0,!1)(�) there is a condition
p
0 2 P extending p together with some ⌫ 2 dom(hp0(↵, 0,!1)) \ � such
that hp0(↵, 0,!1)(⌫) > ⌘.

Given a P-generic filter G, a limit ordinal ↵ < !2, and ⌫ < !1, we
define C

G
↵,⌫ as

[
{range(hp(↵, ⌫, ⌧)) : p 2 G, (↵, ⌫, ⌧) 2 dom(hp) for some ⌧}

Let also
CG
↵ = {CG

↵,⌫ : ⌫ < !1, C
G
↵,⌫ 6= ;}

We immediately obtain the following corollary from Lemmas 2.2, the
density lemmas 2.11–2.13, and the definition of P .
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Corollary 2.14. If G is a P-generic filter over V , then

(CG
↵ : ↵ 2 Lim(!2))

is a ⇤!1,!1-sequence.

Corollary 2.14 yields the following.

Corollary 2.15. MA
1.5
@2
(stratified) implies ⇤!1,!1.

At this point, the following question suggests itself.

Question 2.16. Does MA
1.5
@2
(stratified) imply ⇤!1,!?

It is proved in [8] that MA1.5
 , for any given , is consistent with

¬⇤!1,!.

Question 2.17. Does MA
1.5
@2

imply ⇤!1,!1?

Finally, the following corollary is an immediate consequence of Corol-
lary 2.14.

Corollary 2.18. ZFC proves that there is a poset P such that

(1) P is proper,
(2) P has the @2-c.c., and
(3) P forces weak square.

3. MM@2(@2-c.c.) is false

Given a set S of ordinals and a set X, let us denote by UnifS,X
the statement that for every sequence (f↵ : ↵ 2 S) of colourings
f↵ ✓ ↵ ⇥ X such that dom(f↵) is a club of ↵ there is a function
H :

S
S �! X such that for every ↵ 2 S,

{⇠ 2 dom(f↵) : f↵(⇠) = H(⇠)}
contains a club of ↵.

Shelah proves the following theorem in ([10], Appendix, Chapter 3).

Theorem 3.1. (Shelah) UnifS2
1 ,2

is false.

We can also define a natural weakening Unif cS,X of UnifS,X by restrict-
ing to sequences (f↵ : ↵ 2 S) of constant colourings (i.e., for every
↵ 2 S, f↵ is a constant function).12 It is immediate to see that for
any S ✓ Ord and any set X, Unif cS,X can be equivalently stated as
the assertion that for every function F : S �! X there is a function
H :

S
S �! X with the property that for every ↵ 2 S there is a club

C ✓ ↵ of ↵ such that H(⇠) = F (↵) for every ⇠ 2 C. We will say that
H uniformizes F mod. clubs.

The following is implicit in ([10], Appendix, Chapter 3).

12The superscript c is for ‘constant’.
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Theorem 3.2. (Shelah) If S ✓ S
2
1 is stationary and Unif

c
S,2 holds, then

CH holds as well.

Proof. Unif cS,2 clearly implies Unif cS,R: Given F : S �! !2, let Fn :
S �! 2 be defined by Fn(↵) = (F (↵))(n) (for each n < !). Applying
Unif cS,2 to each Fn we obtain functions Hn : !2 �! 2 and clubs Dn

↵ ✓ ↵,
for ↵ 2 S and n < !, such that Hn(⇠) = Fn(↵) for all ⇠ 2 D

n
↵. But

then, if we define H : S �! !2 by letting H(⇠) = (Hn(⇠) : n < !),
it follows that H uniformizes F mod. clubs as witnessed by the clubs
D↵, for ↵ 2 S, where D↵ =

T
n D

n
↵.

Thus, if 2@0 � @2 and Unif cS,2 holds, then Unif cS,!2
holds as well. Now

suppose Unif cS,2 holds and 2@0 � @2. Letting F be the identity function
on S, we apply Unif cS,!2

to F and get a corresponding uniformizing
function H : !2 �! !2 and clubs D↵ ✓ ↵ for ↵ 2 S. Since S is
stationary, we may find ↵ 2 S closed under H. But now we reach a
contradiction since there is obviously no club D ✓ ↵ such that H(⇠) =
F (↵) = ↵ for all ⇠ 2 D.13 ⇤
Remark 3.3. Given a club-sequence ~C = (C↵ : ↵ 2 S) such that
ot(C↵) = cf(↵) for each ↵ 2 S, we can define the following strength-

ening Unif c,
~C, cbd

S,2 of Unif cS,2: Unif c,
~C, cbd

S,2 is the statement that for every
function F : S �! 2 there is a function H : sup(S) �! 2 such that for
every ↵ 2 S,

{⇠ 2 C↵ : H(⇠) = F (↵)}
is co-bounded in ↵.14

If CH holds and ~C = (C↵ : ↵ 2 S
2
1) is, for example, the restriction

of a ⇤!1-sequence to S
2
1 , Unif

c, ~C, cbd
S2
1 ,2

can be forced by a �-closed and

@2-c.c. forcing, obtained as the direct limit of a long enough countable
support iteration of �-closed forcing notions with the @2-c.c. At any
given stage of the iteration, the corresponding iterand is the forcing
Q ~C,F for adding a uniformizing function on ~C mod. co-bounded sets,
for some given colouring F : S2

1 �! 2: A condition inQ ~C,F is a function
q = (bq↵ : ↵ 2 Zq), for some countable Zq ✓ S

2
1 , such that bq↵ < ↵ for

each ↵ 2 Zq, and such that sup(C↵0 \ C↵) < b
q
↵ for all ↵ < ↵

0 in Zq

with F (↵) 6= F (↵0) and b
q
↵0 < ↵. The extension relation is reversed

inclusion.
The fact that the club-sequence ~C relative to which we are adding

the appropriate instances of uniformization is fixed throughout the it-
eration, and in fact coming from a ⇤!1-sequence in the ground model,

13There is obviously not even any nonempty D ✓ ↵ like that.
14We say that H uniformizes F on ~C modulo co-bounded sets.
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is used in the natural reflection argument for establishing the @2-c.c.—
working inside a suitable model of size @1 containing the relevant in-
formation.

Question 3.4. Is the dependence on a fixed club-sequence in the con-
sistency proof in Remark 3.3 really necessary? In other words, is

the following strengthening of Unif
c, ~C⇤, cbd
S,2 , for a fixed club-sequence

~C⇤ = (C↵, : ↵ 2 S
2
1) with ot(C↵) = !1 for each ↵, consistent? Sup-

pose ~C = (C↵ : ↵ 2 S) is a club-sequence such that ot(C↵) = !1 for
each ↵ 2 S. Then for every function F : S �! 2 there is a function
H : sup(S) �! 2 such that for every ↵ 2 S,

{⇠ 2 C↵ : H(⇠) = F (↵)}
is co-bounded in ↵.

Remark 3.5. The statement that Unif cS,2 holds for every stationary
S ✓ S

2
1 is not equivalent to CH as, for example, the assumption that

}(S) holds for every stationary S ✓ S
2
1 implies ¬Unif cS,2 for every such

S: Suppose (A↵ : ↵ 2 S) is a }-sequence and let F : S �! 2 be such
that for every ↵ 2 S, F (↵) = 1� i if A↵ codes a function H↵ : ↵ �! 2
and there are club-many ⇠ 2 ↵ such that H↵(⇠) = i. It is easy to see
that no function H : !2 �! 2 can uniformize F mod. clubs.

Given a class K of countable models, let us say that a proper forcing
P is proper with respect to K in case for every cardinal ✓ such that
P 2 H(✓) there is a club D ✓ [H(✓)]@0 such that for every N 2 D \K
and every condition p 2 P \N there is an extension p

⇤ 2 P of p which
is (N,P)-generic.

Given a cardinal ✓, a set S ✓ [H(✓)]@0 is a projective stationary
subset of H(✓) in case for every stationary S ✓ !1 and every club D

of [H(✓)]@0 there is some N 2 S \D such that �N 2 S. The following
proposition is standard.

Proposition 3.6. Let K be a class of models such that K \ [H(✓)]@0

is a projective stationary subset of [H(✓)]@0 for every cardinal ✓ > !1

such that P 2 H(✓). Let P be a forcing notion which is proper with
respect to K. Then P preserves stationary subsets of !1.

Proof. Let Ċ be a P-name for a club of !V
1 , let S ✓ !1 be stationary, and

let p 2 P. Let ✓ be large enough and, using the projective stationarity
of K \ H(✓), let N � H(✓) be countable and such that P, Ċ, p 2 N

and �N 2 S. Let p
⇤ be an (N,P)-generic condition stronger than p.

Then p
⇤ forces that �N 2 S is a limit of ordinals in Ċ and therefore,

since Ċ is a P-name for a closed set, that �N 2 Ċ. ⇤
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Given a cardinal , MM(@2-c.c.) denotes FA(�), where � is the
class of all posets P such that

• P preserves stationary subsets of !1 and
• P has the @2-c.c.

The rest of this section is devoted to proving the following theorem.

Theorem 3.7. MM@2(@2-c.c.) is false.

Let us assume, towards a contradiction, that MM@2(@2-c.c.) holds.
In particular FA@2(

<!2) holds and therefore CH fails.15 Let S = S
2
1 . It

follows, by Theorem 3.2, that there is a function F : S �! 2 for which
there is no function H : !2 �! 2 uniformizing F mod. clubs.

Since MA1.5
@2
(stratified) also holds, we may fix a ⇤!1,!1-sequence ~C =

(C↵ : ↵ 2 Lim(!2)) (by Theorem 2.1). Let also ~e = (e↵ : ↵ < !2) be
such that e↵ : |↵| �! ↵ is a bijection for each ↵ < !2.

Let K~e
~C be the class of countable models N such that N \ !2 =S

�2C e�“�N for some C 2 C↵, where ↵ = sup(N \ !2).
The following is quite standard.

Claim 3.8. For every cardinal ✓ > !1, K~e
~C \H(✓) is a projective sta-

tionary subset of [H(✓)]@0.

Proof. Suppose D is a club of [H(✓)]@0 and S ✓ !1 is stationary. Let
f : [!2]<! �! !2 be a finitary function such that for every X 2 [!2]@0 ,
if f“[X]<! ✓ X, then X = N \ !2 for some N 2 D. Let ↵ 2 S

2
0 be

such that !1 < ↵ and f“[↵]<! ✓ ↵ and let C 2 C↵. But now, since
E = {M \ ↵ : M � (H(!2);2,~e, C)} contains a club of [↵]@0 , we may
pick some X 2 E closed under f and such that �X 2 S, and if N 2 D

is such that N \ !2 = X, then N will be a member of K~e
~C such that

�N 2 S.16 ⇤
We will show that there is a forcing notion Q which is proper with

respect to K~e
~C, has the @2-c.c., and forces the existence of a function

H : !2 �! 2 uniformizing F mod. clubs. This will yield a contradiction
since then Q will preserve stationary subsets of !1 by Proposition 3.6
and Claim 3.8, and so the existence of such a function H will follow
from an application of FA@2({Q}).

For each ↵ 2 Lim(!2), let us fix an enumeration (C↵,⌫ : ⌫ < !1)
of C↵. If cf(↵) = !1, we may of course take (C↵,⌫ : ⌫ < !1) to

15In fact 2@0 � @3.
16The choice of ↵ being of countable cofinality is inessential. We could have

taken ↵ of cofinality !1, considered E = {M \ ↵ : M � (H(!2);2,~e, ~C)}, and
continued the argument using the coherence of ~C.
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be constant. Also, given a set X of ordinals, we will write cl(X) to
denotes the closure of X in the order topology.

Let us say that a family N of countable models is ~C-stratified in case
the following holds.

(1) N ✓ K~e
~C

(2) For all N0, N1 2 N , if �N0 = �N1 but N0 \ !2 6= N1 \ !2, then
(a) ↵i := min((Ni \ !2) \N1�i) exists for each i 2 2,
(b) cf(↵0) = cf(↵1) = !1, and
(c) there is no ordinal ↵ above sup(N0 \ N1 \ !2) such that

↵ 2 cl(N0 \ !2) \ cl(N1 \ !2).
(3) For all N0, N1 2 N , if �N0 < �N1 , then

↵ := max(cl(N0 \ !2) \ cl(N1 \ !2))

exists, ↵ 2 N1, and there is some ⌫ < �N1 such that

N0 \ ↵ =
[

�2C↵,⌫

e�“�N0 .

The following simple remark will be quite useful.

Remark 3.9. Suppose N is a ~C-stratified family of models, ↵̄ < !2,
N0, N1 2 N , and ↵0 2 N0 \ S and ↵1 2 N1 \ S are such that

sup(N0 \ ↵0) = sup(N1 \ ↵1) = ↵̄

Then �N0 = �N1 . Hence, if ↵0 6= ↵1, then ↵0 = min((N0 \!2) \N1) and
↵1 = min((N1 \ !2) \N0).

Let us also say that a ~C-stratified family N of models is compatible
with F in case for all N0, N1 2 N , if �N0 = �N1 , N0 \ !2 6= N1 \ !2,
and ↵i = min((Ni \ !2) \N1�i) for each i 2 2, then F (↵0) = F (↵1).

We define Q to be the forcing notion consisting of ordered pairs

q = ((Iq
↵ : ↵ 2 Xq),Nq)

with the following properties.

(1) Xq 2 [S]<!

(2) For every ↵ 2 Xq, Iq
↵ is a finite collection of pairwise disjoint

intervals of the form [�0, �1) with �0 < �1 < ↵.
(3) For all ↵0, ↵1 2 Xq, if F (↵0) 6= F (↵1), then min(I) 6= min(I 0)

for all I 2 Iq
↵0

and I
0 2 Iq

↵1
.

(4) Nq is a finite family of countable elementary submodels of the
structure (H(!2);2,~e, (C↵,⌫ : ↵ 2 Lim(!2), ⌫ < !1)) which is
~C-stratified and compatible with F .

(5) The following are equivalent for every ↵ 2 Xq and every � < ↵.
(a) � = min(I) for some I 2 Iq

↵.
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(b) � = sup(N \ ↵) for some N 2 Nq such that ↵ 2 N .

Given conditions q0, q1 2 Q, q1 extends q0 i↵

(1) Xq0 ✓ Xq1 ,
(2) for every ↵ 2 Xq0 and every I 2 Iq0

↵ there is some (necessarily
unique) I

0 2 Iq1
↵ such that min(I 0) = min(I) and sup(I 0) �

sup(I), and
(3) Nq0 ✓ Nq1

We will use the two following density lemmas.

Lemma 3.10. For every Q-condition q and every ↵ 2 S there is some
q
⇤ 2 Q extending q and such that ↵ 2 Xq⇤.

Proof. We may obviously assume that ↵ /2 Xq. Let

I = {{sup(N \ ↵)}17 : N 2 Nq, ↵ 2 N}

Then

q
⇤ := ((Iq

� : � 2 Xq) [ {(↵, I)},Nq)

is a condition in Q as desired. To see this, let ↵̄ = sup(N \↵) for some
N 2 Nq with ↵ 2 N and suppose, towards a contradiction, that there
is some ↵0 2 Xq and some N 0 2 Nq such that ↵0 2 N

0, sup(N \↵
0) = ↵̄,

and F (↵0) 6= F (↵).18 By ~C-stratification of Nq and Remark 3.9 we have
that �N = �N 0 , ↵ = min((N \ !2) \N 0), and ↵

0 = min((N 0 \ !2) \N).
But then F (↵) = F (↵0) since Nq is compatible with F , which is a
contradiction. ⇤
Lemma 3.11. For all q 2 Q, ↵ 2 Xq, and ⌘ < ↵ there is some
extension q

⇤ 2 Q together with some I 2 Iq⇤
↵ such that min(I) > ⌘.

Proof. Let N be a su�ciently correct elementary submodel of H(!2)
containing q and ⌘. We build q

⇤ as

q
⇤ = ((Iq⇤

� : � 2 Xq),Nq [ {N}),

where

Iq⇤

� = Iq
� [ {{sup(N \ �)}}

for each � 2 Xq. It is clear that q⇤ is condition in Q stronger than q.
Also, ⌘ < sup(N \ ↵) since ⌘ 2 N . ⇤

The main properness lemma is now the following.

17Of course, {sup(N \ ↵)} = [sup(N \ ↵), sup(N \ ↵) + 1).
18It is not di�cult to check that this is the only way q

⇤ could fail to be a Q-
condition.
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Lemma 3.12. Let ✓ be a cardinal such that Q 2 H(✓) and let M
0

and M
1 be countable elementary submodels of H(✓) of the same height

such that F , ~C, ~e 2 M
0 \M

1 and {M0
,M

1} is a ~C-stratified family19

compatible with F . Then for every q0 2 Q \M
0 there is an extension

q
⇤ 2 Q of q0 such that q⇤ is (M i

,Q)-generic for i = 0, 1.

Proof. Let
N = {M0 \H(!2),M

1 \H(!2)}
and for every ↵ 2 Xq0 let ⇢↵ = sup(M0 \ ↵).

The proof will be complete once we show that

q
⇤ = ((Iq⇤

↵ : ↵ 2 Xq0),Nq0 [N )

is an (M i
,Q)-generic condition for i = 0, 1, where Iq⇤

↵ = Iq
↵ [ {{⇢↵}}.

Claim 3.13. Nq0 [N is ~C-stratified.

Proof. Since Nq0 and N are both ~C-stratified and Nq0 ✓ K~e
~C \ M

0, it
su�ces to show that if N 2 Nq0 , then

↵ := max(cl(N \ !2) \ cl(M1 \ !2))

exists, ↵ 2 M
1, and there is some ⌫ < �M1 such that N \ ↵ =S

�2C↵,⌫
e�“�N .

Suppose first that N \ !2 ✓ M
1 and let ↵ = sup(N \ !2). Since

N 2 M
0\K~e

~C, we then have that there is some ⌫ < �M0 = �M1 such that

N \ !2 =
S

�2C↵,⌫
e�“�N . By ~C-stratification of N and since ↵ 2 M

0,

↵ cannot be sup(M0 \M
1 \ !2), so it must be the case that ↵ 2 M

1.
Since ↵ = max(cl(N \ !2) \ cl(M1 \ !2)), we are done in this case.

Suppose now that � = min((N \ !2) \ M
1) exists. Since � 2

M
0, again by ~C-stratification of N it follows that cf(�) = !1. Then

C�,0 2 N , from which we get that if ↵ = sup(N \ �), then N \ ↵ =S
�2C�,0\↵ e�“�N . Then, by coherence of ~C, we have that C�,0 \↵ 2 C↵.

Again since N 2 M
0, C�,0 \ ↵ = C↵,⌫ for some ⌫ < �M0 = �M1 . Using

once again the ~C-stratification of N it follows that ↵ 2 M
1, which fin-

ishes the proof in this case since ↵ = max(cl(N\!2)\cl(M1\!2)). ⇤
Also, since Nq0 and N are both compatible with F , so is Nq0 [N .

In addition, for every ↵ 2 Xq0 and every I 2 Iq0
↵ , min(I) < ⇢↵ and

⇢↵ /2 M
0, and for all ↵ < ↵

0 in Xq0 , ⇢↵ < ↵ < ⇢↵0 . It thus easily follows
that q⇤ is a condition in Q. Since q

⇤ of course extends q0, it su�ces to
prove that q

⇤ is (M i
,Q)-generic for each i = 0, 1. For this, suppose

19I.e., conditions (1) and (2) in the definition of ~C-stratified family hold for M0

and M1.
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D 2 M
i is an open and dense subset of Q and q is an extension of q⇤

in D. We will find a condition in D \M
i compatible with q.

Let � = {�N : N 2 Nq} \ �M i . Let us note that, by ~C-stratification
of Nq and M

i 2 Nq,

Rq = {N \ !2 \M
i : N 2 Nq, �N 2 �} 2 M

i
.

Using this, and by a reflection argument as in the proof of Lemma 2.2,
we may find in M

i a condition r 2 D such that

q
0 := ((Iq

↵ � Ir
↵ : ↵ 2 Xq [Xr),Nq [Nr) 2 Q,

where Iq
↵ � Ir

↵ is defined as follows for each ↵ 2 Xq [Xr.

(1) If ↵ 2 Xq \Xr, then Iq
↵ � Ir

↵ = Iq
↵.

(2) If ↵ 2 Xr \Xq, then

Iq
↵ � Ir

↵ = Ir
↵ [ {{sup(N \ ↵)} : N 2 Nq, ↵ 2 N}

(3) If ↵ 2 Xq \ Xr, then Iq
↵ � Ir

↵ is the unique set I of pairwise
disjoint intervals with

{min(I) : I 2 I} = {min(I) : I 2 Iq
↵ [ Ir

↵}

such that for every I 2 I, if �0 = min(I), then
(a) sup(I) = sup(I0) in case I0 2 Iq

↵, min(I0) = �0, and there
is no J 2 Ir

↵ such that min(J) = �0;
(b) sup(I) = sup(I1) in case I1 2 Ir

↵, min(I1) = �0, and there
is no J 2 Iq

↵ such that min(J) = �0;
(c) sup(I) = max{sup(I0), sup(I1)} in case I0 2 Iq

↵, I1 2 Ir
↵,

min(I0) = �0, and min(I1) = �0.

More specifically, we find r 2 D \M
i with the following properties.

(1) For all ↵ 2 Xr, I 2 Ir
↵, ↵

0 2 Xq, and I
0 2 Iq

↵0 , if min(I) =
min(I 0), then F (↵) = F (↵0).

(2) For every N 2 Nr such that �N 2 � there is some ✓-maximal
X 2 Rq such that X is an initial segment of N \!2. Moreover,
X is a proper initial segment of N \ !2 if and only if there is
some N 0 2 Nq such that X is a proper initial segment of N 0\!2,
in which case, for every such N

0, if

↵0 = min((N \ !2) \X)

and
↵1 = min((N 0 \ !2) \X),

then cf(↵0) = cf(↵1) = !1 and F (↵0) = F (↵1). Also, for every
X 2 Rq there is some N 2 Nr such that �N 2 � and such that
X is an initial segment of N \ !2.
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We can indeed find such an r 2 M
i, by correctness of M i, since the

existence of an r with the above properties is a true fact, as witnessed
by q, which can be expressed by a sentence with parameters in M

i.
And given r 2 M

i as above, the amalgamation q
0 of r and q described

earlier is a condition in Q. For this, it is enough to show the following
claim, as all other clauses in the definition of Q-condition are clear.

Claim 3.14. Nq [Nr is ~C-stratified and compatible with F .

Proof. We can show, by an argument similar to the one in the proof of
Claim 3.13, that for every N 2 Nr and M 2 Nq, if �M i  �M , then ↵ :=
max(cl(N\!2)\cl(M\!2)) exists, ↵ 2 M , and N\↵ =

S
�2C↵,⌫

e�“�N
for some ⌫ < �M . And, by construction, {N 2 Nq : �N 2 �} [Nr is
~C-stratified and compatible with F . Putting these two facts together
we get the conclusion. ⇤

This finishes the proof of the lemma since q
0 extends both q and

r. ⇤
Remark 3.15. Unlike in the proof of Lemma 2.2, our models M

0

and M
1 in the above proof need not be of the form M

i =
S

i<�Mi
M

i
⌫ ,

with (M i
⌫)⌫<�Mi being a continuous 2-chain of elementary submodels

containing the relevant objects. This is of course thanks to the presence
of clause (3) in the definition of ~C-stratified family.

The following is an immediate corollary from Lemma 3.12.

Corollary 3.16. Q is proper with respect to K~e
~C.

Lemma 3.17. Q has the @2-c.c.

Proof. Suppose, towards a contradiction, that (qi ; i < �), for some
cardinal � � !2, is a one-to-one enumeration of a maximal antichain
A of Q. Let ✓ be a large enough cardinal. For every i < !2 let Mi be a
countable elementary submodel of H(✓) belonging to K~e

~C and such that

qi, F , ~C, ~e, A 2 Mi.
Let P be an elementary submodel of some higher H(�) such that

|P | = @1 and ~C, ((qi,Mi) : i < �) 2 P . Since all qi are distinct
and � � !2, we may find i0 such that qi0 /2 P . Now, working in P

and since Mi0 \ !2 \ P 2 P as Mi0 2 K~e
~C, we may find i1 2 P \ �

such that �Mi0
= �Mi1

and {Mi0 ,Mi1} is ~C-stratified. By Lemma 3.12
there is a condition q

⇤ 2 Q extending qi0 and such that q⇤ is (Mi1 ,Q)-
generic. But now, since A 2 Mi1 is a maximal antichain of Q, we can
find a common extension q

0 of q⇤ and some qi2 2 A \ Mi1 , which is a
contradiction since qi2 6= qi0 yet q0 extends both qi0 and qi2 . ⇤
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Let now G be a Q-generic filter. Given any ↵ 2 S, let

D
G
↵ = {min(I) : I 2 Iq

↵, q 2 G, ↵ 2 Xq}
By Lemma 3.10, DG

↵ is an unbounded subset of ↵.

Lemma 3.18. For every ↵ 2 S, DG
↵ is closed in ↵.

Proof. Let � < ↵ be a limit ordinal forced by some q 2 Q with ↵ 2
Xq to be a limit point of DĠ

↵ and suppose, towards a contradiction,
that � 6= min(I) for any I 2 Iq

↵. By the choice of q we may assume
that there is some I 2 Iq

↵ such that min(I) < �. Letting I0 be the
unique such I with min(I) maximal within Iq

↵ we may now extend q

to a condition q
0 such that [min(I0), � + 1) 2 Iq0

↵ . But q
0 forces that

D
Ġ
↵ \ � ✓ min(I0) + 1 < �, which contradicts the assumption that q

forced D
Ġ
↵ to be cofinal in �. ⇤

It follows from Lemmas 3.10, 3.11, and 3.18 together that if we aim
to define H : !2 �! 2 by letting H(⌘) = F (↵) for any ↵ 2 S such that
⌘ 2 D

G
↵ (and, say, H(⌘) = 0 if there is no ↵ as above), then H is a

well-defined function which uniformizes F mod. clubs, as witnessed by
D

G
↵ for ↵ 2 S. This concludes the proof of Theorem 3.7.

Remark 3.19. We point out that the inconsistency proof of the forcing
axiom MM@2(@2-c.c.) we have given shows the impossibility of having
FA@2(�) for the class � of posets which have the @1.5-c.c. with respect
to families of models which are simultaneously ~C-stratified, for a fixed
⇤!1,!1-sequence ~C, and F -compatible for arbitrarily fixed choices of
F . On the other hand, the methods of [2] allow us to build models
of the forcing axiom FA@2(�0), where �0 is the class of partial orders
with the @1.5-c.c. with respect to families which are ~C-stratified and
F -compatible, for a fixed ⇤!1,!1-sequence ~C and a fixed F : S2

1 �! 2.

4. MA1.5
@2
(stratified) implies ¬wCC.

The goal of this section is to prove the following theorem.

Theorem 4.1. MA
1.5
@2
(stratified) implies ¬wCC.

We fix a sequence ~e = (e↵ : 0 < ↵ < !2), where e↵ : !1 �! ↵ is a
surjection for each ↵.

We consider the following forcing notion R. A condition in R is a
triple p = (f p

, (hp
↵ : ↵ 2 Xp),Np), where:

(1) f
p ✓ !1 ⇥ !1 is a finite function.

(2) Xp 2 [!2 \ {0}]<!

(3) For each ↵ 2 Xp,
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(a) h
p
↵ ✓ !1 ⇥ !1 is a finite function which can be extended

to a continuous strictly increasing function h : !1 �! !1,
and

(b) for each ⌫ 2 dom(hp
↵) we have that hp

↵(⌫) 2 dom(f p) and
ot(e↵“hp

↵(⌫)) < f
p(hp

↵(⌫)).
(4) Np is a finite stratified family of countable elementary submod-

els of (H(!2);2,~e).
(5) The following holds for each N 2 Np.

(a) f
p � �N ✓ N ;

(b) �N 2 dom(f p) and f
p(�N) � ot(N \ !2);

(c) for every ↵ 2 Xp \N ,
(i) h

p
↵ � �N ✓ N ,

(ii) �N 2 dom(hp
↵), and

(iii) h
p
↵(�N) = �N .

Given R-conditions p0 and p1, p1 extends p0 i↵

(1) f
p0 ✓ f

p1 ,
(2) Xp0 ✓ Xp1 ,
(3) for every ↵ 2 Xp0 , h

p0
↵ ✓ h

p1
↵ , and

(4) Np0 ✓ Np1 .

The following density lemmas are easy.

Lemma 4.2. For every p 2 R and every nonzero � < !2 there is an
R-condition p

⇤ extending p and such that � 2 Xp⇤.

Proof. We may of course assume that � /2 Xp. It then su�ces to set

p
⇤ = (f p

, (hp
↵ : ↵ 2 Xp) [ {(�, {(�N , �N) : N 2 Np, � 2 N})},Np)

To see that this is a condition inR it is enough to notice that if N 2 Np

is such that � 2 N , then �N 2 dom(f p) and

ot(e�“�N) = ot(N \ �) < ot(N \ !2)  f
p(�N)

⇤
Lemmas 4.3, 4.4 and 4.5 are obvious.

Lemma 4.3. For every p 2 R, ↵ 2 Xp and ⌫ < !1 there is some
p
⇤ 2 R extending p and such that ⌫ 2 dom(hp⇤

↵ ).

Lemma 4.4. For every p 2 R, ↵ 2 Xp, every nonzero limit ordinal � 2
dom(hp

↵), and every ⌘ < h
p
↵(�) there is a condition p

⇤ 2 R extending p

together with some ⌫ 2 dom(hp⇤
↵ ) \ � such that hp⇤

↵ (⌫) > ⌘.

Lemma 4.5. For every p 2 R and every ⌫ < !1 there is a condition
p
⇤ 2 R extending p and such that ⌫ 2 dom(f p⇤).



Consistent and inconsistent generalizations of Martin’s Axiom, ⇤⇤
!1

, and ¬wCC 25

It follows from Lemmas 4.2–4.5 together that if G is R-generic and
we set

f
G =

[
{f p : p 2 G}

and

C
G
↵ =

[
{range(hp

↵) : p 2 G, ↵ 2 Xp}

for each nonzero ↵ < !2, then f
G : !V

1 �! !
V
1 is a function, each C

G
↵

is a club of !V
1 , and ot(e↵“⌫) < f

G(⌫) for each ↵ and ⌫ 2 C
G
↵ . Hence,

if we can show that R has the @1.5-c.c. with respect to finite stratified
families of models, an application of MA1.5

@2
(stratified) to R will show

that MA1.5
@2
(stratified) implies ¬wCC.

Lemma 4.6. R has the @1.5-c.c. with respect to finite stratified families
of models.

Proof. Let ✓ be a large enough cardinal, let N ⇤ be a finite stratified
family of countable elementary submodels of H(✓) containing ~e, and
let p0 2 R \ N

⇤
0 , where N

⇤
0 is of minimum height within N ⇤. We will

prove that there is a condition p
⇤ 2 R stronger than p0 such that p⇤ is

(N⇤
,R)-generic for each N

⇤ 2 N ⇤.
Let N = {N⇤\H(!2) : N⇤ 2 N ⇤} and for every � 2 {�N : N 2 N}

let

µ(�) = max{ot(N \ !2) : N 2 N , �N = �}
Let

p
⇤ = (f p0 [ {(�N , µ(�N)) : N 2 N}, (hp⇤

↵ : ↵ 2 Xp0),Np0 [N ),

where

h
p⇤

↵ = h
p0
↵ [ {(�N , �N) : N 2 N , ↵ 2 N}

for each ↵ 2 Xp0 . It is easy to check that p⇤ is a condition in R (for
this it is enough to notice that µ(�N0) < �N1 holds for all N0, N1 2 N
with �N0 < �N1 , which follows from the stratification of N ), and it of
course extends p0 by construction. Hence, it will be enough to show
that p⇤ is (N⇤

,R)-generic for every N
⇤ 2 N ⇤. Let D 2 N

⇤ be a dense
and open subset of R and let p be an extension of p⇤ in D. We will
show that there is a condition in D \N

⇤ compatible with p.
As in the proof of Lemma 2.2, we may assume that N⇤ =

S
⌫<�N⇤ N

⇤
⌫ ,

where (N⇤
⌫ )⌫<�N⇤ is a ✓-continuous 2-chain of models. By moving to a

suitable N
⇤
⌫0 and arguing there as in the proof of Lemma 2.2 using the

stratification of Np, we may find a condition r 2 D \N
⇤
⌫0 such that

(1) for every ↵ 2 Xp \ Xr, hp
↵ [ h

r
↵ can be extended to a strictly

increasing and continuous function h : !1 �! !1,
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(2) for every ↵ 2 Xr \Xp and every N 2 Np such that �N < �N⇤
⌫0
,

↵ /2 N , and
(3) Np [Nr is stratified.

Let now

p
0 = (f r [ (f p � (!1 \ �N⇤

⌫0
)), (hp0

↵ : ↵ 2 Xp [Xr),Np [Nr),

where

(1) for every ↵ 2 Xp \Xr, hp0
↵ = h

p
↵ [ h

r
↵,

(2) for every ↵ 2 Xp \Xr, hp0
↵ = h

p
↵, and

(3) for every ↵ 2 Xr \Xp, hp0
↵ = h

r
↵ [ {(�N , �N) : N 2 Np, ↵ 2 N}.

Then p
0 is a condition in R, which finishes the proof of the lemma since

p
0 is of course stronger than both p and r. ⇤
The above lemma concludes the proof of Theorem 4.1.
The following corollary is an immediate by-product of the proof of

Theorem 4.1.

Corollary 4.7. ZFC proves that there is a poset P such that

(1) P is proper,
(2) P has the @2-c.c., and
(3) P forces ¬wCC.

5. Another proof of the inconsistency of MM@2(@2-c.c.)

In this final section of the paper we will give another proof of The-
orem 3.7 in Section 3. Our argument essentially follows an argument,
due to Shelah, showing that stationary preserving forcing cannot be
iterated, and in fact that there is a forcing iteration of length ! each of
whose iterands is forced to preserve stationary subsets of !1 but such
that any limit of it collapses !1.

Let us assume that MM@2(@2-c.c.) holds. Hence, MA1.5
@2
(stratified)

holds as well and so, by Theorem 4.1, there is a function f : !1 �! !1

such that {⌫ < !1 : g(⌫) < f(⌫)} contains a club for every nonzero
↵ < !2 and every canonical function g for ↵. We will build a sequence
(fn)n<! of functions from !1 to !1, together with clubs Cn of !1, such
that for every n and every ⌫ 2 Cn, fn+1(⌫) < fn(⌫). This of course will
yield a contradiction since then, if ⌫ 2

T
n Cn, then fn+1(⌫) < fn(⌫)

for all n, which is impossible.
We will make sure that the construction can keep going by arranging,

for every n < ! and every nonzero ↵ < !2, that fn dominates every
canonical function for ↵ on a club. We start our construction by letting
f0 = f .
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Given n < ! and assuming fn has been constructed, we will find
fn+1 by an application of MM@2(@2-c.c.) to the following slight variant
Rfn of the poset R in the proof of Theorem 4.1.

Let Kfn be the collection of countable N 4 (H(!2);2,~e, fn) such
that ot(N \ !2) < fn(�N).

A condition in Rfn is a tuple p = (f p
, dp, (hp

↵ : ↵ 2 Xp),Np) with
the following properties.

(1) f
p ✓ !1 ⇥ !1 is a finite function.

(2) dp ✓ !1 ⇥ !1 is a finite function which can be extended to a
continuous strictly increasing function d : !1 �! !1.

(3) For every ⌫ 2 dom(dp), f p(dp(⌫)) < fn(dp(⌫)).
(4) Xp 2 [!2 \ {0}]<!

(5) For each ↵ 2 Xp,
(a) h

p
↵ ✓ !1 ⇥ !1 is a finite function which can be extended

to a continuous strictly increasing function h : !1 �! !1,
and

(b) for each ⌫ 2 dom(hp
↵) we have that hp

↵(⌫) 2 dom(f p) and
ot(e↵“hp

↵(⌫)) < f
p(hp

↵(⌫)).
(6) Np is a finite stratified family of members of Kfn .
(7) The following holds for each N 2 Np.

(a) f
p � �N ✓ N ;

(b) �N 2 dom(f p) and f
p(�N) � ot(N \ !2);

(c) dp � �N ✓ N , �N 2 dom(dp), and dp(�N) = �N .
(d) for every ↵ 2 Xp \N ,

(i) h
p
↵ � �N ✓ N ,

(ii) �N 2 dom(hp
↵), and

(iii) h
p
↵(�N) = �N .

Given Rfn-conditions p0 and p1, p1 extends p0 i↵

(1) f
p0 ✓ f

p1 ,
(2) dp0 ✓ dp1 ,
(3) Xp0 ✓ Xp1 ,
(4) for every ↵ 2 Xp0 , h

p0
↵ ✓ h

p1
↵ , and

(5) Np0 ✓ Np1 .

We now have the following density lemmas. Lemma 5.1 is proved by
the same argument as in the proof of Lemma 4.2 using the fact that
all models of Np are in Kfn , and Lemmas 5.2–5.6 are straightforward.

Lemma 5.1. For every p 2 Rfn and every nonzero � < !2 there is a
Rfn-condition p

⇤ extending p and such that � 2 Xp⇤.

Lemma 5.2. For every p 2 Rfn, ↵ 2 Xp and ⌫ < !1 there is some
p
⇤ 2 Rfn extending p and such that ⌫ 2 dom(hp⇤

↵ ).
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Lemma 5.3. For every p 2 Rfn, ↵ 2 Xp, every nonzero limit ordinal
� 2 dom(hp

↵), and every ⌘ < h
p
↵(�) there is a condition p

⇤ 2 Rfn

extending p together with some ⌫ 2 dom(hp⇤
↵ )\ � such that hp⇤

↵ (⌫) > ⌘.

Lemma 5.4. For every p 2 Rfn and every ⌫ < !1 there is a condition
p
⇤ 2 Rfn extending p and such that ⌫ 2 dom(f p⇤).

Lemma 5.5. For every p 2 Rfn and every ⌫ < !1 there is a condition
p
⇤ 2 Rfn extending p and such that ⌫ 2 dom(dp⇤).

Lemma 5.6. For every p 2 Rfn, every nonzero limit ordinal � 2
dom(dp), and every ⌘ < dp(�) there is a condition p

⇤ 2 Rfn extending
p together with some ⌫ 2 dom(dp⇤) \ � such that dp⇤(⌫) > ⌘.

It follows from the above density lemmas that if G is Rfn-generic
and we let

D
G =

[
{range(dp) : p 2 G},

f
G =

[
{f p : p 2 G},

and

C
G
↵ =

[
{range(hp

↵) : p 2 G, ↵ 2 Xp}

for each nonzero ↵ < !2, then D
G is a club of !V

1 , f
G : !V

1 �! !
V
1

is a function, each C
G
↵ is a club of !V

1 , ot(e↵“⌫) < f
G(⌫) for each ↵

and ⌫ 2 C
G
↵ , and f

G(⌫) < fn(⌫) for each ⌫ 2 D
G. It follows that an

application of MM@2(@2-c.c.) to Rfn will provide us with fn+1. Hence,
we just need to prove that Rfn preserves stationary subsets of !1 and
has the @2-c.c. This we will prove by means of the following version of
Lemma 3.12 in Section 3.

Lemma 5.7. Let ✓ be a cardinal such that Rfn 2 H(✓) and let M0,
M

1 � H(✓) be countable models of the same height and such that Rfn 2
M

0 \M
1 and M

0 \ H(!2), M1 \ H(!2) 2 Kfn. Then for every p0 2
Rfn \M

0 there is an extension p
⇤ 2 Q of p0 such that p⇤ is (M i

,Rfn)-
generic for i = 0, 1.

Proof. Let µ = max{ot(M0 \ !2), ot(M1 \ !2)} and

p
⇤ = (f p⇤

, dp⇤ , (h
p⇤

↵ : ↵ 2 Xp0),Np0 [ {M0 \H(!2),M
1 \H(!2)}),

where

(1) f
p⇤ = f

p0 [ {(�M0 , µ)},
(2) dp⇤ = dp0 [ {(�M0 , �M0)}, and
(3) h

p⇤
↵ = h

p0
↵ [ {(�M0 , �M0)} for each ↵ 2 Xp0 .
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Using the fact that M0 \H(!2), M1 \H(!2) 2 Kfn , it is immediate
to check that p⇤ 2 Rfn , and it of course extends p0. It will thus su�ce
to show that p⇤ is (M i

,Rfn)-generic for i = 0, 1. For this, let D 2 M
i

be a dense and open subset of Rfn and let p 2 D be an extension of p⇤.
We will show that there is a condition r 2 D \M

i compatible with p.
We can find r by arguing, in M

i, in the same way as in the reflection
argument in the proof of Lemma 4.6. More specifically, and exactly as
in that proof, we may assume that M i =

S
⌫<�Mi

M
i
⌫ , where (M

i
⌫)⌫<�Mi

is a✓-continuous 2-chain of models. Then, by moving to a suitableM i
⌫0

and arguing there as in the proof of Lemma 2.2 using the stratification
of Np, we may find a condition r 2 D \M

i
⌫0 such that

(1) for every ↵ 2 Xp \ Xr, hp
↵ [ h

r
↵ can be extended to a strictly

increasing and continuous function h : !1 �! !1,
(2) for every ↵ 2 Xr \Xp and every N 2 Np such that �N < �M i

⌫0
,

↵ /2 N , and
(3) Np [Nr is stratified.

Let us define h
p0
↵ , for ↵ 2 Xp [Xr, as follows:

(1) for every ↵ 2 Xp \Xr, hp0
↵ = h

p
↵ [ h

r
↵;

(2) for every ↵ 2 Xp \Xr, hp0
↵ = h

p
↵;

(3) for every ↵ 2 Xr \Xp, hp0
↵ = h

r
↵ [ {(�N , �N) : N 2 Np, ↵ 2 N}.

We then have that

p
0 = (f r [ (f p � (!1 \ �M i

⌫0
)), dp [ dr, (h

p0

↵ : ↵ 2 Xp [Xr),Np [Nr)

is a common extension in Rfn of p and r, which finishes the proof of
the lemma. ⇤
Lemma 5.8. Kfn is projective stationary.

Proof. Given a function F : [!2]<! �! !2 and a stationary set S ✓ !1,
it is enough to show that there is a countable X ✓ !2 closed under F
such that � := X \ !1 2 S and such that fn(�) > ot(X).

In order to find such an X we first pick ↵ 2 S
2
0 above !1 such that

F“[↵]<! ✓ ↵. We then let N be a countable elementary submodel of
some large enough H(�) containing F , ↵ and fn and such that �N 2 S,
and let X = N \ ↵. Then F“[X]<! ✓ X, X \ !1 = �N 2 S, and
fn(�N) � ot(N \ !2) > ot(N \ ↵) = ot(X), where the first inequality
follows from the fact that for every nonzero � 2 N \ !2 there is a club
C 2 N of !1 such that ot(e�“⌫) < fn(⌫) for all ⌫ 2 C, which implies
that ot(N \ �) = ot(e�“�N) < fn(�N) as �N 2 C. ⇤

We now have the following corollary from Lemmas 5.7 and 5.8.
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Corollary 5.9. Rfn is proper with respect to Kfn and therefore it pre-
serves stationary subsets of !1.

We also have the following corollary from Lemma 5.7.

Lemma 5.10. Rfn has the @2-c.c.

Proof. This is similar to the proof of Lemma 3.17. Suppose (pi ; i < �),
for some cardinal � � !2, is a one-to-one enumeration of a maximal
antichain A of Rfn . Let ✓ be a large enough cardinal and for every
i < !2 let Mi be a countable elementary submodel of H(✓) such that
pi, A 2 Mi and such that Mi \H(!2) 2 Kfn .

Let P be an elementary submodel of some higher H(�) such that
|P | = @1 and ((pi,Mi) : i < �) 2 P . We may then find i0 such that
pi0 /2 P . Working in P , we may find i1 2 P \ � such that �Mi0

= �Mi1
.

By Lemma 5.7 there is a condition p
⇤ 2 Rfn extending pi0 and such

that p⇤ is (Mi1 ,Rfn)-generic. Since A 2 Mi1 is a maximal antichain of
Rfn , we can find a common extension p

0 of p⇤ and some pi2 2 A\Mi1 ,
which is a contradiction since pi2 6= pi0 yet p

0 extends both pi0 and
pi2 . ⇤

Lemmas 5.9 and 5.10 complete our second proof of Theorem 3.7.
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