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Abstract. The familiar continuum R of real numbers is obtained
by a well-known procedure which, starting with the set of natu-
ral numbers N = ω, produces in a canonical fashion the field of
rationals Q and, then, the field R as the completion of Q under
Cauchy sequences (or, equivalently, using Dedekind cuts). In this
article, we replace ω by any infinite suitably closed ordinal κ in the
above construction and, using the natural (Hessenberg) ordinal op-
erations, we obtain the corresponding field κ–R, which we call the
field of the κ–reals. Subsequently, we study the properties of the
various fields κ–R and develop their general theory, mainly from
the set-theoretic perspective. For example, we investigate their
connection with standard themes such as forcing and descriptive
set theory.

1. Introduction

One can hardly exaggerate on the importance of the continuum R
of real numbers, it being arguably one of the paramount objects of
interest in mathematics. The study of the real numbers and of their
properties has been practiced for centuries, thus giving rise to entire
fields of knowledge and to several indispensable tools, many of which
have eventually become fundamental part of the mathematical edifice.

Notwithstanding, and mainly due to the non-availability of the for-
mal method in earlier times, it was not before the late 19th century
that the rigorous construction of R saw the light.1

The most renowned formal treatments of the continuum were given
by Dedekind and, independently, by Cantor. Dedekind, who announced
his ideas in 1858, constructed the reals via (what are now called) cuts of
rationals; on the other hand, Cantor worked with Cauchy sequences of
rational numbers. Both approaches were published in 1872 (cf. [4], [9])
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2 ASPERÓ AND TSAPROUNIS

and were subsequently shown to be equivalent, producing the familiar
complete2 ordered field 〈R , 0 , 1 , + , · , 6 〉.

Either of these methods is now referred to as the standard way to
construct the reals, starting with the set of natural numbers N = ω.
Our initial motivation is the following natural question.

Main Question. What happens if we replace ω in the aforementioned
construction(s) by an infinite cardinal κ > ω?

The previous question appears to be elementary, or perhaps näıve.
It could certainly have been asked by Cantor himself, or by any other
knowledgeable mathematician of the late 19th century. Nevertheless,
and in comparison with the vast field of knowledge which has been
produced in practically all surrounding themes, it is only marginally
that this question has drawn attention, or that a systematic and com-
prehensive answer has been given to it.

At the outset, we should note that there have been many sources
dealing with the surrounding theory of generalized metric spaces, gen-
eralized convergence, measure, category, etc. For instance, Cohen and
Goffman already studied notions of transfinite convergence in 1949
(cf. [6]), whereas Stevenson and Thron worked with general ℵµ–metric
spaces in 1969 (cf. [35]); more related material may also be found in the
work of Sikorski [34]. Moreover, other generalized transfinite fields that
have appeared in the literature (see, for example, Ehrlich [12]), have
occasional affinity with our constructions but do not tackle our moti-
vational question directly. The well-known field of the surreal numbers,
introduced by Conway (cf. [7], [8]), is distinct from the long reals that
we study here, as is a more recent work by Galeotti (cf. [16]).

The only works that seem to be intimately related to our results
appear around 1950 and 1960. First, Sikorski constructed transfinite
integer and rational numbers in 1948 (cf. [33]), while about a decade
later, Klaua considered transfinite real numbers (cf. [24], [25]) using a
method similar to the one that we present here.3 However, our present
construction gives rise to a (complete ordered) field, whereas Klaua’s
construction does not.4

Interestingly, both Sikorski and Klaua focus solely on the case of
cardinals κ of uncountable cofinality (and mainly on regular κ). On

2This term may either refer to Cauchy completeness, or to completeness with
respect to the ordering of the field. The second notion is stronger, but they are
both equivalent in the presence of the Archimedean property.

3All these cited sources came to our attention only after the majority of the
present work had been completed. This was partly due to the fact that sources
such as [24], [25] and [33] are difficult to access. For a more accessible overview of
these early tries, the interested reader may consult the more recent [26] and [27] by
Klaua.

4See also Cantini [3] for some algebraic and topological properties of Klaua’s
construction.
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the other hand, and as will hopefully become clear in what follows (see
Theorems 4.6 and 4.7 below), it is the case of countable cofinality that
gives the most fruitful theory from a set-theoretic perspective, which
is the one that we mainly adopt in this work.

With the present article, we would like to revive the interest in the
construction of transfinite (or long) reals. In particular, we would like
to draw attention both on the sometimes surprising results emerging
in this area, and on the remarkably wide variety of open problems
and lines for further research that are consequently revealed. Recent
work, by various people, on generalized Baire spaces and related set-
theoretic issues (see, for instance, [15] and [23]) should be thought as
complementary in this direction, possibly with important underlying
connections waiting to surface.

The structure of the article is as follows. We first give the necessary
preliminaries in the following section; in particular, and for the reader’s
convenience, we also recall the ordinary construction of the real num-
bers. In Section 3, we review the natural operations on the ordinals,
reflect on their naturalness in our context, and draw some negative
results regarding transfinite exponentiation with respect to these oper-
ations. Subsequently, we define the ordered field of the κ–rationals, for
any non-zero ordinal κ closed under the natural operations.

In Section 4, we proceed with the anticipated construction of the κ–
reals and we start the study of their basic properties. A brief account
of κ–calculus, that is, the calculus of the κ–reals, is given in Section 5.

In Section 6, and in a more set-theoretic vein, we look at the κ–reals
from the perspective of forcing, as well as in terms of category. We
then continue in Section 7 where we look at sets of long reals from a
descriptive set-theoretic point of view.

Finally, in Section 8, we conclude with some open questions and
some related thoughts for further investigation.
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2. Preliminaries

2.1. Notation. Our notation and terminology are mostly standard.5

ZFC stands for the usual first-order axiomatization of Zermelo–Fraenkel
set theory, together with the Axiom of Choice. For any set X, we write
|X| for the cardinality of X.

The class of ordinal numbers will be denoted by ON. Lower case
Greek letters stand for ordinals, with the letters κ, λ and µ typically
used in the case of ordinals closed under natural multiplication (see
Definition 3.1). Ordinal intervals are readily comprehensible; for ex-
ample, given α < β, we write (α, β) for the set of ordinals which lie
strictly between α and β. Given a set X of ordinals, ot(X) denotes
the order type of X. If α is a limit ordinal, then cf(α) is its cofinal-
ity. Given an ordinal α, we write ℵα for the α–th infinite cardinal;
ℵ0 = ω = N stands for (the cardinality of) the set of natural numbers.
If λ is an infinite cardinal, we let Hλ be the collection of all sets whose
transitive closure has size less than λ. Given sets X and Y , we write
XY for the set of all functions f with dom(f) = X and ran(f) ⊆ Y ; if
|X| = λ and |Y | = κ, then |XY | = κλ.

For any linear order 〈L,<L 〉 and any A,B ⊆ L, we write A <L B
to mean that x <L y for all x ∈ A and all y ∈ B. In the same context,
given X ⊆ L we let cf(X) be the cofinality of X; that is, the least
(regular) cardinal λ for which there is a strictly <L–increasing sequence
(aξ)ξ<λ in X that is cofinal in 〈X,<L ∩X ×X 〉. In a similar fashion
we define coin(X), the coinitiality of X. Also, we will say that A ⊆ L
is bounded if and only if there are x, y ∈ L such that x 6L a 6L y
for all a ∈ A. Of course, we say that a sequence of members of L is
bounded if and only if its range is bounded.

Partial orders (aka posets) that are employed in forcing constructions
will be denoted by capital letters such as P , Q and R. We shall write
q < p to mean that q is stronger than p or, equivalently, that q properly
extends p. We denote the greatest element of a poset by 1; in particular,
we always assume that forcing posets are non-empty. Given a poset
P , the P–names are indicated by “dots” and “checks” as usual; we
sometimes supress these in order to ease readability, with the intended
meaning being clear from the context. The universe of P–names will
be denoted by V P . If ẋ is a P–name and G is a P–generic filter (over
the relevant model), then ẋG stands for the interpretation of the name
by the filter.

Trees are special cases of posets.6 A branch through a tree T is
a function b with domain the height of T and such that all initial

5See Jech [19] or Kanamori [20] for an account of all undefined set-theoretic
notions.

6Namely, the posets in which the set of predecessors of every given member is
well-ordered.
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segments of b are pairwise comparable nodes of T . The body of a tree
T is denoted by [T ] and stands for the collection of the branches of T .
We shall be mainly interested in trees T of the form T = <κX, where κ
is a non-zero naturally closed ordinal and X is a set (typically ω or 2).
Given such a tree T and given s ∈ T , we write supp(s) for the support
of s, that is, the collection {α ∈ dom(s) : s(α) 6= 0}; similarly, we
write supp(b) to denote the support of b whenever b is a branch of T .
Moreover, in the same context and for any elements s, t ∈ T , we write
s v t to mean that s is an initial segment of t; that is, t � dom(s) = s.
Two conditions s, t ∈ T are incompatible, denoted by s ⊥ t, if there
is some α < dom(s) ∩ dom(t) such that s(α) 6= t(α). For any s ∈ T
we denote by Ts the set {u ∈ T : s v u ∨ u v s}, that is, the set of
predecessors of s together with the cone above it. Finally, a tree T is
called splitting if each s ∈ T splits into two incompatible conditions:
that is, there are u, v ∈ T such that s v u, s v v and u ⊥ v.

2.2. Constructing R. For completeness, and in order to appreciate
the obstacles and surprises that arise when trying to generalize the
ordinary construction of the real numbers, let us briefly recall it here.
It should be mentioned that, although there are different ways in which
this procedure may be carried out, the essential idea remains the same
and the resulting objects are isomorphic.

Starting with the set ω, the first step is to construct the ordered field
of rational numbers by defining the following equivalence relation ∼ on
the set of triples A = {(n,m, k) : n,m, k ∈ ω ∧ k 6= 0}:

(n,m, k) ∼ (n′,m′, k′)⇐⇒ n · k′ +m′ · k = n′ · k +m · k′.

Intuitively, the intended meaning is that

(n,m, k) ∼ (n′,m′, k′)⇐⇒ n−m
k

=
n′ −m′

k′
,

that is, two triples are equivalent if they represent the same rational.
We then let Q be the set of equivalence classes A/∼ and define the
identity elements of the field as 0Q = [(0, 0, 1)]∼ and 1Q = [(1, 0, 1)]∼.

We define the operations of addition +Q and multiplication ·Q in the
obvious way:

[(n,m, k)]∼ +Q [(n′,m′, k′)]∼ = [(n · k′ + n′ · k,m · k′ +m′ · k, k · k′)]∼
and

[(n,m, k)]∼ ·Q [(n′,m′, k′)]∼ = [(n · n′ +m ·m′, n ·m′ +m · n′, k · k′)]∼.

Finally, we define the ordering 6Q by letting:

[(n,m, k)]∼ 6Q [(n′,m′, k′)]∼ ⇐⇒ n · k′ +m′ · k 6 n′ · k +m · k′.

It is now easily checked that the above are well-defined and that the re-
sulting structure 〈Q , 0Q , 1Q , +Q , ·Q , 6Q 〉 is an ordered field in which
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the natural numbers can be embedded in a straightforward way.7 More-
over, by its construction, this field is a system of rational numbers8 and,
as such, it is unique up to isomorphism. Therefore, we may call Q the
field of rational numbers.

Notation. In order to avoid unnecessary formalistic complications,
we will consistently drop the subscript “Q” from the operations, the
ordering and the identity elements of the field Q; moreover, we will also

drop any reference to classes of∼ and write
n−m
k

, or even k−1·(n−m),

instead of [(n,m, k)]∼. Expressions of the form “a− b” and “a−1” are
understood in the context of the field and have the intended meaning.

Having constructed the field of rational numbers, and as already
mentioned, there are two (equivalent) ways that produce the real num-
bers: via Cauchy sequences or via Dedekind cuts. We now briefly recall
some of the relevant details.

Definition 2.1. A sequence (an)n∈ω of rationals is called Cauchy if,
for every m ∈ ω, there exists some n0 ∈ ω such that, for all n, n′ > n0,

|an − an′| <
1

m+ 1
.

Now define an equivalence relation ≈ on the set of Cauchy sequences
by letting:

(an) ≈ (bn)⇐⇒ lim
n<ω

(an − bn) = 0.

Given this definition, we let R be the quotient set of the space of Cauchy
sequences of rationals modulo the relation ≈. The field operations
+R and ·R on (equivalence classes of) Cauchy sequences are defined
coordinate-wise in the obvious way, with the corresponding identity
elements being 0R = [(0, 0, 0, . . .)]≈ and 1R = [(1, 1, 1, . . .)]≈. Finally,
we define the ordering on R by letting:

[(an)]≈ 6R [(bn)]≈ ⇐⇒ (∃n0 ∈ ω) (∀n > n0) (bn − an > 0).

7Some authors start by first constructing the ring of integers Z, and then proceed
with the field Q. Note that our construction of Q can easily account for the integers
as well: for any x ∈ Q, we clearly have that x ∈ Z if and only if there exist n,m ∈ ω
such that x = [(n,m, 1)]∼. Alternatively, one may define Z directly from the natural
numbers, as the quotient of ω × ω modulo the equivalence relation ∼Z defined by:
(n,m) ∼Z (n′,m′) ⇐⇒ n + m′ = n′ + m. Although these extra steps are not
necessary, it is worth mentioning them since we shall refer to generalized (or long)
integers below.

8 See, for instance, Appendix A in Moschovakis [30], or Rudin [31] for more
details and related background material.
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One then checks that the resulting structure 〈R , 0R , 1R , +R , ·R , 6R 〉
is a complete9 ordered field in which the rationals can be embedded in
a natural way.

Alternatively, one may follow Dedekind’s method and work with the
so-called Dedekind cuts.

Definition 2.2. A set A ⊆ Q is called a Dedekind cut if the following
hold:

(a) A 6= ∅ and A 6= Q.
(b) If x ∈ A and y < x then y ∈ A.
(c) For every x ∈ A there is y ∈ A such that x < y.

The real numbers can then be defined as:

R = {A ⊆ Q : A is a Dedekind cut}.
The corresponding field operations +R and ·R are defined in a straight-
forward (but rather tedious) manner – we omit these details which may
be found in an abundance of sources (for example, see the Appendix
of Chapter 1 in the classical [31]). The identity elements of the field
are given by 0R = {x ∈ Q : x < 0} and 1R = {x ∈ Q : x < 1}, and the
ordering is defined by letting A 6R B ⇐⇒ A ⊆ B. Finally, one again
checks that the resulting structure is a complete ordered field.

Since there is a unique – up to isomorphism – complete10 ordered
field, both constructions are equivalent in the sense that they lead to
isomorphic structures. Hence, from now on, we are justified in calling
R the field of real numbers, and this is what we actually do.

3. Natural operations and exponentiation

Returning to our initial motivating question, we would like to genera-
lize the previously described constructions in order to account for any
cardinal κ > ω. We are aiming at producing nice algebraic structures
with these constructions; specifically, the corresponding version of the
integers should be a commutative ring, and the corresponding versions
of the rationals and the reals should be fields.

In this setting, the first thing to notice is that the ordinary opera-
tions on the ordinals (that is, addition and multiplication) fail to be
even commutative,11 which makes them unsuitable for our task. One
solution to this problem is to use the Hessenberg ordinal operations
⊕ and ⊗ (also called natural operations), which were originally intro-
duced by Hessenberg in [18]; see also Carruth [5]. These are defined as
follows, for any ordinals α and β.

9Let us underline that complete here should perhaps be called ω–complete,
stressing the fact that the cofinality (resp. coinitiality) of bounded sets for which
suprema (resp. infima) may be found is ω.

10That is, ω–complete.
11For example, 1 + ω = ω < ω + 1.
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For the natural sum, we let

α⊕ β = max{α, β}+ min{α, β}.
Equivalently, α⊕β is the order-type of the longest well-order extending
the disjoint union of α and β.

To define ⊗, we use the Cantor normal form and write (uniquely)
the ordinals α and β as polynomials (in ω):

α = pα(ω) = ωα0 · n0 + ωα1 · n1 + . . .+ ωαk · nk,
where k ∈ ω, α > α0 > α1 > . . . > αk and ni ∈ ω \{0} for all i < k+1,
and

β = pβ(ω) = ωβ0 ·m0 + ωβ1 ·m1 + . . .+ ωβl ·ml,

where l ∈ ω, β > β0 > β1 > . . . > βl and mi ∈ ω \ {0} for all i < l+ 1.
We then let

α⊗ β = pα(ω) · pβ(ω),

where, for the latter operation, we compute the formal polynomial
product of pα(ω) and pβ(ω), using ⊕ for all relevant additions. Equiv-
alently, α⊗ β is the order-type of the longest well-order extending the
product order on α× β.

Clearly, ⊕ and ⊗ are commutative and associative, 0 is the identity
for ⊕, and 1 is the identity for ⊗. Moreover, the distributive law holds
on both sides. These are of course the minimal requirements on any
pair of operations on the ordinals relative to which our task can be
carried out.

At this point it seems reasonable to query to which extent Hessenberg
addition and Hessenberg multiplication constitute the only reasonable
choice of operations to be considered in our setting. In this respect, note
that if � and � are a pair of operations satisfying the above minimal
algebraic requirements, extending the usual addition and multiplication
on ω, and such that α � α = α + α = α · 2 for every limit ordinal α
(this last one looks like a reasonable “simplicity assumption”), then
necessarily � = ⊕. Furthermore, � = ⊗ if, in addition, we require
that ωα�ωβ = ωα�β for all ordinals α, β. This seems like a convenient
extra simplicity condition on � and �, given that every ordinal can be
uniquely expressed in Cantor normal form. This reduces the calculation
of the product γ � δ, for any ordinals γ and δ, to a straightforward
computation involving ultimately only addition and product of natural
numbers. This extra simplicity condition seems all the more natural
given the following additional consideration.

We could choose to represent ordinals in normal form choosing a
(possibly) different ordinal η closed under ordinary multiplication (for
example η = ω1); we would indeed have that for every ordinal α there
are unique ordinals α0 > . . . > αn and β0, . . . , βn, where βi ∈ η\{0} for
all i, such that α = ηα0 ·β0+. . .+ηαn ·βn. The above simplicity condition
on � and � expressed relative to normal forms in η–basis would yield
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that the product of any two ordinals can be reduced in a simple way
to computations of additions of the form α� β, for ordinals α, β < η,
which we know how to perform as necessarily � = ⊕, together with
computations of products α � β, again for α, β < η. But this would
beg the question of finding α� β for these choices of α, β. If we are to
apply our simplicity condition to this product, we will need to choose
a new basis η0 < η, if ω < η, relative to which to represent α and
β in normal form; using those normal forms we will then be able to
compute α� β. Iterating this construction we can easily check that if
we impose this extra simplicity condition on � and �, then necessarily
γ � δ = γ ⊗ δ for all ordinals γ, δ.

Let us now define the class of ordinals to which the relevant con-
struction in this article will apply.

Definition 3.1. An ordinal κ is called naturally closed if α ⊕ β < κ
and α⊗ β < κ, for all ordinals α, β < κ.

Equivalently, an ordinal is naturally closed if and only if it is closed
under ordinary ordinal addition and multiplication. In standard set-
theoretic terminology, this means that an ordinal is naturally closed if
and only if it is both additively and multiplicatively indecomposable.
The naturally closed ordinals are 0 and the ordinals of the form ω(ωα),
for some α ∈ ON. In particular, the first non-zero naturally closed
ordinal is ω, and the second one is ωω.

Now, let κ be some fixed non-zero naturally closed ordinal and
consider the commutative ordered semiring 〈κ , 0 , 1 , ⊕ , ⊗ , < 〉.12 It
should be mentioned, at this point, that such ordered semirings (of all
ordinals less than an infinite naturally closed ordinal with sums and
products defined à la Hessenberg) were introduced by Ehrlich in [13],
in connection with a generalization of the Archimedean condition; they
were employed again by van den Dries and Ehrlich in [10].

Using the exact same procedures that produce Z and Q from ω, we
may construct the ordered ring of the “κ–integers” (denoted by κ–Z)
and, then, the ordered field of the “κ–rationals” (denoted by κ–Q).
In this terminology, ω–Z and ω–Q are just the standard integer and
rational numbers, respectively.

Obviously, we have the natural inclusion κ–Z ⊆ κ–Q, for all κ. Fur-
thermore, it is also clear that, for any κ < λ, we have natural inclusions
κ–Z ⊆ λ–Z and κ–Q ⊆ λ–Q.

Notation. From now on, and in order to ease readability, we will write
+ and · instead of ⊕ and ⊗, although we will be exclusively using the

12Our initial motivation was to perform these constructions with any cardinal
κ > ω. Being a cardinal is of course not the issue when we choose to use natural
operations in the constructions, but rather the weaker condition of being closed
under these operations.
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latter operations, as they were defined above (unless otherwise men-
tioned). Moreover, we shall sometimes drop the multiplication symbol
altogether and write αβ instead of α ⊗ β. Once again, expressions of
the form −α and 1

α
have the intended meaning in the context of a field.

Note that, in the typical case of interest in which κ > ω is a natu-
rally closed ordinal, the field κ–Q contains elements of the form ω− 3,
ω3 − 1, 1

ω2 , ωω−2 (where this is meant to stand for ωω

ω2 ), etc. It is im-
portant to keep in mind that exponentiation is always understood as
ordinary ordinal exponentiation. Even though one may try to define
an appropriate notion of “natural exponentiation”, one that behaves
in the expected way with respect to the natural product, it turns out
that this is impossible, as highlighted by the next two results.13

Theorem 3.2. There is no function f : ω −→ ON such that:

(i) f(2) > ω.
(ii) For all n,m ∈ ω, if n < m then f(n) 6 f(m).

(iii) For all n,m ∈ ω, f(n ·m) = f(n) · f(m).

Proof. Suppose, towards a contradiction, that f : ω −→ ON is such a
function. For every n > 2, we have that

f(n) = ωβn · bn + pn(ω),

where βn, bn > 0 and pn(ω) is a polynomial in ω of degree smaller than
βn. In turn, we can also write the (non-zero) ordinal βn as:

βn = ωαn · an + qn(ω),

where an > 0 and qn(ω) is a polynomial in ω of degree smaller than
αn. We call the coefficient an ∈ ω the f–order of n and write:

an = of (n).

Note that, for all n > 2, we have that of (n) > 1. Also, for every k > 0,
condition (iii) gives that of (2

k) = k · of (2), where in fact

f(2k) = (ωk·of (2)ω
α2+q) · (b2)k + p,

where q and p are polynomials in ω of degrees smaller than α2 and
k · of (2)ωα2 + q respectively.

Clearly, for every n > 2 there is a k > 0 such that 2k 6 n < 2k+1.
From the latter and the monotonicity condition (ii), it then follows
that, for such n and k:

f(n) = ωβn · bn + pn,

where βn = of (n) · ωα2 + qn, and qn, pn are polynomials in ω of small
degrees, and then

k · of (2) 6 of (n) 6 (k + 1) · of (2).

13A similar result has recently appeared in Altman [2].
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Note that, for all n > 2, the exponent αn must be fixed since, otherwise,
condition (ii) would be violated. In other words, for all n > 2, we
indeed have that αn = α2. From this observation it additionally follows
that, for all n,m > 2, the f–order satisfies the following properties:

(1) of (n ·m) = of (n) + of (m);
(2) if n < m then of (n) 6 of (m).

Therefore, there exists some k > 0 (in fact, k = of (2) works) and some
n ∈ [2k, 2k+1) such that of (n) = of (n+ 1).

Now fix some s ∈ ω such that s >
ln 2

ln (1 + 1
n
)

and note that, by choice

of s, we have that 2ns < (n+ 1)s which moreover implies that

of (n
s) < of (n

s) + of (2) = of (2n
s) 6 of ((n+ 1)s),

that is, of (n
s) < of ((n+ 1)s). But this contradicts property (1) of the

f–order and the fact that of (n) = of (n+ 1). �

The functional properties in the statement of Theorem 3.2 are a
natural set of properties that the function sending n ∈ ω to exp(n, ω)
should surely satisfy, for any reasonable choice of a generalized expo-
nentiation exp(α, β).

Given that the existence of such a function is ruled out, we can
therefore conclude that there can be no such generalized “natural ex-
ponentiation”, as stated below.

Corollary 3.3. Let κ > ω be an ordinal. Then, there is no function
exp : κ× κ −→ ON such that:

(i) For all n,m ∈ ω, exp(n ·m,ω) = exp(n, ω) · exp(m,ω).
(ii) For all n,m ∈ ω, if n < m then exp(n, ω) 6 exp(m,ω).

(iii) For all n ∈ ω and for all α < β < κ, exp(n, α) 6 exp(n, β).

Proof. If such a function existed, then we would easily produce a coun-
terexample to Theorem 3.2 by considering the function f : ω −→ ON
defined by: f(n) = exp(n, ω). �

If K is an ordered field, the absolute value function on K has the
obvious meaning: if a ∈ K, then we write |a| to denote a if a > 0, and
to denote −a if a < 0.

The following theorem provides us with a very useful representation
of elements in κ–Q.

Theorem 3.4. (Representation theorem)
Let κ > ω be a naturally closed ordinal and let λ be such that κ = ωλ.
Let x ∈ κ–Q and fix some 0 < α < λ such that |x| > 1

ωα
. Then, there

exist (unique) n ∈ ω, q0, . . . , qn ∈ ω–Q \ {0}, β0, . . . , βn ∈ λ–Z with
β0 < β1 < . . . < βn 6 α, and rα ∈ κ–Q such that

x = q0 ·
1

ωβ0
+ q1 ·

1

ωβ1
+ . . .+ qn ·

1

ωβn
+ rα,



12 ASPERÓ AND TSAPROUNIS

and |rα| <
1

ωα
.

Proof. The conclusion follows from a straightforward application of the
Euclidean algorithm for polynomial division, once we have expressed
the given x = α

β
using the Cantor normal forms of its numerator and

denominator. �

Remark 3.5. Note the slight abuse of notation in the statement of
Theorem 3.4 when referring to members of λ–Z in cases when λ < κ
and λ–Z may not be defined according to our official restriction to
naturally closed ordinals.14 This is for notational convenience. Strictly
speaking, we should say that there exist n, m ∈ ω with max{n,m} > 0,
p0, . . . , pm−1, q0, . . . , qn−1 ∈ ω–Q \ {0}, β0, . . . , βn−1, γ0, . . . , γm−1 ∈ λ
such that γ0 < . . . < γm−1 and β0 < β1 < . . . < βn−1 6 α, and
rα ∈ κ–Q such that

x = p0 · ωγ0 + . . .+ pm−1 · ωγm−1 +
q0
ωβ0

+ . . .+
qn−1
ωβn−1

+ rα,

and |rα| <
1

ωα
.

Throughout, we will typically indulge in this type of abuse of nota-
tion when using Theorem 3.4.

Theorem 3.4 says that we may (uniquely) approximate any κ–rational
up to any desired degree of “precision”, where the latter is given by
the (possibly infinitesimal) integer power 1

ωα
. In this context, we will

refer to the quantity x − rα as the α–approximation of x, to α as the
order of the approximation, and to rα as the remainder.

Given the so far constructed fields κ–Q (for various infinite κ), and
having sorted out issues regarding basic arithmetic and representation,
we may now proceed to the next step which will bring us to the core
of our present study.

4. The κ–reals

Let κ > ω be a fixed naturally closed ordinal and let us consider the
field κ–Q. It is only natural to wonder whether one may “complete”
this field in order to produce the corresponding “κ–reals”. For this, we
first define what it means for a sequence of κ–rationals to be Cauchy,
as follows (cf. Definition 2.1).

Definition 4.1. Let κ be a non-zero naturally closed ordinal and let
(aξ)ξ<λ be a sequence of κ–rationals, for some λ 6 κ. We say that the

14 Incidentally, note that we could nevertheless still define λ–Z also in this case,
which would be closed under addition, although it might not be closed under
multiplication.
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sequence is Cauchy if for every α < κ there exists some ξ0 < λ such
that, for all ξ, ξ′ > ξ0,

|aξ − aξ′| <
1

α + 1
.

Of course, for any such κ, the basic example is the Cauchy sequence(
1

ξ + 1

)
ξ<κ

.

On the other hand, the basic non-example (for κ > ω) is the sequence(
1

n+ 1

)
n<ω

,

which – despite the fact that it is strictly decreasing and bounded – is
not Cauchy because, for all 0 < n, n′ < ω, we clearly have that∣∣∣∣ 1n − 1

n′

∣∣∣∣ > 1

ω
.

Note that if κ > ω and cf(κ) = ω, then the above non-example
can be turned into one of length κ: let (αn)n<ω be a strictly increasing
sequence converging to κ and consider(

1

nξ + 1

)
ξ<κ

where, for each ξ, nξ is the least n < ω such that ξ 6 αn.
As a related comment, note that, for any κ > ω, the field κ–Q is not

Archimedean. Nevertheless, it satisfies a generalized κ–Archimedean
property : namely, for every x ∈ κ–Q, there exists some α < κ such
that x < α.15 This property is what makes Definition 4.1 the reasonable
generalization of the standard case.

For any κ, Cauchy sequences in κ–Q are necessarily bounded. Al-
though, as we just saw, the converse may fail even for monotone se-
quences of length κ, it is true for regular cardinals κ (when restricting
to monotone sequences of length κ).

Proposition 4.2. Suppose that κ > ω is a regular cardinal and let
(aξ)ξ<κ be an increasing (or a decreasing) sequence of κ–rationals.
Then, (aξ)ξ<κ is Cauchy if and only if it is bounded.

Proof. It is easy to see that the forward direction is true in general.
For the converse, fix some regular cardinal κ > ω and suppose that the
sequence (aξ)ξ<κ is increasing and bounded in κ–Q; that is, there is

15Moreover, it can be shown that an ordered field of cofinality κ is order complete
(in its cofinality) if and only if it is Cauchy-complete and has the κ–Archimedean
property. For the proof, one proceeds by a direct modification of the standard
arguments (see, for example, Appendix A in Moschovakis [30]). See also Ehrlich
[11] for some results on generalized Archimedean properties.
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some x ∈ κ–Q such that, for all ξ < κ, we have that aξ < x. Without
loss of generality, suppose that aξ > 0 for all ξ < κ.

Towards a contradiction, suppose that the sequence is not Cauchy.
Thus, there is some α < κ such that, for all ξ0 < κ, there are ξ, ξ′ > ξ0
with

|aξ − aξ′| >
1

α + 1
= ε.

In other words, if we consider the distances between various terms of
the sequence, we have that unboundedly often in length κ we encounter
(disjoint) intervals each of which has length at least ε.

Now, by the κ–Archimedean property of κ–Q, if x is an upper bound
for the sequence, then there is some β < κ such that x < ε ·β. But this
implies that there is some ξ < κ such that x 6 aξ, and this contradicts
the fact that x is an upper bound of the sequence, since there will be
some ξ′ > ξ such that x < aξ′ .

Clearly, a similar argument works in the case of a decreasing and
bounded κ–sequence in κ–Q. �

By a straightforward adaptation of our basic non-example, it easily
follows that the above proposition characterizes infinite regular cardi-
nals as exactly those non-zero naturally closed ordinals κ (regardless of
their cofinality) such that bounded monotone κ–sequences in κ–Q are
necessarily Cauchy.

Given the notion of a Cauchy sequence, we may now consider the
completion of the κ–rationals with respect to such sequences, appealing
to the usual construction that produces R from Q. This results in the
complete ordered field of the κ–reals, which we denote by κ–R, and in
which κ–Q can be embedded in a natural way. In this terminology,
ω–R denotes the field of ordinary real numbers.

Evidently, for any non-zero naturally closed ordinals κ 6 λ we have
the inclusion κ–Q ⊆ λ–R. However, we shall show below (see the
remarks after Corollary 4.10) that the inclusion κ–R ⊆ λ–R does not
hold in general; in fact, for any κ > ω we have that ω–R * κ–R.

Notation. In order to avoid ambiguities, given x < y in κ–R, we shall
denote the corresponding (open) interval of the field κ–R by (x, y)κ.
As we just mentioned, it is not true in general that (x, y)ω ⊆ (x, y)κ,
for x < y in ω–Q.

An alternative construction of the field κ–R can be done via Dedekind
cuts. The problem with such a construction is that one has to be careful
with the sort of cuts that are chosen; for instance, the “cut”{

x ∈ κ–Q : (∀n ∈ ω)

(
x <

1

n+ 1

)}
would fail to define a κ–real, highlighting the fact that additional re-
strictions should be imposed. Quite naturally, it is enough to consider
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only the cuts that have some Cauchy sequence which is unbounded in
them. Then, Dedekind’s construction goes through and the resulting
object is isomorphic to the one obtained via generalized Cauchy se-
quences – we omit the details. From now on, we will write κ–R to
mean the object obtained by either of these two methods.

The field κ–R, despite its (Cauchy) completeness, remains incom-
plete in various ways: note that a sequence converges to a point in
the field only if it has cofinality cf(κ). Similarly, if X ⊆ κ–R has
cf(X) < cf(κ), then X does not have a least upper bound in the field.
In fact, κ–R is far from being a continuum since it has many “holes”.
For instance:

Proposition 4.3. For every κ > ω, there is no x ∈ κ–Q such that{
n

ω
: n ∈ ω

}
< {x} <

{
1

n+ 1
: n ∈ ω

}
.

Proof. Suppose, towards a contradiction, that there are infinite ordinals
α, β ∈ κ such that, for all n ∈ ω,

n

ω
<
α

β
<

1

n+ 1
.

For the purposes of this proof, it is important to distinguish between
the ordinary and the natural ordinal operations; hence, we temporarily
return to the initial notation according to which we use + and · for the
former, and ⊕ and ⊗ for the latter operations.

Now, the above inequalities can be equivalently stated as:

β · n = β ⊗ n < α⊗ ω
and

α · n = α⊗ n < β,

for every n ∈ ω. In turn, these imply that

β · ω 6 α⊗ ω
and

α · ω 6 β.

We did not get a contradiction yet, since α · ω 6 α⊗ ω in general. We
may nevertheless argue as follows.

Consider the Cantor normal form α = ωα0 ·n0 + . . .+ωαk ·nk, where
k ∈ ω, α > α0 > α1 > . . . > αk and ni ∈ ω for all i < k + 1, and note
that

α⊗ ω = ωα0+1 · n0 + . . .+ ωαk+1 · nk,
while

α · ω = ωα0+1.

Hence, since α ·ω 6 β, we get that ωα0+2 6 β ·ω which, combined with
the inequality β · ω 6 α⊗ ω, consequently gives

ωα0+2 6 ωα0+1 · n0 + . . .+ ωαk+1 · nk,
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which is the desired contradiction. �

Recall that a linear order 〈L,<L 〉 is called κ–saturated, for some
infinite cardinal κ, if for every A,B ⊆ L with |A|+|B| < κ and A <L B
there exists some x ∈ L such that A <L {x} <L B. Such linear orders
were first considered by Hausdorff in the early 20th century (cf. [17]),
and have been extensively studied ever since. For instance, Alling’s
work from 1962 on κ–saturated real closed fields is also relevant (cf.
[1]).

In this context, and as an immediate corollary of the previous propo-
sition, we have the following:

Corollary 4.4. For every κ > ω, κ–R is never ℵ1–saturated as a linear
order.

In spite of this deficit, and for regular κ, the κ–order completeness
of κ–R does imply a weak form of κ+–saturation: for any A,B ⊆ κ–R
with A < B and such that cf(A) = coin(B) = κ, there exists some
x ∈ κ–R such that A < {x} < B.

Moreover, κ–R is also incomplete (or, better, not closed) from an
algebraic point of view. Of course, in the case of κ = ω, the standard
reals are certainly not algebraically closed, but they do include, for
example, various n–th roots of their elements. On the other hand,
when κ > ω, things are different in this respect as we will see below
(see the discussion after Corollary 4.10).

The following lemma (whose easy proof we omit) says that every
κ–irrational is the limit of a strictly increasing sequence of κ–rationals,
of length cf(κ).

Lemma 4.5. Let κ be a non-zero naturally closed ordinal and fix some
x ∈ κ–R \κ–Q. Then, there is a strictly increasing sequence (aξ)ξ<cf(κ)

in κ–Q such that x = supξ<cf(κ) aξ.

Clearly, for every non-zero naturally closed ordinal κ we have that
κ–Q ⊆ κ–R. It is perhaps natural to expect that this inclusion be strict,
as is the case for the standard reals ω–R. Perhaps surprisingly, this is
not true in general. In fact, we have the following characterization:

Theorem 4.6. For any non-zero naturally closed ordinal κ, we have
that cf(κ) > ω if and only if κ–Q = κ–R.

Proof. If κ > ω and cf(κ) = ω, then there are κ–irrational numbers in
κ–R. To see this, let us first fix a strictly increasing sequence of infinite
ordinals 〈αn : n ∈ ω 〉, with supn∈ω αn = κ. Now consider the sequence
(an)n∈ω where, for every n ∈ ω,

an =
∑
i6n

1

αi
.
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Note that an is a well-defined element of κ–Q. It is immediate to see
that the sequence (an)n∈ω is Cauchy and, thus, it converges to some
x ∈ κ–R which we naturally denote by:

x = lim
n<ω

an =def.

∑
i<ω

1

αi
.

One easily checks that x 6= α
β

for all α, β < κ, and therefore we have

that x ∈ κ–R \κ–Q as desired.
For the other direction, suppose that cf(κ) > ω, and let us focus on

the unit interval (0, 1)κ of κ–R, for which we shall see that (0, 1)κ ⊆
κ–Q. We leave it to the reader to verify that a similar argument shows
that (x, y)κ ⊆ κ–Q for every x < y in κ–Q.

So, let (aξ)ξ<cf(κ) be a Cauchy sequence of κ–rationals in (0, 1)κ∩κ–Q
converging to some x ∈ (0, 1)κ, with x /∈ κ–Q. We may assume, by
Lemma 4.5, that (aξ)ξ<cf(κ) is strictly increasing. In particular, we have
that aξ < x for all ξ < cf(κ).

Let λ be such that κ = ωλ. Since the sequence (aξ)ξ<cf(κ) does not
converge to 0, there exists some α0 < λ such that for all ξ < cf(κ)
there is a further index ξ′ > ξ with

aξ′ >
1

ωα0
.

Now let ξ0 < cf(κ) be such that

|x− aξ| = x− aξ <
1

ωα0

for all ξ > ξ0.
Recalling the representation given by Theorem 3.4, it follows that,

for all ξ > ξ0, the α0-approximation of the rational aξ agrees with the
real x up to order α0; that is, for all ξ > ξ0,

aξ = q0 ·
1

ωβ0
+ q1 ·

1

ωβ1
+ . . .+ qn ·

1

ωβn
+ r(ξ)α0

,

for some fixed n ∈ ω, q0, . . . , qn ∈ ω–Q \ {0}, β1, . . . , βn ∈ λ–Z with

β0 < β1 < . . . < βn 6 α0, and remainders r(ξ)α0
<

1

ωα0
which depend on

the index ξ only. In other words, for indices greater than ξ0 we have
that the α0–approximation of the elements of the sequence is “frozen”
and, moreover, the same is true for the real x:

x = q0 ·
1

ωβ0
+ q1 ·

1

ωβ1
+ . . .+ qn ·

1

ωβn
+ sα0 ,

for some sα0 <
1

ωα0
, with sα0 /∈ κ–Q by the assumption x /∈ κ–Q.

Starting with α0 and ξ0, we may construct in a similar manner, re-
cursively for i < ω, a strictly increasing sequence of (non-zero) ordinals
{αi : i ∈ ω} ⊆ λ, along with a corresponding sequence of ordinals
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{ξi : i ∈ ω} ⊆ cf(κ) so that, for each i ∈ ω and for all indices ξ > ξi,
we have that

x− aξ <
1

ωαi
,

and, moreover, the αi–approximation of the rational aξ agrees with
the real x up to order αi. In other words, we successively “freeze”
longer and longer approximations of the real x, according to the or-
ders of approximation αi. The assumption x /∈ κ–Q ensures that the
construction does not stabilize after finitely many steps.

Given the sequences (αi)i∈ω and (ξi)i∈ω, we now use the fact that
cf(κ) > ω and pick some index η < κ so that η > supi<ω ξi. We
furthermore let β = supi<ω αi < λ and consider the β–approximation
of the rational element aη. The desired contradiction now follows from
the fact that the latter approximation must agree on all of its initial
segments with the αi–approximations of the rationals aξi , for every
i ∈ ω. But this is impossible, since the β–approximation of aη must be
a finitary object. �

By the previous theorem, it follows that if κ has uncountable cofinality,
then the κ–rationals are already (Cauchy) complete16 and, therefore,
|κ–Q| = |κ–R| = κ.

Theorem 4.6 makes the study of κ–R for cf(κ) > ω uninteresting, and
in fact it implies that this is a degenerate case of the theory. In what
follows, and except for some general results in Section 6 (see Theorem
6.1 and Corollary 6.3), we will mainly focus on the case of countable
cofinality, where things become more interesting from a set-theoretic
point of view.

As we have already seen, for non-zero naturally closed ordinals κ of
countable cofinality there exist κ–irrational numbers; we will now in
fact determine the cardinality of κ–R \ κ–Q.

Theorem 4.7. For any naturally closed ordinal κ > ω with cf(κ) = ω,
|κ–R| = κℵ0. In fact, if λ is such that κ = ωλ, then every x ∈ κ–R is
represented (uniquely) by an expression of the form:

x = p0 · ωα0 + . . .+ pn · ωαn +
∑
i<µ

qi
ωβi

,

where µ 6 ω, n ∈ ω, p0, . . . , pn, qi ∈ ω–Q \ {0}, αj, βi ∈ λ with
α0 > . . . > αn, and where (βi)i<µ is a strictly increasing sequence of
ordinals in λ which, in addition, is cofinal in λ if µ = ω. Moreover,
every such expression determines a member of κ–R.

Proof. Fix some naturally closed ordinal κ with cf(κ) = ω and some
x ∈ κ–R. It is enough to argue for the displayed representation of x

16But, obviously, this completeness is not an indication of “richness” of the
field; quite the opposite. A similar result, alas for uncountable regular cardinals,
was obtained by Sikorski; see [33].
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(and its uniqueness), from which the equality |κ–R| = κℵ0 will easily
follow since every such expression clearly determines a κ–real.

For this, we shall evidently use Theorem 3.4 and some relevant ideas
from the proof of Theorem 4.6. Note that if x ∈ κ–Q, then the desired
representation is clear from Theorem 3.4, where in such a case µ < ω.

If x ∈ κ–R \κ–Q, we fix a strictly increasing sequence of infinite
ordinals 〈αm : m ∈ ω 〉, with supm<ω αm = λ. Furthermore, we fix
some strictly increasing Cauchy sequence (am)m<ω converging to x and
such that, for every m ∈ ω, we have that

|x− am| <
1

αm
.

We then consider, for each m ∈ ω, the αm–approximation of am, which
we denote by Am. Note that this does not depend on am since, by
the choice of the sequence, for any k > m we have that the αm–
approximation of ak agrees with Am.17 For each m ∈ ω, we may thus
write the approximation Am as:

Am = p0 · ωβ0 + . . .+ pn · ωβn +
∑
i6km

qi
ωγi

,

for appropriate parameters and some km ∈ ω. But now the desired
representation of x follows, since by definition of convergence we have
that limm<ω Am = x.

For elements in κ–Q, the uniqueness of the representation follows
from Theorem 3.4. To argue for the κ–irrationals, it is enough to
notice that distinct representations must already differ for some least
order of approximation, which implies that, from this point on, they
cannot converge to the same real x ∈ κ–R; we leave the details to the
reader. �

Note how the above theorem generalizes, both in terms of cardinal-
ity and in terms of representation, the standard case of ω–R to any
naturally closed ordinal of countable cofinality.

Moreover, again when cf(κ) = ω, it allows us to represent the e-
lements of (0, 1)κ naturally as branches of an appropriate subtree of
<κω.

Definition 4.8. Given a naturally closed ordinal κ > ω with cf(κ) = ω,
if λ is such that κ = ωλ, then we define the tree κ–T by letting:

s ∈ κ–T⇐⇒ s ∈ <λω ∧ | supp(s)| < ℵ0.

17Recall that a similar argument was used in the proof of Theorem 4.6. In this
sense, the consideration of the Cauchy sequence is only an auxiliary step which
may be by-passed; in fact, we could have considered directly the α–approximations
of the κ–reals, and not just those of the κ–rationals, although this does not make
much difference after all.
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Clearly, κ–T is an ω–branching tree of height λ.
Let us fix a bijection π : ω −→ ω–Q such that π(0) = 0. Then,

the representation given in Theorem 4.7 yields that branches of κ–T
naturally correspond to reals in (0, 1)κ, and vice versa.18 This corre-
spondence, in one direction, is given by the map cκ : [κ–T] −→ (0, 1)κ
defined by:

cκ(b) =
∑

α∈supp(b)

π(b(α))

ωα
,

which is clearly a bijection between [κ–T] and (0, 1)κ. GivenX ⊆ [κ–T],
we will denote the set {cκ(b) : b ∈ X} by cκ(X).

The following notion, together with the aforementioned tree repre-
sentation, will be very useful in Section 7.

Definition 4.9. Let κ > ω be a naturally closed ordinal with cf(κ) =
ω, let λ be such that κ = ωλ, and let 〈αn : n ∈ ω 〉 be an increasing
sequence of ordinals with α0 = 0 and supn<ω αn = λ. Then, for any
non-empty s ∈ κ–T, we denote by o(s) the order of s in κ–T (with
respect to 〈αn : n ∈ ω 〉), which is defined as the unique n ∈ ω such
that max(supp(s)) ∈ [αn, αn+1).

The following basic result should be clear by now, but let us stress
it by stating it as a corollary to Theorems 4.6 and 4.7.

Corollary 4.10. For every infinite κ, κ–Q is dense in κ–R.

Towards closing the current section, and returning to issues related to
various forms of incompleteness of the κ–reals, it follows from Theorems
4.6 and 4.7 that, for any κ > ω, ordinary square roots such as

√
2 do

not exist in the field κ–R. In other words, κ–R is indeed far from
being algebraically closed. On the other hand, we do have plenty of
(non-ordinary) square roots, such as, for example,∑

n<ω

1

ℵn
=

√√√√ ∑
n6=m<ω

(
1

ℵ 2
n

+
2

ℵn · ℵm

)
in ℵω–R. We are confident that the reader can come up with more
examples of this sort. Just before concluding, let us briefly look at
some classical theorems from real analysis and how they (do not) apply
in the case of the κ–reals.

As our first example, we consider the Heine–Borel theorem, one di-
rection of which is still true by essentially the same proof: for every
infinite κ, if X ⊆ κ–R is compact then it is closed and bounded.
However, for the other direction, note that if κ > ω, then the set
X = { 1

n+1
: n < ω} is a bounded closed subset of κ–R which is not

18 In fact, the elements in κ–T are in 1–1 correspondence with the κ–rationals in
(0, 1)κ ∩ κ–Q.
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compact: indeed, {( 1
n+1

, 2)κ : n < ω} is an open cover of X without
any finite subcover.

The main obstacle in generalizing the proof of the converse of the
Heine–Borel theorem, and also behind the failures of other well-known
theorems (see Section 5 as well), is the fact that, when κ > ω, κ–R
satisfies only the κ–order completeness. Another such failure concerns
the Intermediate Value Theorem: it is easy to see that Example 5.2
in Section 5 below gives a counterexample to this theorem. On the
other hand, Cantor’s Intersection Theorem clearly continues to hold,
as already noted by Sikorski in [34].

Finally, regarding the Bolzano–Weierstrass theorem, it is again known
by the work of Sikorski (see [33]) that a generalized version of the
property holds for the fields κ–Q when κ is a regular cardinal (this,
by Theorem 4.6, can be generalized to any naturally closed ordinal
of uncountable cofinality). Note that this is never true for κ–R when
κ > ω has countable cofinality, as the example of the sequence ( 1

n+1
)n<ω

shows. The interested reader may further consult Cohen and Goffman
[6], Keisler and Schmerl [22], Schmerl [32], Sikorski [34] and Stevenson
and Thron [35], where a breadth of related general results can be found.

Given the constructed κ–reals and their basic properties, we now
move on to further study their behavior in different mathematical con-
texts.

5. A few words on κ–calculus

Not surprisingly, and in the light of the previous remarks regarding the
failures of basic results from real analysis, the differential calculus of
the κ–reals turns out to be quite pathological.

Although one may define continuity and differentiation of functions
f : κ–R −→ κ–R in a natural fashion, many well-known theorems from
standard calculus do not go through, except for special cases. In some
sense, it seems like pure coincidence that these theorems actually hold
in the case of ω–R. Our motto here is the following:
Standard reals are too crude to notice and affect the fine distinctions
that make all the difference in the infinitesimal world.

Of course, the interesting setting is when κ > ω has countable co-
finality. Let us now see some examples, where every reference to the
derivative of a function f at a point x0 refers of course to the limit

f ′(x0) = lim
|x0−x|−→0

|f(x0)− f(x)|
|x0 − x|

,

whenever this limit exists.

Example 5.1. Let κ > ω be a naturally closed ordinal such that
cf(κ) = ω, let λ be such that κ = ωλ, and let π : ω–Q −→ ω–Q be
an order-preserving bijection with π(0) = 0. We now define the map
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fπ : κ–R −→ κ–R by sending the element

x = p0 · ωα0 + . . .+ pn · ωαn +
∑
i<µ

qi
ωβi

,

for µ 6 ω and for suitable parameters pj, qi, αj, βi, to

fπ(x) = p0 · ωα0 + . . .+ pn · ωαn +
∑
i<µ

π(qi)

ωβi
.

It is easily checked that fπ is a continuous function. Moreover, fπ
satisfies the Intermediate Value Theorem: for every a < b in κ–R and
every y ∈ (fπ(a), fπ(b)), there exists some c ∈ (a, b) such that fπ(c) = y.

In addition, fπ is differentiable if and only if π is linear. In that case,
if a ∈ ω–Q is such that π(q) = aq for all q ∈ ω–Q, then (fπ)′(x) = a,
for all x ∈ κ–R. We may call such a function fπ a “local bijection”.

Example 5.2. Again, let κ > ω be a naturally closed ordinal such
that cf(κ) = ω. Let λ be such that κ = ωλ. Let (αn)n<ω be a strictly
increasing sequence of non-zero additively indecomposable ordinals19

converging to λ. Note that, for every α ∈ λ such that α > α0, there
exist unique n ∈ ω and β < αn+1 such that α = αn+β. Let ρ : κ −→ κ
be the map which, for all α ∈ κ, is given by:

ρ(α) =

{
α0 + α if α < α0,

αn+1 + β if α = αn + β.

Now define the function gρ : κ–R −→ κ–R by sending the element

x = p0 · ωα0 + . . .+ pn · ωαn +
∑
i<µ

qi
ωβi

,

for µ 6 ω and for suitable parameters pj, qi, αj, βi, to

gρ(x) = p0 · ωρ(α0) + . . .+ pn · ωρ(αn) +
∑
i<µ

qi
ωρ(βi)

.

It is not difficult to see that gρ is continuous and differentiable with
(gρ)

′ = 0 (the proof that (gρ)
′ = 0 uses the fact that the αn’s are addi-

tively indecomposable), although it is clearly not a constant function.
Additionally, for all distinct x, y ∈ κ–R,

|gρ(x)− gρ(y)| > |x− y|
whenever |x− y| > 1

n
for some n ∈ ω; on the other hand, if |x− y| < 1

n
for all n ∈ ω, then

|gρ(x)− gρ(y)| < |x− y|.
In other words, gρ has the following curious (segregating) behavior:
it separates even further apart elements which are already “far” from

19Meaning that, for all n and all α, β < αn, α+ β < αn.



LONG REALS 23

each other, whereas it brings even closer together elements which are
already “close” to one another.

A closely related example is given by a rank-into-rank embedding I1
(see Chapter 5 in Kanamori [20]), one of the strongest large cardinal
axioms not known to be inconsistent with ZFC set theory.

Example 5.3. Let j : Vλ+1 −→ Vλ+1 be a non-trivial elementary
embedding with critical point20 cp(j) = κ and λ = supn<ω κn, where
κ0 = κ and, for each n ∈ ω, we let κn+1 = j(κn).

Clearly, cf(λ) = ω and λ–R ⊆ Vλ+1. Let us now consider the map
f = j � (λ–R) : λ–R −→ λ–R, which, just as in the previous example,
can be easily seen to be continuous and differentiable with derivative
f ′ = 0. Note that f (that is, j) behaves similarly to the function gρ
described above. In particular, it has a similar segregating behavior.

Having brought set theory into the discussion this way, let us now
move on to the study of the long reals from a more set-theoretic point
of view.

6. Forcing and category

We begin by noting that, for every non-zero naturally closed ordinal
κ, the construction of the field κ–Q is absolute for transitive models
of ZFC. However, in the non-trivial case in which cf(κ) = ω, the con-
struction of κ–R does not seem at all to be absolute, unless the relevant
models have the same ω–sequences of ordinals in κ.

The natural question, then, is whether we can add a new κ–real
by forcing. The obvious candidate for a poset achieving this is to
consider the κ–real line itself as a forcing notion; that is, we let P (κ)

be the poset consisting of the non-empty κ–rational intervals, ordered
by inclusion. When κ = ω, P (ω) is just ordinary Cohen forcing, the
most basic example of a forcing notion and a very well understood one,
which adds a new ω–real. More generally:

Theorem 6.1. For any non-zero naturally closed ordinal κ, P (κ) is
forcing-equivalent to Col(ω, κ) (the collapse of κ to ω using finite con-
ditions).21

Proof. Fix some κ > ω, let λ be such that κ = ωλ, and fix some
partition {Xξ : ξ < λ} of λ consisting of sets unbounded in λ. Let
G ⊆ P (κ) be generic over V . We show that, in V [G], there exists a
surjection f : ω −→ λ. This will be enough, since Col(ω, κ) is the

20By critical point we mean the least ordinal moved by the embedding; see [20]
for more details.

21Of course, the poset that adds one Cohen subset to ω via finite partial functions
of the form p : n −→ {0, 1} is forcing-equivalent to Col(ω, ω), the “collapse” of ω
to itself via finite partial functions from ω to itself.
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unique, up to forcing-equivalence, poset of size κ that adds such a
surjection (as of course |λ| = |κ|).

We work in V [G]. For every interval I ∈ G, let `(I) be its left
endpoint.

Claim 6.2. There exists a sequence 〈In : n ∈ ω〉 of nested intervals
from G such that V [G] = V [〈In : n ∈ ω〉] and, for every n ∈ ω,

`(In) = zn +
∑
i6kn

qni
ωβ

n
i
,

for some zn ∈ κ–Z, kn < ω, qni ∈ ω–Q \ {0} (i 6 kn), and (βni )i6kn
a strictly increasing sequence of ordinals in λ. Moreover, we may as-
sume that (kn)n<ω is strictly increasing, and that (βnkn)n<ω is a strictly
increasing sequence converging to λ.

Proof. It is clear, by a density argument, that this can be done if
cfV [G](λ) = ω. It thus suffices to show that cfV [G](λ) = ω.

For this, consider the function g sending n < ω to the least β < κ
such that

(z −
∑
i6ln

qi
ωβi

, z +
∑
i6ln

qi
ωβi

) ∈ G,

where ln < ω, ln > n, z ∈ κ–Z, qi ∈ ω–Q \ {0} for all i, (βi)i6ln is a
strictly increasing sequence of ordinals in λ, and βln = β. Now note
that g has range cofinal in λ, by a standard density argument. �

Next, for every I ∈ P (κ) and every ξ < λ, we claim that there exists
some n ∈ ω such that In ⊆ I and

`(In) = zn +
∑
i6kn

qni
ωβ

n
i
,

with βni ∈ Xξ for some i. To see this, let I ′ ⊆ I be an interval of the
form

I ′ =
(
`(I) +

1

ωβ
, `(I) +

2

ωβ

)
,

for some large enough ordinal β ∈ Xξ, and apply a density argument.
We may now define a function f : ω −→ [λ]<ω with

⋃
ran(f) = λ

by sending each n ∈ ω to the set of ξ < λ such that βni ∈ Xξ for some
i 6 kn, where βni is determined by `(In) as above, with respect to the
fixed sequence 〈In : n ∈ ω〉 ∈ V [G]. It follows that λ is countable in
V [G], which finishes the proof. �

We can now state the following corollary, which asserts the failure of a
natural generalization of the Baire category theorem for κ > ω1:

22

22There are various related results appearing in the literature; see, for instance,
Cohen and Goffman [6], Sikorski [34] and Stevenson and Thron [35].
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Corollary 6.3. For any naturally closed ordinal κ > ω1 there are
ℵ1–many open dense subsets of κ–R whose intersection is empty. In
particular, κ–R is the union of ℵ1–many nowhere dense sets.

Proof. We argue in terms of P (κ). Given κ > ωV1 , the forcing P (κ) adds

a surjection ḟ : ω −→ ωV1 , by the previous theorem. Now notice that,

for α < ωV1 , the sets Dα = {p ∈ P (κ) : (∃n) (p 
 ḟ(n) = α)} are open

dense in P (κ). But of course
⋂
{Dα : α < ωV1 } 6= ∅, as otherwise there

would be a surjection f : ω −→ ω1. �

Note that, when cf(κ) > ω, even the classical Baire category theorem
fails: for each n ∈ ω, let En be the set of all I ∈ P (κ) of the form

(z −
∑
i<n

qi
ωβi

, z +
∑
i<n

qi
ωβi

),

where z ∈ κ–Z, qi ∈ ω–Q \ {0} for all i, and (βi)i<n is a strictly
increasing sequence of ordinals. Then, each En is an open dense subset
of κ–Q (= κ–R), but of course

⋂
n<ω En is empty. In fact, in this case

the failure is quite strong since there are countably many open dense
sets whose intersection is empty.

Nevertheless, following closely the proof of the standard case we can
still rescue the classical theorem in the case of countable cofinality.

Proposition 6.4. If κ is a naturally closed ordinal with cf(κ) = ω,
then the intersection of countably many open dense subsets of κ–R is
dense in κ–R.

Proof. Let {Dn : n ∈ ω} be a collection of open dense subsets of κ–R,
and fix some non-empty open rational interval I ⊆ κ–R. Moreover, fix a
strictly increasing sequence of ordinals 〈αn : n ∈ ω 〉, with supn<ω αn =
κ. Since D0 is dense, there is some x0 ∈ κ–R and some 0 < ε0 <

1
α0

such that

I0 = [x0 − ε0, x0 + ε0] ⊆ D0 ∩ I.
We now use the density of each Dn in order to build, recursively for
n > 1, a sequence (xn)n<ω and a sequence (εn)n<ω such that, for every
n > 1, 0 < εn <

1
αn

and

In = [xn − εn, xn + εn] ⊆ (xn−1 − εn−1, xn−1 + εn−1) ∩Dn.

Note that the sequence (xn)n<ω is Cauchy and therefore there exists
some x ∈ κ–R such that x = limn<ω xn. Finally, x ∈ In+1 for each

n ∈ ω and, thus, we get that x ∈ I ∩
⋂
n<ω

Dn as desired. �

Observe that the previous proof does not go through when cf(κ) >
ω, since in this case no countable (non-eventually constant) sequence
converges; in fact, we know that κ–Q = κ–R by Theorem 4.6.
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Corollary 6.5. The Baire category theorem holds in κ–R if and only
if cf(κ) = ω.

Let us now turn to the descriptive set-theoretic context where, as we
shall soon see, the classical techniques23 tie nicely with the κ–reals.

7. Descriptive set theory

Throughout this section, we assume that κ is a naturally closed ordinal
of countable cofinality. Moreover, we frequently refer to the appropriate
tree representation of the κ–reals in (0, 1)κ, as described in Section 4;
recall Definitions 4.8 and 4.9, and the related remarks.

Following the usual arguments of the standard case, we can see that
a set X ⊆ (0, 1)κ is closed if and only if X is (coded by) the body of
a tree: that is, X = cκ([T ]) for some tree T ⊆ κ–T. Now recall that a
set X ⊆ κ–R is perfect if it is closed and has no isolated points. If X is
a subset of (0, 1)κ, this is equivalent to being coded by the body of a
splitting tree. It is easy to see by the standard arguments (cf. the proof
of Proposition 7.1), that if cf(κ) = ω and X ⊆ κ–R is a non-empty
perfect set, then |X| > 2ℵ0 . Moreover, we can also prove the analogue
of the Cantor–Bendixson theorem.

Proposition 7.1. If X ⊆ κ–R is closed, then there exists S ⊆ X with
|S| 6 κ and such that X \S is perfect.

Proof. We may assume κ > ω. Also, given A ⊆ κ–R, a translate of A
(that is, a set of the form x + A = {x + a : a ∈ A}), is closed if and
only if A is closed. We may therefore assume that X is a closed subset
of the unit interval. In particular, there is a tree T with X = cκ([T ]).
Namely,

T = {s ∈ κ–T : (∃x ∈ X) (s v c−1κ (x))}.
We then let

S =
⋃
{[Tu] : u ∈ T ∧

∣∣[Tu]∣∣ 6 κ}

and note that cκ(S) ⊆ X with |S| 6 κ. It remains to see that X \ cκ(S)
is perfect. For this, we consider the (non-empty) subtree

T0 = {u ∈ T :
∣∣[Tu]∣∣ > κ}

and, after simple computations, we obtain that

x ∈ X \ cκ(S)⇐⇒ x ∈ [T0].

From the latter, the desired conclusion will follow once we have shown
that T0 is a splitting tree. Towards a contradiction, assume that some

23 See Kanamori [20], Kechris [21], Moschovakis [29], or even Chapter 10 in
Moschovakis [30] for more details on the basics of classical descriptive set theory.
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u ∈ T0 does not split; in particular, all extensions of u in T0 are com-
parable and hence they define a unique branch x ∈ [T0]. It now follows
that, in the initial tree T ,

[Tu] = {x} ∪
⋃
{[Tw] : u v w ∧

∣∣[Tw]
∣∣ 6 κ},

from which we obtain
∣∣[Tu]∣∣ 6 κ, contradicting the fact that u ∈ T0. �

It is easily seen that the aforementioned splitting of X (when X is a
closed subset of the unit interval) is unique; we call S the scattered part
of X and X \S the kernel of X.

Also, note that the bound |S| 6 κ is the best possible: given any
closed and bounded set X ⊆ κ–R, we may attach the (closed) set κ–Z
to it, and then X ∪ κ–Z will be a closed set whose isolated points have
cardinality at least κ.

As far as the possible sizes of perfect sets are concerned, the following
is a direct consequence of our previous discussion.

Corollary 7.2. Suppose that 2ℵ0 < κ. Then, for every cardinal µ with
2ℵ0 6 µ 6 κ, there exists a perfect set P ⊆ κ–R such that |P | = µ.

Towards a more general setting, we now give the following direct
variant of the well-known perfect set property:

Definition 7.3. A set X ⊆ κ–R is said to have the κ–perfect set
property if either |X| 6 κ or X contains a perfect set.

We may generalize Proposition 7.1 in order to account for the usual
σ–algebra of Borel subsets of κ–R. As a matter of notation, if λ is
such that κ = ωλ, we let κ–T2 be the binary subtree of κ–T which has
height λ and consists exactly of the {0, 1}–sequences s of length <λ
with finite support such that ot([α0, α1)) > ω for all distinct α0 < α1

in supp(s).
Now suppose κ > ω, let λ be such that κ = ωλ, let (ξi)i<λ be

the strictly increasing enumeration of the limit ordinals in λ, and let
c∗κ : [κ–T2] −→ (0, 1)κ be the map given by

c∗κ(b) =
∑

ξi+n∈ supp(b)
n<ω

π(n)

ω1+i
,

where π : ω −→ ω–Q is a bijection with π(0) = 0 (cf. Definition 4.8 and
its subsequent remarks). Then, c∗κ is clearly a bijection between [κ–T2]
and (0, 1)κ. Given X ⊆ [κ–T2], we will denote the set {c∗κ(b) : b ∈ X}
by c∗κ(X).

Definition 7.4. Suppose κ > ω and let A ⊆ (0, 1)κ. We define a
two-player game G(A) in which, for each i ∈ ω, Player I chooses an
element si ∈ κ–T2, while Player II chooses some ki ∈ {0, 1} as shown
below:
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I s0 s1 . . .
II k0 k1 . . .

Given a complete play of the game and letting x = s_0 〈k0〉_s_1 〈k1〉_ . . .
be the concatenation of the alternating moves, we say that Player I
wins if x ∈ [κ–T2] and c∗κ(x) ∈ A; otherwise, Player II wins.

The following theorem is reminiscent of the corresponding result in
the classical descriptive set-theoretic context.

Theorem 7.5. Suppose κ > ω, let A ⊆ (0, 1)κ and consider the game
G(A). Then:

(i) If Player II has a winning strategy, then |A| 6 κ.
(ii) Player I has a winning strategy if and only if there exists a

perfect P ⊆ A.

Proof. Let 〈αn : n ∈ ω 〉 be an increasing sequence of ordinals with
α0 = 0 and supn<ω αn = κ. Fix some A ⊆ (0, 1)κ and consider G(A).

For (i), let τ be a winning strategy for Player II and recall Definition
4.9 regarding the order o(p) of any element p ∈ κ–T2, with respect to
(αn)n<ω. Then, for each partial play p∗ = 〈 s0, k0, . . . , sn, kn 〉 of the
game G(A), if p = s_0 〈k0〉_ . . ._ s_n 〈kn〉 is in κ–T2, then consider the
set Dp consisting of those x ∈ [κ–T2] such that

p v x −→ (∃u ∈ κ–T2) (p v u ∧ o(u) > o(p) ∧ u_τ(u) v x).

But now note that, if x ∈ Dp for all p as above, then one can use the
strategy τ and the definition of the Dp’s to express x as the (concate-
nation of) a complete play of the game x = s_0 〈k0〉_s_1 〈k1〉_ . . ., so
that x /∈ A. Observe that the requirement “o(u) > o(p)” ensures that
the sequence of partial plays converges in κ–R. Therefore, we obtain⋂

p

c∗κ(Dp) ⊆ (0, 1)κ \A,

from which it follows that

|A| 6
∣∣∣⋃
p

([κ–T2] \Dp)
∣∣∣.

Next, notice that for each p, x ∈ [κ–T2] \Dp if and only if p v x
and, for all u with p v u and o(u) > o(p), we have u_τ(u) 6v x.
Consequently, and using the fact that binary ordinal sequences are
involved,

∣∣[κ–T2] \Dp

∣∣ 6 1 for each p; hence, we get that |A| 6 κ.
For (ii), and for the forward direction, suppose that σ is a winning

strategy for Player I. Then, we may recursively build a perfect subset of
A by appealing to σ: we start with s0 = 〈〉 and build a (binary) splitting
subtree T of κ–T2 by considering, at each stage n, both extensions
s_n 〈0〉 and s_n 〈1〉 of the current sn. Then, c∗κ([T ]) ⊆ A is perfect.

Conversely, suppose that T ⊆ κ–T2 is a splitting tree with c∗κ([T ]) ⊆
A. The winning strategy for Player I can be described as follows:
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start by playing some s0 ∈ T such that both s_0 〈0〉 and s_0 〈1〉 are
in T . For each n, and given Player II’s response kn, play a further
sn+1 extending (the concatenation of) the current play such that both
s _
n+1 〈0〉 and s _

n+1 〈1〉 are in T . The only subtle point is that our
chosen sn’s should have strictly increasing orders o(sn)’s, so that the
final sequence converges. It is easy to see that the concatenation x of
any complete play will be a member of [T ] and therefore c∗κ(x) ∈ A. �

From the previous theorem, we immediately obtain:

Corollary 7.6. Suppose κ > ω and let A ⊆ (0, 1)κ. If G(A) is deter-
mined then A has the κ–perfect set property.

Recall that, for any given topological space X, a Borel subset of X
is a member of the σ–algebra B ⊆ P(X) generated by the open subsets
of X.

Corollary 7.7. Every Borel subset of κ–R has the κ–perfect set prop-
erty.

Proof. We just need to argue for the case κ > ω. Let A be a Borel
subset of κ–R. We want to prove that A has the κ–perfect set property,
but for this it suffices to assume that A ⊆ (0, 1)κ, since every translate
of a closed set is closed. Now, as is well-known, the usual proof of
Borel determinacy for subsets of the Baire space (Martin [28]) extends
naturally to the general context of Borel subsets of the product space
ωX, where X is any set endowed with the discrete topology. This
establishes the desired result, since the payoff set of G(A) is Borel in
such a space ωX, for a suitable choice of X. �

Note that the proofs of Theorem 7.5 and of the subsequent Corollary
7.7 used classical descriptive set-theoretic techniques applied to the case
of the κ–reals. In this context, it seems that there is a natural way for
generalizing traditional descriptive set theory of Polish spaces to that
of “κ–Polish spaces” (that is, “κ–metric spaces” of density κ). See also
Cohen and Goffman [6], Sikorski [34] and Stevenson and Thron [35] for
related results on such metric spaces.

8. Open questions and final thoughts

Given that the subject of long reals seems to be quite broad, enjoy-
ing several connections with well-established fields of study, it is only
inevitable that we are not able to cover the full depth and breadth of
the emerging issues. We do hope, however, that our exposition is a
coherent presentation of this intriguing topic.

At any rate, let us conclude with a (very non-exhaustive) list of issues
and open questions which have arisen along the way.

Towards the end of Section 4 we mentioned that the Heine–Borel
theorem fails for κ–R when κ > ω. On the other hand, it is well-
known that this and many other basic theorems from analysis are in
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fact equivalent (to each other and) to the axiom of (order) completeness
of ω–R. Hence, we may ask:

Question 8.1. Do any of these equivalences generalize for κ > ω? If
not, can we give a complete description of the implications between the
corresponding statements? (see also Schmerl [32]).

Moreover, one can study the differential calculus of the κ–reals fur-
ther; for instance, the theorems of Bolzano, Rolle, Fermat, Intermediate
Value, etc. In this direction, one can perhaps find families of functions
that satisfy them, and perhaps characterize them. A related issue is
that of defining the notion of definite integral and then studying the
corresponding integral calculus of the κ–reals.

Regarding our brief account in Section 5, we can ask:

Question 8.2. When cf(κ) = ω, are the “local” bijections (see Ex-
ample 5.1) the only functions for which theorems such as Bolzano’s
hold?

In a somewhat more general flavor, it might be interesting to even
look at “thicker” versions of κ–R, for cf(κ) = ω: instead of rational
coefficients qi ∈ ω–Q in the representation given in Theorem 4.7, one
can take standard reals ri ∈ ω–R as coefficients, and study the resulting
structure.

Turning to more set-theoretic issues, one basic question that has
remained unanswered is:

Question 8.3. Is there a non-trivial and “interesting” (for example,
one that preserves ω1, or even all cardinals) quotient forcing algebra
arising from κ–R?

Furthermore, in the descriptive set-theoretic context:

Question 8.4. Is there any natural correspondence between levels in
the projective hierarchy of κ–R and complexity classes in terms of
definability over relevant structures (for instance, 〈Hκ+ ,∈, . . .〉)?
Question 8.5. What are the right analogues, for κ–R, of the Baire
property or of the notion of Lebesgue measurability?

For example, we may define appropriately and study κ–meager vs. λ–
meager sets, giving rise to corresponding notions of Baire property. In
a similar spirit:

Question 8.6. What about hierarchies of the perfect set property
(PSP), by appropriately defining the κ–PSPλ?

Regarding sizes of perfect sets, we may complement Corollary 7.2 by
asking:

Question 8.7. Suppose that κ > ω and cf(κ) = ω. Let µ be a cardinal
with 2ℵ0 < µ < κℵ0 and κ < µ. Does there exist a perfect set P ⊆ κ–R
such that |P | = µ?



LONG REALS 31

As far as other basic results of descriptive set theory are concerned
(such as Suslin’s theorem, separation theorems, etc.), it remains to see
if they can be adapted to the context of κ–reals, for some κ of countable
cofinality. In addition, and as already suggested in the discussion right
after Corollary 7.7, one can deal with the study of long κ–Polish and
κ–metric spaces.

Let us conclude with the following thoughts. As we have seen, ω
plays a very special role in the theory we have explored; in particular,
the constructions corresponding to ordinals κ of countable cofinality
and those corresponding to ordinals of uncountable cofinality have com-
pletely different properties. In fact, we saw that the theory becomes
interesting only in the case cf(κ) = ω. The reason for this boils down
to the representation theorem (Theorem 3.4). As a matter of fact, it
is not difficult to see that ω would play exactly the same distinguished
role, in exactly the same way, if we were to develop the present theory
starting from any reasonable pair �, � of operations on the ordinals
(instead of the Hessenberg operations) such that every ordinal κ > ω
closed under � and � is a limit of ordinals closed under �. In any case,
it might be interesting to explore any possibilities for the following.

Issue 8.8. Consider other pairs of operations � and � on the ordinals,
satisfying the minimal algebraic requirements (commutativity, distribu-
tivity of � with respect to �, and so on), extending the usual addition
and multiplication on ω, and relative to which the standard construc-
tions of κ–R yield a theory that becomes interesting when cf(κ) = µ,
for some choice of µ 6= ω.24

At this point, the possibilities seem open-ended.
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