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Abstract

It is possible to control to a large extent, via semiproper forcing, the
parameters (�0, �1) measuring the guessing density of the members of
any given antichain of stationary subsets of !1 (assuming the existence
of an inaccessible limit of measurable cardinals). Here, given a pair
(�0, �1) of ordinals, we will say that a stationary set S ✓ !1 has
guessing density (�0, �1) if �0 = �(S) and �1 = sup{�(S⇤) : S⇤ ✓
S, S⇤ stationary}, where �(S⇤) is, for every stationary S⇤ ✓ !1, the
infimum of the set of ordinals ⌧  !1 + 1 for which there a function
F : S⇤ �! P(!1) with ot(F (⌫)) < ⌧ for all ⌫ 2 S⇤ and with {⌫ 2
S⇤ : g(⌫) 2 F (⌫)} stationary for every ↵ < !2 and every canonical
function g for ↵. This work involves an analysis of iterations of models
of set theory relative to sequences of measures on possibly distinct
measurable cardinals.

As an application of these techniques I show how to force, from
the existence of a supercompact cardinal, a model of PFA++ in which
there is a well–order of H(!2) definable, over hH(!2),2i, by a formula
without parameters.

1 Guessing densities of stationary sets

The present paper deals mostly with the manipulation, by forcing, of one par-
ticular guessing property for stationary subsets of !1 with respect to canoni-
cal functions for ordinals less than !2. As an application of the main forcing
construction presented here I will show how to force, over a model with a
supercompact cardinal, in order to obtain a model of the Proper Forcing Ax-
iom, and in fact of its stronger form PFA++, in which there is a well–order
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Guessing densities of stationary sets 2

of H(!2) definable, over hH(!2),2i, by a formula without parameters. But
more of this later.

Recall that, for a given ordinal ↵ < !2, a canonical function for ↵ is a
function g from !1 into !1 with the property that P(!1)/NS!1 – where NS!1

denotes the nonstationary ideal on !1 – forces that, letting hM,Ei be the
generic ultrapower of the ground model derived from the generic object, the
set of M–ordinals below the class of g in M is well–ordered under E in length
↵. An equivalent presentation of canonical functions for ↵ is the following:

Given a surjection ⇡ : !1 �! ↵, the map g : !1 �! !1 given by g(⌫) =
ot(⇡“⌫) is a canonical function for ↵ (where, for a set X of ordinals, ot(X)
stands for the order type ofX) and, furthermore, every canonical function for
↵ coincides with g on a club (which justifies the use of the term ‘canonical’).

Given a function F : S⇤ �! P(!1), with S⇤ a subset of !1, we will say that
F guesses all canonical functions if {⌫ 2 S⇤ : g(⌫) 2 F (⌫)} is stationary for
every ↵ < !2 and every (equivalently, some) canonical function g for ↵.1 The
combinatorial property for stationary subsets of !1 that I shall be looking at
is the following.

Definition 1.1 Let S be a stationary subset of !1. The guessing density of
S is the unique pair (�0, �1) of ordinals given by

�0 = �(S)

and
�1 = sup{�(S⇤) : S⇤ ✓ S, S⇤ stationary},

where, given any stationary S⇤ ✓ !1, �(S⇤) is the infimum of the set of
ordinals ⌧ with the property that there is a function F : S⇤ �! P(!1) with
ot(F (⌫)) < ⌧ for all ⌫ 2 S⇤ and such that F guesses all canonical functions.

Note that the guessing density (�0, �1) of every stationary subset of !1

satisfies 2  �0  �1  !1 + 1. The above definition of guessing density has
been proposed by an anonymous referee. In a previous version of the paper
I was using the following di↵erent notion: A stationary S ✓ !1 was said to
have guessing density I (for some I ✓ !1) in case for every stationary S⇤ ✓ S

(a) there is a function F : S⇤ �! P(!1) guessing all canonical functions
and with ot(F (⌫)) 2 I for all ⌫ 2 S⇤, and

1By ‘canonical function’ I will always mean ‘canonical function for some ordinal less
than !2’.
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(b) no function F : S⇤ �! P(!1) such that ot(F (⌫)) < min(I) for all
⌫ 2 S⇤ guesses all canonical functions.

One drawback of the original notion of ‘guessing density’ is that, as I
observed in the older version of this paper and unlike the notion introduced
in Definition 1.1, the guessing density – in the original sense – of a given
stationary subset of !1 is not uniquely defined: If S ✓ !1 is a stationary set,
I0, I1 ✓ !1 are such that min(I1)  min(I0) and sup(I0)  sup(I1), and S
has guessing density I0 in the old sense, then S also has guessing density I1,
again in the old sense.

The version of guessing density contained in Definition 1.1 compares to
the old one in the following way: Given ordinals ↵0 < ↵1, a stationary set
S ✓ !1 has guessing density, in the old sense, equal to the interval of ordinals
[↵0,↵1) if and only if S has guessing density (�0, �1), in the sense of Definition
1.1, and ↵0 < �0 and �1  ↵1. It follows that all relevant statements involving
the old notion of guessing density translate easily into statements involving
the new notion. For these two reasons, in the current version of the paper I
shall adopt Definition 1.1 as the o�cial definition of guessing density.

It is easy to see that, for every stationary S ✓ !1, the assumption that
}(S⇤) holds2 for every stationary S⇤ ✓ S implies that S has guessing density
(2, 2).3 On the other hand, Bounded Martin’s Maximum4 (BMM) is easily
seen to imply that the guessing density (�0, �1) of every stationary subset of
!1 satisfies !1  �0:

Fact 1.1 Let S ✓ !1 be stationary. If BMM holds and S has guessing
density (�0, �1), then !1  �0.

Proof: Suppose BMM holds, let S ✓ !1 be stationary, let �0 < !1

be an ordinal, and let F : S �! P(!1) be a function with ot(F (⌫)) < �0

for all ⌫ 2 S. It su�ces to see that there is an ordinal � < !2, a bijec-
tion ⇡ : !1 �! � and a club C ✓ !1 such that ot(⇡“⌫) /2 F (⌫) for every

2}(S⇤) is the statement that there is a sequence hX
↵

: ↵ 2 S⇤i with X
↵

✓ ↵ for all ↵
and {↵ 2 S⇤ : X \ ↵ = X

↵

} stationary for each X ✓ !1.
3In other words, for every stationary S⇤ ✓ S there is a function F : S⇤ �! !1 such

that {⌫ 2 S⇤ : g(⌫) = F (⌫)} is stationary for every ↵ < !2 and every canonical function
g for ↵.

4Bounded Martin’s Maximum is (equivalent to) the statement that H(!2) is a ⌃1–

elementary substructure of H(!2)V
P
for every partial order P preserving stationary sub-

sets of !1 (see [B]). Here and throughout the paper, given an infinite cardinal ✓, H(✓) is
the set of all those sets whose transitive closure has size less than ✓.
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⌫ 2 C \ S. Let P be the natural forcing for adding, by initial segments, a
✓–increasing and ✓–continuous sequence hX⌫ : ⌫ < !1i of countable sub-
sets of !V

2 such that !V
2 =

S
⌫<!1

X⌫ and such that ot(X⌫) /2 F (X⌫ \ !1)
whenever X⌫ \ !1 2 S preserves stationary subsets of !1.5 Now, given
any function H : [H(!2)]<! �! H(!2) and any stationary T ✓ !1, let
D = {� < !2 : H“[�]<! ✓ �}. Let N be a countable elementary sub-
structure of H((2@1)+) containing �0 and H and with N \ !1 2 T . No-
tice that ot(D \ N) > �0. Hence, there is some �0 2 D \ N such that
ot(N \ �0) /2 F (N \ !1) in case N \ !1 2 S.6 And, on the other hand,
H“[N \ �0]<! ✓ N \ �0. By standard arguments this is enough to show
that P preserves stationary subsets of !1 and that it adds a club of [!V

2 ]
@0

with the required property. Finally, the desired conclusion follows from an
application of BMM to P . 2

Also, it is easy to see that if every function f : !1 �! !1 is dominated
on a club by some canonical function, then every stationary subset of !1 has
guessing density (!1 + 1,!1 + 1).7

The main purpose of this paper is to give a forcing construction, assuming
the existence of an inaccessible limit of measurable cardinals, which preserves
stationary subsets of !1 – and in fact is semiproper – and which, to each
member Si of any given antichain hSi : i < ⇤i of stationary subsets of !1 in
the ground model, assigns guessing density (�0

i , �
1
i ), for ordinals �

0
i  �1

i <
!1, where the sequence of pairs (�0

i , �
1
i ) can be controlled in advance with a

good deal of accuracy and arbitrariness.
Here are some general pieces of notation related to forcing that will appear

in the paper: Given a partial order hP ,i, a P–name ⌧ and a P–generic filter
G, ⌧G – or (⌧)G – denotes the interpretation of ⌧ by G. Also, if ẋ is a P–
name and G is a P–generic filter, then x may be used to denote ẋG. Ġ will
be a name such that (Ġ)G = G for every P–generic filter G. Given any
P–generic filter G and any set N , N [G] denotes {⌧G : ⌧ 2 Ṅ , ⌧ a P–name}.
Given two P–conditions p, q, q  p will mean that q is stronger (carries more
information) than p. Given a condition p 2 P , P � p = {q 2 P : q  p}.

5P is the set, ordered by ◆, of ✓–increasing and ✓–continuous sequences of the form
(X

⌫

)
⌫⌫0 , for some countable ordinal ⌫0, withX

⌫

2 [!2]@0 and, furthermore, with ot(X
⌫

) /2
F (X

⌫

\ !1) in case X
⌫

\ !1 2 S.
6As, in that case, F (N \ !1) has order type less than �0.
7In other words, �(S) = !1 + 1 for every stationary S ✓ !1. It is not known whether

BMM by itself implies this bounding principle.
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For a set x in the ground model, x̌ will occasionally stand for the canonical
P–name whose interpretation is always x. If Q is another partial order, P
is a complete suborder of Q (equivalently, Q completely extends P) if P
is a suborder of Q and if every maximal antichain of P is also a maximal
antichain of Q. In a context referring to a forcing iteration hP↵ : ↵  �i
(based on a sequence of names hQ̇↵ : ↵ < �i), we will assume that ↵  �
implies P↵ ✓ P�. Ġ↵ will denote a P↵–name for the generic filter added by
P↵

8 (for ↵  �). If G is a P�–generic filter and ↵ < �, then {p � ↵ : p 2 G}
may be denoted by G � ↵. Also, if ↵ < �, then P�/Ġ↵ is a P↵–name for
{p 2 P� : p � ↵ 2 Ġ↵} with the ordering inherited from P�. For any given
↵  �, ↵ denotes the ordering of P↵ and �↵ denotes the forcing relation
for P↵. Finally, if p is a condition in P�, the support of p, supp(p), is the set
of ↵ < � such that p � ↵ does not force that p(↵) is the weakest condition in
Q̇↵ (if ↵ 2 dom(p)).

We will use a notion of (Ñ , P)–generic condition, where P is a forcing
notion and, for some cardinal ✓, Ñ is, not an elementary substructure of H(✓)
in the ground model, but a Q–name for an elementary substructure of H(✓)V

in the extension (by Q), where Q is a partial order completely extending P .

Definition 1.2 Let P be and Q be partial orders such that P is a complete
suborder of Q, let ✓ be an infinite cardinal and let Ñ be a Q–name for an
elementary substructure of the structure H(✓) as computed in the ground
model.9 A P–condition p is (Ñ , P)–generic if p forces (in Q) that Ñ \D\Ġ
is nonempty for every dense subset D of P belonging to Ñ .

Thus, for P and ✓ as in the above definition and for N 4 H(✓) in the
ground model, a condition is (N, P)–generic in the usual sense if and only if
it is (Ň , P)–generic (for the canonical P–name Ň for N).

We shall also make use of the following extended notion of properness.

Definition 1.3 Let P be a forcing notion, let ✓ > |TC(P)| be a cardinal
and let F be a function from [H(✓)]@0 into P([H(✓)]@0). We say that P is
F–proper in case for every countable N 4 H(✓) containing P and every
p 2 N \P there is a condition q extending p and some M 2 F (N) such that
q is (M,P)–generic.

8That is, for {p � ↵ : p 2 G}, where G is the generic filter added by P
�

.
9Even though Ñ is required by Q to be included in the ground model V , it is not

required to be a member of V .
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Thus, a partial order P is proper if and only if for some (equivalently for
any) regular cardinal ✓ > |TC(P)|, P is F–proper for the function F sending
a countable N 4 H(✓) to {N}.

Recall that a partial order P is semiproper in case for every regular car-
dinal ✓ > |TC(P)|, every countable N 4 H(✓) containing P and every
p 2 P \N there is some condition q extending p and forcing ⌧ 2 Ň for every
P–name ⌧ for a countable ordinal, ⌧ 2 N .

The following notion of iteration will occur very often in this paper.

Definition 1.4 Let � be a measurable cardinal, let U be a normal measure
on �, let ✓ � (2�)+ be a cardinal and let N be an elementary substructure of
H(✓) of size less than � and containing U .

The one–step extension of N relative to U is defined as

{f(⌘) : f 2 N, f a function with domain �},

for ⌘ = min(
T
(U \N)).

The iteration of N relative to U is the unique ✓–increasing and ✓–
continuous sequence hN⇠ : ⇠  �i such that N0 = N and such that, for
every ⇠ < �, N⇠+1 is the one–step extension of N⇠ relative to U .

h⌘⇠ : ⇠ < �i, where ⌘⇠ = min(
T
(U \ N⇠)) for all ⇠ < �, is called the

critical sequence of the iteration of N relative to U .

It is a standard fact that, in the above definition, N⇠ ✓ N⇠+1 4 H(✓) and
N⇠ \ � is a proper initial segment of N⇠+1 \ � for every ⇠ < �.

Finally, at some point it will be convenient to use the natural (or Hessen-
berg) product of ordinals. Given two ordinals ↵ and �, the natural product of
↵ and �, to be denoted by ↵⌦ �, is computed as follows: Let us first define
the natural sum of ↵ and �, ↵��, as the result of adding the Cantor normal
forms of ↵ and �, where adding two finite sums, �0 and �1, each one of the
form

!e
m · km + !e

m�1 · km�1 + . . .+ !e0 · k0
with el an ordinal and ml < ! for all l  n, means the result of treating
the symbol ‘!’ as an indeterminate and adding �0 and �1 as if they were
polynomials in the indeterminate !.10 Now, the natural product of two

10Recall that every ordinal ↵ has a unique Cantor normal form; that is, ↵ can be written
as a unique polynomial expression !em ·k

m

+!em�1 ·k
m�1+ . . .+!e0 ·k0 (for some m < !)

with (e
l

)
lm

a strictly increasing sequence of ordinals and with m
l

< ! for all l.
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ordinals can be computed by multiplying their Cantor normal forms, again
as if they were polynomials in the indeterminate !, using the natural sum
� (instead of the ordinary addition) when adding exponents.11 Obviously,
the natural product of ordinals is an associative operation and, unlike the
ordinary ordinal product, it is also commutative. The following result is
proved in [Bl-Gu].

Fact 1.2 Let ↵0, . . .↵n�1 (for some n < !) be ordinals. The set of ordinals
⌧ such that ⌧ is the order type of some well–order R of the Cartesian prod-
uct ↵0 ⇥ . . . ⇥ ↵n�1 extending the product order12 has a maximum, and this
maximum is ↵0 ⌦ . . .⌦ ↵n�1.

The rest of the paper is structured as follows: Section 2 contains the main
result (Theorem 2.1) and starts its proof. Section 3, the longest section in
the paper, is a detour through some lemmas on certain types of (general-
ized) iterations of models of set theory, transitive or otherwise, relative to
sequences of measures on cardinals. Using the general theory of Section 3,
Section 4 concludes the proof of Theorem 2.1. Finally, in Section 5 I build,
starting from the existence of a supercompact cardinal, a model of PFA++

with a well–order of H(!2) definable, over hH(!2),2i, by a formula without
parameters. The model is built by forcing with a suitable instance of the
forcing construction for proving Theorem 2.1.

2 The main result

Theorem 2.1 is the main result in this paper.

Theorem 2.1 Suppose  is an inaccessible cardinal, C ✓  is a club with
\C unbounded in , and F : C �! V is a function. Suppose M ✓ \C is
a set of measurable cardinals with  = sup(M) and such that, for all � 2 M,
F � (C \ �) 2 V�.13 Let hSi : i < ⇤i be, for some ⇤  2@1, a sequence of
stationary subsets of !1 with Si \ Si0 nonstationary for all i < i0 < ⇤, and
let h↵i : i < ⇤i be a sequence of nonzero countable ordinals.

Then there is a countable support iteration hP⇠ : ⇠  i based on a
sequence of names hQ̇⇠ : ⇠ < i such that

11This definition of ⌦ appears in [H], pp. 68–70.
12That is, such that h⌘00 , . . . ⌘0n�1iRh⌘10 , . . . ⌘1n�1i whenever ⌘0

l

 ⌘1
l

2 ↵
l

for all l < n.
13This implies, in particular, that  \ (C [M) is unbounded in .
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(1) for every ⇠ < , �⇠ Q̇⇠ is a semiproper forcing of size less than ,

(2) given any ⇠ 2 C, if F (⇠) is a P⇠–name for a proper poset, then P⇠

forces Q̇⇠ = F (⇠),

(3) for every ⇠ < , in V P
⇠ it holds that P/Ġ⇠ is semiproper and forces

 = !2, and

(4) P forces that, for every i < ⇤, Si has guessing density equal to a pair
(�0

i , �
1
i ) with

(�) ↵i + 1  �0
i and �1

i  !↵
i

·! if ↵i > 1,14 and

(�) �0
i = �1

i = 2 if ↵i = 1.

The proof of Theorem 2.1 will stretch over Sections 2, 3 and 4 of this
paper. In Section 5 we will see that an appropriate instance of Theorem 2.1
yields, when  is in fact supercompact, a poset forcing both that PFA++

holds and that there is a well–order of H(!2) definable over hH(!2),2i by a
parameter–free formula.

By first collapsing ⇤ to !1, we may assume that ⇤ is at most !1. Hence,
by shrinking the Si’s slightly if necessary, we may also assume that Si and
Si0 are disjoint for all i < i0 < ⇤.

Let A ✓ \(C[M) be unbounded and let hA⇣ : ⇣ 2 Ai be a sequence of
pairwise disjoint unbounded (in ) subsets of M such that (A[

S
⇣2A A⇣)\�

is bounded in � for every � 2
S

⇣2A A⇣ , and such that A \ A⇣ = ⇣ \ A⇣ = ;
for every ⇣ 2 A.

Since the iteration is built with countable supports and since  is inac-
cessible, by (1) P will have the –chain condition, so we will be able to fix
a function ' :  �! V such that each '(⇠) is a P⇠–name, with the property
that for every P–name ⌧ for a member ofH() there is some ⇣ 2 A such that
�⇣ ⌧ = '(⇣), and with the property that for every ⇣ 2 A and every P–name
⌧ for a member of H() there is some � 2 A⇣ such that �� ⌧ = '(�).

Our iteration hP⇠ : ⇠  i will be built with countable supports and will
be based on a sequence hQ̇⇠ : ⇠ < i of names. Each Q̇⇠ will be chosen
to be a name for a semiproper forcing of size less than the least member ofS

⇣2A A⇣ \ (⇠ +1), so that (1) will hold. Moreover, Q̇⇠ will be forced, in V P
⇠ ,

to be the trivial forcing {;} if ⇠ 2  \ (C [A[
S

⇣2A A⇣), and to be a proper

14↵ · � and ↵� denote, respectively, ordinal multiplication and ordinal exponentiation.
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forcing of size F (⇠) if ⇠ 2 C. Furthermore, if ⇠ 2 C and F (⇠) is a P⇠–name
for a proper poset, then Q̇⇠ will be forced to be F (⇠). We also build our
iteration in such a way that, for a fixed bookkeeping function ' as in the
above paragraph, if ⇣ 2 A, then

(i) P⇣ forces that Q̇⇣ is {;} unless '(⇣) is a stationary subset of !1 for
which there is a (unique) i < ⇤ such that '(⇣) ✓ Si, in which case
Q̇⇣ is the forcing for adding, with countable conditions, a function
F : '(⇣) �! [!1]@0 such that

(i1) F (⌫) is a subset of !1 of order type strictly less than !↵
i

·! for all
⌫ 2 dom(F ) in case ↵i > 1 and such that

(i2) F (⌫) is a singleton for all ⌫ 2 dom(F ) in case ↵i = 1,15

and furthermore,

(ii) for each � 2 A⇣ , P� forces that Q̇� is {;} unless '(⇣) is a stationary
subset of !1 for which there is a unique i < ⇤ such that '(⇣) ✓ Si and
'(�) is a function into P(!1) with domain '(⇣) such that ot('(�)(⌫)) <
↵i for all ⌫ 2 '(⇣), in which case Q̇� is the natural forcing for adding,
with countable conditions, a canonical function for � avoiding '(�);
that is, Q̇� is the forcing, ordered by extension, of ✓–increasing and
✓–continuous functions p : ⌫0 + 1 �! [�]@0 (for some ⌫0 < !1) such
that ot(p(⌫)) /2 '(�)(⌫) if p(⌫) \ !1 2 '(⇣).

This finishes the description of the iteration. By a standard argument
using the fact that this iteration has been built with countable supports, it
can be seen that all ordinals less than  are collapsed into !1 by P. Thus,
since P has the –chain condition, it forces  = !2.

Let U� be, for each � 2
S

⇣2A A⇣ , a normal measure on �. Given any

� as above and any ⇠  �, let Ũ�
⇠ be a P⇠–name for the ultrafilter on �

generated by U�, that is, for {X ✓ � : (9Y 2 U�)(Y ✓ X)}. Since, by our
construction, P� is of size less than � for every � 2

S
⇣2A A⇣ , each Ũ�

⇠ (for
� 2

S
⇣2A A⇣ , ⇠  �) is forced by P⇠ to be a normal measure on �.

15It would cause the same e↵ect to just specify that if ⇣ 2 A, then P
⇣

forces that Q̇
⇣

is the poset for adding a function from !1 into P(!) by initial segments (such poset is
certainly forcing–equivalent to the above description for Q̇

⇣

). The present description has
been chosen in order to make the proof clearer.
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It will be convenient to fix some notation for (names for) iterations of
(names for) countable structures relative to some of the U� (or some of the
Ũ�
⇠ ): Given � 2

S
⇣2A A⇣ , a cardinal ✓ > 2� and a countable N 4 H(✓)

containing U�, let h(N)�↵ : ↵  �i be the iteration of N relative to U�.
Also, for � and ✓ as above, given ⇠  � and a P⇠–name Ṅ for a countable

elementary substructure of H(✓)V [Ġ
⇠

] containing Ũ�
⇠ , let h(Ṅ)�⇠,↵ : ↵  �i be

a sequence of P⇠–names such that P⇠ forces, for each ↵, that (Ṅ)�⇠,↵ is the ↵-

th member of the iteration of Ṅ relative to Ũ�
⇠ . Finally, let U

�,�
⇠ be, for every

three ordinals � � � � ⇠, a P⇠–name for hŨ�
⇠ : �  � < �, � 2

S
⇣2A A⇣i.

Conclusion (4) for P is equivalent to the statement that, in V P
 , every

Si has guessing density, in the old sense, equal to [↵i, !↵
i

·!) if ↵i > 1, and
equal to {1} if ↵i = 1. In other words, in order to prove (4) for P it su�ces
to show, in V P

 , that for every i and every stationary S⇤ ✓ Si,

(a) there is a function F : S⇤ �! P(!1) such that ot(F (⌫)) 2 [↵i, !↵
i

·!)
(if ↵i > 1) and |F (⌫)| = 1 (if ↵i = 1) and such that F guesses all
canonical functions, and

(b) no function F : S⇤ �! P(!1) with ot(F (⌫)) < ↵i for all ⌫ 2 S⇤ guesses
all canonical functions.

Let us assume for a while that P preserves the stationarity of all Si
16

and let us verify one half of (4) for P (in the above form). More specifically,
let us prove, for a P–generic filter G, that if i0 < ⇤ and ⇣ 2 A are such that
S⇤ := '(⇣)G�⇣ is, in V [G], a stationary subset of Si0 and � 2 A⇣ is such that
'(�)G�� is a function into P(!1) defined on S⇤ such that ot('(�)G��(⌫)) < ↵i0

for all ⌫, then there is a canonical function g for � such that g(⌫) /2 '(�)G��(⌫)
for club–many ⌫ 2 S⇤.17

In the present situation, by (ii) above, Q� is the forcing for adding, by
initial segments, a canonical function for � avoiding '(�). Let us show, by
induction on k < !1, that for every � < �,

D�
k := {p 2 Q� : k 2 dom(p), � 2 [ range(p)}

16Of course later we will prove that P


is in fact semiproper.
17Since ' is supposed to be a suitable bookkeeping function, this will be enough to show,

in V [G], that the statement in (b) holds for every i and every stationary S⇤ ✓ S
i

.
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is dense in V [G � �],18 from which it will follow that Q� forces that there is
a surjection ⇡ : !1 �! � and a club C ✓ !1 such that, for all j 2 C,

ot(⇡“j) /2 '(�)G��(!1 \ ⇡“j)

if '(�)G��(!1 \ ⇡“j) is defined: In V [G � �] let p be a condition in Q�, let
N 4 H(✓) be countable, for a large enough cardinal ✓, and containing all
relevant objects, and let hN↵ : ↵  �i be the iteration of N relative to
(Ũ�

� )G��.
First of all note that if p0 is a condition with k 2 dom(p0), then p0 can tri-

vially be extended to a condition p⇤ in D�
k by setting p⇤ = p0[{hdom(p0), Xi},

where p0(max(dom(p0)) ✓ X ✓ �, � 2 X, and ot(X) /2 '(�)G��(dom(p0)) in
case dom(p0) 2 S⇤. Hence, we may assume dom(p) < k. If k /2 S⇤, then
we can build, by applying the induction hypothesis to k0 < k, a decreasing
sequence (pn)n<! of conditions extending p with � 2 [ range(p0) and with
k  supn<!dom(pn). If there is some n with k < dom(pn), then pn 2 D�

k.
Otherwise,

S
n pn [ {hk,

S
n [ range(pn)i} is a condition in D�

k extending p.
Now suppose k 2 S⇤. {ot(N↵ \ �) : ↵ < ↵i0}, being a subset of !1 of order
type exactly ↵i0 , is not contained in '(�)G��(k), that is, there is some ↵ < ↵i0

such that ot(N↵ \ �) /2 '(�)G��(k). Since, by induction hypothesis, D�0
k0 is

dense for all k0 < k and all �0 < �, we can build a decreasing sequence (pn)n<!

of conditions in N↵ with p0 = p and such that N↵ \ � =
S

n [ range(pn).
By the above considerations, we may assume k is a limit ordinal and k =
supndom(pn). It follows then from the definition of Q� that

S
n pn[{hk,N↵\

�i} is a condition extending each pn. This proves that D�
k is dense for every

� < �.
The following extra information can now be derived by arguing as above,

replacing k by N \ !1 and ensuring that (pn)n<! is an (N,Q�)–generic se-
quence.

Lemma 2.2 Given a large enough cardinal ✓, Q� is F�–proper for the func-
tion F� sending a countable N 4 H(✓) containing '(�)G�� and (Ũ�

� )G�� to

18This is proved by a standard argument exploiting the fact, for a given countable
N 4 H(✓) (for a large enough cardinal ✓), that ot(N

↵

\ �) /2 '(�)
G��(N \ !1) for some

appropriate member N
↵

of the iteration of N of length !1 relative to (Ũ�

�

)
G�� (if N \!1 2

S⇤). However, in our situation it will be convenient to derive some extra information from
the argument – namely the fact that ↵ can always be suitably bounded – which will be of
crucial importance for the proof of the rest of the theorem.
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the set {(N)��, ⌫ : ⌫ < ↵i0} if i0 < ⇤ is such that N \ !1 2 Si0 and to {N} if
N \ !1 /2

S
i<⇤ Si (so in particular Q� is semiproper).

We proceed to ascend to the proof of the rest of the theorem. It will be
useful to collect several general lemmas concerning iterations of models of
set theory relative to measures on cardinals.

3 General results about iterations relative to

measures on cardinals

This section introduces two types of iterations of models of (a fragment of)
set theory. The analysis of these iterations is then carried out to the level
needed for the proof of Theorem 2.1. The theory surely can be developed
with more generality, which I have not bothered to do here.

Let ZFC⇤ denote the theory ZFC without the Power Set Axiom.19 First
I am going to consider iterations hM↵ : ↵ < ↵i of arbitrary length ↵ of a
transitive model of ZFC⇤ and in which, at every stage ↵ with ↵ + 1 < ↵,
M↵+1 is the ultrapower of M↵ by some measure on some measurable cardinal
in M↵. Then I will consider iterations hN↵ : ↵ < ↵i of a – typically non-
transitive – elementary substructure N of H(✓), for some regular cardinal
✓. This time, at every given stage ↵ with ↵ + 1 < ↵, N↵+1 is the one–step
extension of N↵ relative to some normal measure in N↵ on a measurable
cardinal. The measures and even the measurable cardinals used at di↵erent
stages need not be the same.

I will start by introducing notation to handle these types of iterations
(in Definitions 3.1 and 3.2). Then I will observe that an iteration of the
second kind of some N 4 H(✓) (for some ✓) corresponds, via transitive
collapses, to an iteration of the first kind of its transitive collapse. Most
of the section will be devoted to proving general lemmas on these types of
iterations, first in Subsection 3.1, dealing with iterations of the first kind,
and then in Subsection 3.2, dealing with iterations of the second kind. These
lemmas will be primarily focused on the (vaguely stated) question “given a
model N and an ordinal ✏, to what extent can we control ot(N 0\✏) for models
N 0 occurring in an iteration (of the second kind) of N or of an expansion
N [G] of N via a generic filter G?”. We shall need some knowledge of this
kind for the rest of the proof of Theorem 2.1 in Section 4.

19Note that H(✓) satisfies ZFC⇤ for every regular cardinal ✓.
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Given a transitive model M of ZFC⇤, an ordinal ↵ and, in M , a non-
principal �–complete ultrafilter U on a measurable cardinal �, let

hMU
⇠ , j

M,U
⇠,⇠0 : ⇠  ⇠0 < ↵i

denote the iteration of hM,Ui of length ↵, that is, the directed system of
length ↵ with direct limits taken at limit stages, where the MU

⇠ ’s are tran-

sitive ZFC⇤–models and each jM,U
⇠,⇠0 : MU

⇠ �! MU
⇠0 is an elementary em-

bedding, and where MU
0 = M and, for each ⇠ with ⇠ + 1 < ↵, MU

⇠+1 is

the ultrapower Ult(MU
⇠ , j

M,U
0,⇠ (U)) and jM,U

⇠,⇠+1 : MU
⇠ �! MU

⇠+1 is given by

jM,U
⇠,⇠+1(a) = [ca]jM,U

0,⇠ (U), where ca is the constant function on jM,U
0,⇠ (�) with

value a.20 Also, letting #⇠ = jM,U
0,⇠ (�) whenever ⇠ + 1 < ↵, h#⇠ : ⇠ + 1 < ↵i

is the critical sequence of this iteration.
The first type of iterations we shall present are linear compositions of

iterations as in the above paragraph. For a given modelM0, they are directed
systems hM↵, j↵,� : ↵  � < ↵i, with direct limit taken at limit stages,
where the M↵’s are transitive models of ZFC⇤, the j↵,�’s are elementary
embeddings, where M↵+1 is an ultrapower of M↵ by a normal measure W↵

on a measurable cardinal �↵ in M↵ (if ↵ + 1 < ↵), and where, for ↵ < � <
� + 1 < ⌧ , W� need not be j↵,�(W↵).21

Note that every such iteration can be split naturally into a chain of i-
terations each of which involves ultrapowers of the corresponding images of
the same measure. More precisely, every such iteration I can be split into a
chain of iterations, hIi : i < ⌧i, such that, for every i, Ii is the iteration of
length ⌫i – for some ⌫i – of hM↵0 ,W↵0i, where ↵0 is the stage of I at which
Ii starts. Furthermore, these iterations can be taken to be maximal, that is,
they can be taken so that if i + 1 < ⌧ and ↵0 and �0 are the stage of I at
which, respectively, Ii and Ii+1 start, then W�0 6= j↵0,�0(W↵0). Definition 3.1
incorporates this way of looking at this kind of iterations.

Definition 3.1 Given a transitive model M of ZFC⇤, an ordinal ⌧ , and two
sequences W := hWi : i < ⌧i and ~⌫ := h⌫i : i < ⌧i,22 the ~⌫–iteration of M

20We may denote the embedding of MU

⇠

derived from jM,U

0,⇠ (U) by jM,U

⇠

.
21And, in fact, �

�

need not be j
↵,�

(�
↵

).
22None of the sequences ~⌫ or W are required to be in M (but, by (c3), W0 2 M if

⌫0 > 0).
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relative to W, if it exists, is the directed system

hM↵, j↵,� : ↵  � < ⌃i<⌧ ⌫ii, 23

where

(a) M0 = M ,

(b) all j↵,�’s are elementary embeddings, all M↵’s are transitive, and direct
limits are taken at limit stages, and

(c) for each i < ⌧ ,

(c1) Wi is a collection of sets of ordinals and each ⌫i is a nonzero
ordinal,

(c2) if ⌃j<i ⌫j = ⌫ + 1 for some ⌫, then M⌃
j<i

⌫
j

= M⌫,

(c3) if ⌫i > 1, then �i :=
S

Wi is a measurable cardinal in M⌃
j<i

⌫
j

,
Wi 2 M⌃

j<i

⌫
j

is, in M⌃
j<i

⌫
j

, a non-principal �i–complete ultrafil-
ter on �i, and

hM↵, j↵,� : ⌃j<i ⌫j  ↵  � < ⌃ji ⌫ji

is the iteration of hM⌃
j<i

⌫
j

,Wii of length ⌫i, and

(c4) if i+ 1 < ⌧ , Wi+1 6= j⌃
j<i

⌫
j

,⌃
ji

⌫
j

(Wi).

In the above system we may denote M↵ by MW,~⌫
↵ and j↵,� by jM,W,~⌫

↵,� . If
each Wi is, in addition, a normal ultrafilter on �i in M⌃

j<i

⌫
j

, then we say
that the iteration is normal.

Also, if h#↵ : ↵ + 1 < ⌃i<⌧ ⌫ii is such that, for all i < ⌧ with ⌫i > 1 and
all ⇠ < ⌫i,

#(⌃
j<i

⌫
j

)+⇠ = jM,W,~⌫
⌃

j<i

⌫
j

, (⌃
j<i

⌫
j

)+⇠(�i),

(and #⌃
j<i

⌫
j

= ; if ⌫i = 1) then h#↵ : ↵ + 1 < ⌃i<⌧ ⌫ii is called the critical
sequence of the iteration.

23⌃
i<⌧

⌫
i

denotes ordinal addition. Specifically, ⌃
i<⌧

⌫
i

, and occasionally ⌃(⌫
i

: i < ⌧),
will denote the sum of the sequence h⌫

i

: i < ⌧i of ordinals.
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Note that, given an ordinal i, if ⌫j (for j < i) are ordinals, then ⌃j<i ⌫j
is a successor ordinal if and only if i and ⌫i⇤ are successor ordinals (where
i = i⇤ + 1). In that case ((c2) of the definition), the last model of the
construction below stage ⌃i<j ⌫j will be repeated at stage ⌃i<j ⌫j. I shall use
this indexing of the models for notational convenience.

The second type of iteration we will be considering is the following gene-
ralization of Definition 1.4.

Definition 3.2 Let ✓ be a regular cardinal and let N be an elementary sub-
structure of H(✓). Let ⌧ be an ordinal and let W = hWi : i < ⌧i and
~⌫ = h⌫i : i < ⌧i be two sequences.24 The ~⌫–iteration of N relative to W, if
it exists, is the ✓–increasing and ✓–continuous sequence of the form

hN↵ : ↵ < ⌃i<⌧ ⌫ii

such that N0 = N and such that, for each i < ⌧ ,

(a) Wi is a collection of sets of ordinals and ⌫i is a nonzero ordinal,

(b) if ⌃j<i ⌫j = ⌫ + 1 for some ⌫, then N⌃
j<i

⌫
j

= N⌫,

(c) if ⌫i > 1, then �i :=
S

Wi 2 N⌃
j<i

⌫
j

is a measurable cardinal (in H(✓))
and Wi 2 N⌃

j<i

⌫
j

is (in H(✓)) a normal measure on �i,

(d) |N⌃
j<i

⌫
j

| < �i and ⌫i  �i + 1,

(e) hN↵ : ⌃j<i ⌫j  ↵ < ⌃ji ⌫ji is the initial segment of length ⌫i of the
iteration of N⌃

j<i

⌫
j

relative to Wi; in other words, for every ordinal ↵
with ⌃j<i ⌫j < ↵ + 1 < ⌃ji ⌫j,

N↵+1 = {f(⌘↵) : f 2 N↵, f a function with domain �i}

where, for every ↵ with ⌃j<i ⌫j  ↵ < ⌃ji ⌫j, ⌘↵ = min(
T
(Wi \N↵)),

and

(f) if i+ 1 < ⌧ , then Wi+1 6= Wi.

24Similarly as in Definition 3.1, none of these sequences is required to be in N .
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We shall call the sequence h⌘↵ : ↵ + 1 < ⌃i<⌧ ⌫ii such that ⌘↵ = ⌘↵
whenever there is some i < ⌧ with ⌃j<i ⌫j < ↵+1 < ⌃ji ⌫j (and ⌘⌃

j<i

⌫
j

= ;
if ⌫i = 1) the critical sequence of the iteration.

Similarly as in the previous definition, we may refer to N↵ (in the expres-
sion hN↵ : ↵ < ⌃i<⌧ ⌫ii) as NW,~⌫

↵ .
Given an ordinal �, we will say that the iteration is bounded by � if ⌫i < �

for all i.
Also, we will say that the iteration is closed in case ⌃i<⌧ ⌫i is a successor

ordinal.
Each of the sequences hN(⌃

j<i

⌫
j

)+⇠ : ⇠ < ⌫ii (for i < ⌧) will be called
component iterations of hN↵ : ↵ < ⌃i<⌧ ⌫ii.

Finally, a component iteration hN(⌃
j<i

⌫
j

)+⇠ : ⇠ < ⌫ii will said to be closed
if ⌫i is a successor ordinal.

In analogy with what happened with the iterations presented in Defini-
tion 3.1, the iterations defined above can be construed, in a unique way, as
concatenations of maximal iterations Ii (i < ⌧ , for some ⌧) such that, for
each i, Ii is an initial segment of the iteration, in the sense of Definition 1.4,
of the first model N↵0 occurring in Ii relative to a fixed normal measure in
N↵0 . The notation chosen is intended to make this decomposition visible.

The following observation, which is easy to verify, shows that an iteration,
in the sense of Definition 3.2, of an elementary substructure N of some H(✓)
corresponds, via transitive collapses, to an iteration of the transitive collapse
of N in the sense of Definition 3.1.

Fact 3.1 Suppose

(a) h�i : i < ⌧i is a sequence of measurable cardinals,

(b) W = hWi : i < ⌧i is such that each Wi is a normal measure on �i,

(c) ~⌫ = h⌫i : i < ⌧i is a sequence of ordinals with 1  ⌫i  �i +1 for all i,

(d) ✓ is a regular cardinal such that ✓ � (2�i)+ for all i,

(e) N is an elementary substructure of H(✓) of size less than �i for all
i < ⌧ and containing W, and

(f) the ~⌫–iteration of N relative to W exists.

Let us define
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(g) M(⌃
j<i

⌫
j

)+⇠ to be the transitive collapse of N(⌃
j<i

⌫
j

)+⇠ via the collapsing
function ⇡(⌃

j<i

⌫
j

)+⇠ for every i < ⌧ and every ⇠ < ⌫i,

(h) hM↵, j↵,� : ↵  � < ⌃i<⌧ ⌫ii to be the directed system defined by letting
j↵,� = ⇡� � (⇡↵)�1, and

(i) for every i < ⌧ , W i = ⇡⌃
j<i

⌫
j

(Wi) if ⌫i > 1.

Then hM↵, j↵,� : ↵  � < ⌃i<⌧ ⌫ii is the ~⌫–iteration of M0 relative to
hW i : i < ⌧i.

Incidentally, note that, if ⌫0 > 1, any N0 and N1 coming from the state-
ment of Fact 3.1 have the property that N0 is strictly included in N1 whereas
the transitive collapse of N1 is strictly included in the transitive collapse of
N0.

3.1 Iterations of transitive models (as in Definition

3.1).

The following general fact can be extracted from classical results of Kunen
([Ku1]) on iterated ultrapowers. This fact will be used in the proof of Lemma
3.4.

Fact 3.2 There is a formula �(x, y, z, w) with the property that, for every
transitive ZFC⇤–model M , every b 2 M , every ordinal ⇠ 2 M and every
U 2 M which is, in M , a normal ultrafilter on a measurable cardinal �,

c = jM,U

0,⇠
(b) if and only if M |= �(U, ⇠, b, c)

Furthermore, �(x, y, z, w) can be chosen so that �(U, ⇠, b, w) defines jM,U

0,⇠
(b)

correctly in M⇤ for every b 2 M⇤ whenever M⇤ is an inner model of M
containing U and ⇠ which is su�ciently closed in M with respect to U , in the
sense that for every X 2 U , every n < ! and every function f : [X]n �! M⇤

in M there is Y ✓ X, Y 2 U , such that f � [Y ]n 2 M⇤.

Proof: Given an ultrafilter U on a cardinal � (in some given model
N), let us define the sequence (U i)0<i<! by U1 = {[X]1 : X 2 U} and by
specifying, for every i > 1 and every X 2 P([�]i)\N , that X is in U i if and
only if

{s 2 [�]i�1 : {� < � : s [ {�} 2 X} 2 U} 2 U i�1
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Every U i thus defined is clearly an ultrafilter, in N , over [�]i. Note also that
if � is a measurable cardinal and U is, in N , a normal ultrafilter, then

U i = {X 2 P([�]i) \N : (9X0 2 U) ([X0]
i ✓ X)}

for every i > 0.
Now, let M , ⇠, U and � be as in the statement. Let h#⇠ : ⇠ < ⇠i be the

critical sequence of the iteration of hM,Ui of length ⇠+1. Every member of
MU

⇠
is of the form jM,U

0,⇠
(f)({#⇠0 , . . .#⇠

n�1}) for some n < !, some function

f : [�]n �! M in M and some sequence ⇠0 < . . . < ⇠n�1 < ⇠. Also, note that
for R being = or 2, for every two functions f and g in M with domain [�]n,
and for every ⇠0 < . . . < ⇠n�1 < ⇠,

jM,U

0,⇠
(f)({#⇠0 , . . .#⇠

n�1})R jM,U

0,⇠
(g)({#⇠0 , . . .#⇠

n�1})

if and only if
{s 2 [�]n : f(s)Rg(s)} 2 Un,

where (U i)0<i<! is defined, in M , as above.
Furthermore, if M⇤ is an inner model of M containing U and ⇠ and

su�ciently closed in M with respect to U , in the sense of the statement, it
can be proved that for every X 2 Un and every two functions f and g in M
with domain [X]n there is some Y ✓ X, Y 2 Un, such that Y 2 (Un)M

⇤
and

such that f � Y and g � Y are members of M⇤.25 Hence, if R is as above and
{s 2 [�]n : f(s)Rg(s)} 2 Un, then there is some Y 2 Un \M⇤ such that

{s 2 Y : (f � Y )(s)R (g � Y )(s)} 2 Un

holds in M⇤.
Finally, note that although the expressions jM,U

0,⇠
(f)({#⇠0 , . . .#⇠

n�1}) re-

presenting di↵erent members of MU
⇠

will have di↵erent dimensions in gene-

ral,26 they can nevertheless be made comparable through composition with
the inverses of appropriate projection functions.

Hence, �(x, y, z, w) can be taken to express the following property:

25Because, both in M and in M⇤, Un is the ultrafilter on [�]n generated by the sets of
the form [X0]n for X0 2 U .

26That is, di↵erent f ’s may have [�]n, for di↵erent n’s, as domain.
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x is an ultrafilter on a measurable cardinal �, y is an ordinal, and w is the
transitive collapse of hz, Ei, where z is the set of pairs hf, si such that s is a
finite subset of y and such that f is a function from [�]n (where n is the size
of s) into z, and, for hf✏, s✏i in z (for ✏ = 0, 1), hf0, s0iEhf1, s1i if and only if,
letting s = s0 [ s1 = {y0, . . . yr�1}<, if (for ✏ = 0, 1) i✏0 < . . . < i✏n

✏

�1 are such
that s✏ = {yi✏0 , . . . yi✏n

✏

�1
} and f ✏ is the unique function into z with domain

[�]r such that f ✏(⇠0, . . . ⇠r�1) = f✏(⇠i✏0 , . . . ⇠i✏n
✏

�1
) for all ⇠0 < . . . < ⇠r�1 < �,

then {s 2 [�]r : f 0(s) < f 1(s)} 2 xr. 2

Lemma 3.3 is a useful result concerning the closure, in a given model M ,
of the models arising in iterations of M .

Lemma 3.3 Let M be a transitive model of ZFC⇤ and, in M , let �0 < �1
be measurable cardinals. Let

(a) U be a non-principal �0–complete ultrafilter on �0 in M ,

(b) W be a normal measure on �1 in M and

(c) ⇠ < �0 be an ordinal.

Then, given any X 2 U , any integer n and any f : [X]n �! MW
⇠ , f 2 M ,

there is some X0 ✓ X, X0 2 U , such that f � [X0]n 2 MW
⇠ .

Proof: By induction on ⇠. For ⇠ = 0 the result holds vacuously.
Suppose ⇠ = ⇠0 + 1 and assume the result holds for ⇠0. Given X 2 U and
n < ! and a function f from [X]n into MW

⇠ (= Ult(MW
⇠0
, jM,W

0,⇠0
(W ))) in M ,

let f0 : [X]n �! MW
⇠0

be given by f0(s) = hs, where hs is, for each s 2 [X]n,

a function in MW
⇠0

on jM,W
0,⇠0

(�1) such that jM,W
⇠0,⇠

(hs)(j
M,W
0,⇠0

(�1)) = f(s). By
induction hypothesis there is X0 ✓ X in U such that f0 � [X0]n 2 MW

⇠0
. But

then, since MW
⇠ is closed under �0–sequences in MW

⇠0
(in fact under sequences

of length jM,W
0,⇠0

(�1) > �0),

f � [X0]
n = {hs, jM,W

⇠0,⇠
(f0(s))(j

M,W
0,⇠0

(�1))i : s 2 [X0]
n}

is in MW
⇠ .

Finally, suppose ⇠ is a limit ordinal and suppose the result holds for all
⇠0 < ⇠. Again let X, n and f be as in the statement. We define a function
f0 : [X]n �!

S
⇠0<⇠ M

W
⇠0 by letting f0(s) be, for each s 2 [X]n, a set in MW

⇠
s



Iterations relative to measures on cardinals 20

(for some ⇠s < ⇠) such that jM,W
⇠
s

,⇠ (f0(s)) = f(s). Since ⇠ < �0, by normality
of U in M and by Rowbottom’s theorem ([R]) for partitions of [X]n into
less than �0–many pieces there is some ⇠ < ⇠ and some X0 ✓ X in U such
that ⇠s = ⇠ for every s 2 [X0]n. By induction hypothesis there is then some
X1 ✓ X0 in U such that f0 � [X1]n 2 MW

⇠
. But then, as the critical point of

jM,W

⇠,⇠
is above �0, f � [X1]n = jM,W

⇠,⇠
� (f0 � [X1]n) 2 MW

⇠ . 2

As a consequence of Lemma 3.3 we obtain the following commutativity
lemma.

Lemma 3.4 (Commutativity Lemma) Let M be a transitive ZFC⇤–model,
let �0 < �1 be measurable cardinals in M , let W0 and W1 be, in M , a normal
measure on �0 and a normal measure on �1, respectively, and let ⇠1 < �0 and
⇠0 < �1 be ordinals. Let j0 = jM,W0

0,⇠0
and j1 = jM,W1

0,⇠1
. Then,

j0 � j1 = j1 � j0 = j
M

W1
⇠1

, j1(W0)

0,⇠0
� j1 = j

M
W0
⇠0

, j0(W1)

0,⇠1
� j0

Proof: Let a 2 M and let �(x, y, z, w) be a formula as given by Fact
3.2. Since W0 and ⇠0 are fixed by j1, j1(j0(a)) is the unique set c such that

MW1
⇠1

|= �(W0, ⇠0, j1(a), c)

On the other hand, since MW1
⇠1

is su�ciently closed in M by Lemma 3.3, this
set c is j0(j1(a)) by the choice of �. This establishes the first equality.

As to the other equalities notice, again by the choice of �, that

MW1
⇠1

|= �(W0, ⇠0, j1(a), j1(j0(a)))

implies j1(j0(a)) = j
M

W1
⇠1

, j1(W0)

0,⇠0
(j1(a)) (as W0 is fixed by j1) and that

M |= �(W1, ⇠1, a, j1(a))

implies
MW0

⇠0
|= �(j0(W1), ⇠1, j0(a), j0(j1(a)))

(as ⇠1 < �0), which in turn implies j0(j1(a)) = j
M

W0
⇠0

, j0(W1)

0,⇠1
(j0(a)). 2

The following result is a corollary of Lemma 3.4. It will be used in the
proof of Lemma 4.2 in Section 4.
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Lemma 3.5 Let M be a transitive ZFC⇤–model, let (�k)k<n be, for some
n < !, a sequence of measurable cardinals, and let Wk be, for every k < n,
a normal measure on �k. Let ~⇠ = (⇠k)k<n be a sequence of ordinals below
mink<n�k. Then,

j
M,W

�(n�1)

0,⇠
�(n�1)

� . . . � jM,W
�(0)

0,⇠
�(0)

= jM,W, ~⇠
0,⌃

k<n

⇠
k

for every permutation � of n, where W = hW ⇤
0 , . . .W

⇤
n�1i is the sequence

defined by W ⇤
0 = W0 and by W ⇤

k = j
M, hW ⇤

0 ,...W
⇤
k�1i, h⇠0,...⇠k�1i

0,⌃
l<k

⇠
l

(Wk) for every
nonzero k < n.

Proof: Extending the notation in the statement of Lemma 3.4, let
jk = jM,W

k

0,⇠
k

for every k < n. It follows immediately from Lemma 3.4 that
jn�1 � · · · � j0 = j�(n�1) � . . . � j�(0) for every permutation � : n �! n.

Hence, it will be enough to prove jM,W, ~⇠
0,⌃

k<n

⇠
k

= jn�1 � · · · � j0 by induction
on n. The case n  2 is handled by Lemma 3.4, so suppose n > 2. Let

j⇤ = jM,W�(n�1), ~⇠�(n�1)
0,⌃

l<n�1 ⇠l
and let � be a formula as in Fact 3.2. Let us also

fix a 2 M . Notice that, by the fact that M |= �(Wn�1, ⇠n�1, a, jn�1(a)),
together with the elementarity of j⇤ and the fact that ⇠n�1 is fixed by j⇤, we
have

MW�(n�1), ~⇠�(n�1)
⌃

l<n�1 ⇠l
|= �(j⇤(Wn�1), ⇠n�1, j

⇤(a), j⇤(jn�1(a))),

and hence, by induction hypothesis and by the commutativity of the jk’s,

MW�(n�1), ~⇠�(n�1)
⌃

l<n�1 ⇠l
|= �(j⇤(Wn�1), ⇠n�1, j

⇤(a), (jn�1 � . . . � j0)(a))

But by the choice of � this means

(jn�1 � . . . � j0)(a) = j
M

W�(n�1), ~⇠�(n�1)
⌃
l<n�1 ⇠

l

, j⇤(W
n�1)

0,⇠
n�1

(j⇤(a)) = jM,W, ~⇠
0,⌃

l<n

⇠
l

(a)

2

The following lemma will be of crucial importance. It is a strengthening
of a result, due to Kunen ([Ku2]), saying that for every ordinal ✏, the class
of measurable cardinals � for which there is a normal measure U on � such
that ✏ < j(✏), where j : V �! Ult(V, U) is the embedding derived from U ,
is finite.
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Lemma 3.6 Let M be a transitive model of ZFC⇤. Given any ordinal ✏ 2
M , in M it holds that there are only finitely many measurable cardinals �
with the property that there are a normal measure W on � and an ordinal ⇠
less than the first measurable cardinal such that jV,W⇠ (✏) > ✏.27

Proof: We will use a somewhat refined version of the proof, due to
Fleissner (as presented in [K], Lemma 19.17), of the above result of Kunen.
Pick an ordinal ✏ in M and let M✏ be the set of all � with the property
expressed in the statement. For every � 2 M✏ fix a pair (W�, ⇠�) witnessing
this. Let � 2 M✏ be given. Let ✏0� be the supremum of the set of fixed

points of jM,W
�

0,⇠
�

below ✏ and let ✏1� be the least fixed point of jM,W
�

0,⇠
�

above ✏.

Then [✏0�, ✏
1
�) is a moving interval for ✏ with respect to (W�, ⇠�), meaning that

jM,W
�

0,⇠
�

fixes cofinally many ordinals in ✏0� as well as ✏1�, that jM,W
�

0,⇠
�

(✏0) > ✏0

for every ✏0, ✏0�  ✏0 < ✏1�, and finally that ✏0�  ✏ < ✏1�. Let j be jM,W
�

0,⇠
�

.

Claim 3.6.1 cfM(✏0�) = �

Proof: Let I be a cofinal subset of ✏0� of order type cfM(✏0�) consisting
of fixed points of j. If cfM(✏0�) < �, then

j(✏0�) = j(sup(I)) = sup(j“I) = sup(I) = ✏0�

since the critical point of j is �. Suppose cfM(✏0�) > �. Every ordinal in j(✏0�)
is of the form j(f)(�0, . . . �n�1) for some n < !, some function f : �n �! ✏0�
in M and some ordinals #0 < . . . < #n�1 belonging to the critical sequence
of the iteration of hM,W�i of length ⇠� + 1. As every such function is then
bounded by some ordinal in ✏0�,

j(✏0�) = sup(j“✏0�) = sup(j“I) = sup(I) = ✏0�

2

On the other hand, ✏1� is clearly equal to supn<!jn(✏0�), where j
0 = id � M

and jn+1 = j � jn for every n.
The rest of the proof is as in Fleissner’s argument (using Lemma 3.4):

Given any distinct �0, �1 in M✏, if ✏0�0 < ✏0�1 , then ✏1�1 < ✏1�0 . To see this,

27Note that jV,W
⇠

(✏) > ✏ is indeed first order expressible from W , ⇠ and ✏. Also, note
that if W is, in a transitive ZFC⇤–model M , a normal measure on an M–measurable
cardinal �, and ⇠, ✏ are ordinals in M , jM,W

⇠

(✏) > ✏ if and only if M |= jV,W
⇠

(✏) > ✏.
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suppose ✏0�0 < ✏0�1  ✏ < ✏1�0 and fix some ⌘ such that ✏0�0  ⌘ < ✏0�1
and such that j

M,W
�1

0,⇠
�1

(⌘) = ⌘. There is then some integer n such that

✏0�1 < (j
M,W

�0
0,⇠

�0
)n(⌘) < ✏1�0 . By n applications of the first equality in the con-

clusion of Lemma 3.4, j
M,W

�1
0,⇠

�1
((j

M,W
�0

0,⇠
�0

)n(⌘)) is (j
M,W

�0
0,⇠

�0
)n(j

M,W
�1

0,⇠
�1

(⌘)), which

is equal to (j
M,W

�0
0,⇠

�0
)n(⌘). Hence, ✏1�1 is at most (j

M,W
�0

0,⇠
�0

)n(⌘), and so ✏1�1 < ✏1�0 .
Finally, suppose towards a contradiction that there is an infinite strictly in-
creasing sequence (�i)i<! of ordinals M✏. Since i 6= j implies ✏0�

i

6= ✏0�
j

, by
passing to a subsequence we may assume that i < j < ! implies ✏0�

i

< ✏0�
j

. It
follows that ✏1�0 > ✏1�1 > . . . is an infinite descending chain of ordinals, which
is impossible. 2

Any last member, in the sense of Definition 3.1, of an iteration of a model
M bounded by an ordinal less than |M |+ has the same size as M :

Fact 3.7 Suppose ⌧ is an ordinal, M is a transitive model M of ZFC⇤ and
W := hWi : i < ⌧i and ~⌫ := h⌫i : i < ⌧i are two sequences such that

(a) W 2 M ,

(a) the ~⌫–iteration of M relative to W exists and is normal, and

(f) ~⌫ is bounded by some ordinal � < |M |+.

Then |MW,~⌫
↵ | = |M | for all ↵ < ⌃i<⌧ ⌫i.

Proof: Given i < ⌧ , let �i 2 M be such that
S
Wi = jM,W

0,⌃
j<i

⌫
j

(�i) if
such an ordinal exists. We temporarily define, for every n < !, the collection
Fn of �–maps of depth at least n by letting F0 be the collection of all functions
with domain k�i (for i < ⌧ and k < !) and by letting Fn be, for each nonzero
n < !, the collection of all functions f in Fn�1 such that

f(↵n
0 , . . .↵

n
k
n

�1)(↵
n�1
0 , . . .↵n�1

k
n�1�1) . . . (↵

1
0, . . .↵

1
k1�1),

whenever this expression is defined, is a function with domain k�i for some
i < ⌧ and k < !.28

28The indices i and k may certainly depend on the values of (↵j

0, . . .↵
j

kj�1)1jn

.
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Fix a nonzero ↵ < ⌃i<⌧ ⌫i. Note that, if h#� : � + 1 < ⌃i<⌧ ⌫ii is the
critical sequence of hMW,~⌫

↵ : ↵ < ⌃i<⌧ ⌫ii, then every set in MW,~⌫
↵ is of the

form
jM,W,~⌫
0,↵ (f)(#�l

0
, . . .#�l

k

l

)(#�l�1
0

, . . .#�l�1
k

l�1

) . . . (#�0
0
, . . .#�0

k0
)

for some l < !, for indices

�l
0 < . . . < �l

k
l

< �l�1
0 < . . . < �l�1

k
l�1

< . . . < �0
0 < . . . < �0

k0
< ↵

and for a suitable f 2 M , f a �–map of depth at least l. Hence, as each of
the tuples (�j

0, . . . �
j
k
j

) depends only on h(�m
0 , . . . �m

k
m

)ilm<j and on a unique
choice of kj+1 ordinals less than �– and thus, ultimately, on a unique choice
of finitely many ordinals less than � –, |MW,~⌫

↵ | = |M ⇥ �<!| = |M |. 2

The following lemma and its proof are due to the referee. They replace
previous incorrect versions.

Lemma 3.8 Let M be a transitive model of ZFC⇤ and let ✏0 2 M be an
ordinal. Let ⌧ be a limit ordinal and let W = hWi : i < ⌧ + 1i and ~⌫ = h⌫i :
i < ⌧ + 1i be such that

(a) the ~⌫–iteration of M relative to W exists and is normal,

(b) for all � < ⌃i<⌧ ⌫i, j
M,W,~⌫
0,� (✏0) = ✏0, and

(c) for all j < k < ⌧ , jM,W,~⌫
⌃

i<j

⌫
i

,⌃
i<k

⌫
i

(
S

Wj) 6=
S
Wk.

Then jM,W,~⌫
0,⌃

i<⌧

⌫
i

(✏0) = ✏0.

Proof: By induction on ✏0. The result clearly holds for ✏0 = 0 and the
successor stage of the induction is trivial, so assume ✏0 > 0 is a limit ordinal.
Fix M , W and ~⌫ as in the statement of the lemma. Since

jM,W,~⌫
0⌃

i<⌧

⌫
i

(✏0) = sup{jM,W,~⌫
�,⌃

i<⌧

⌫
i

(✏) : � < ⌃i<⌧ ⌫i, ✏ < ✏0},

it su�ces to show that for all � < ⌃i<⌧ ⌫i and all ✏ < ✏0, j
M,W,~⌫
�,⌃

i<⌧

⌫
i

(✏) < ✏0.
Fix such � and ✏. By Lemma 3.6 there is a finite set E 2 M� such that
in M� it holds that no cardinal outside E carries a normal measure whose
corresponding ultrapower embedding moves ✏. Since ⌧ is a limit ordinal, it
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follows from condition (c) that
S

Wk /2 jM,W,~⌫
�,⌃

i<k

⌫
i

(E) for a tail of k < ⌧ . Fix

k in this tail, and let ✏⇤ = jM,W,~⌫
�,⌃

i<k

⌫
i

(✏). Then

✏⇤  jM,W,~⌫
0,⌃

i<k

⌫
i

(✏) < jM,W,~⌫
0,⌃

i<k

⌫
i

(✏0) = ✏0

and the successor steps of the h⌫i : k  i < ⌧i–iteration of M⌃
i<k

⌫
i

relative
to hWi : k  i < ⌧i all fix the corresponding image of ✏⇤. Since the lemma
holds for ✏⇤, it follows by induction hypothesis that the limit stages of this
iteration also fix the image of ✏⇤, which means that jM,W,~⌫

⌃
i<k

⌫
i

,⌃
i<⌧

⌫
i

(✏⇤) = ✏⇤.

But, since jM,W,~⌫
⌃

i<k

⌫
i

,⌃
i<⌧

⌫
i

(✏⇤) = jM,W,~⌫
�,⌃

i<⌧

⌫
i

(✏), this means that jM,W,~⌫
�,⌃

i<⌧

⌫
i

(✏) < ✏0.
2

The proof of Lemma 3.11 below involves the following generalization of
the ultrafilters (U)i defined in the proof of Fact 3.2 (for U an ultrafilter on a
cardinal and i a nonzero integer).

Definition 3.3 Given m < !, a tuple (U0, . . . Um) such that each Ul is an
ultrafilter on a cardinal �l, and a tuple hn0 . . . nmi of nonzero integers, let us
define the sequence (U0, . . . Um)hn0, ... nm

i of subsets of [�0]⌫0 ⇥ . . . ⇥ [�m]nm by

(a) letting (U0, . . . Um)hn0, ... nm�1, 1i be the set of all sets of the form X0 ⇥
. . . ⇥Xm�1 ⇥X, where Xl ✓ [�l]nl for all l < m and X ✓ [�m]1, such
that the set of

hs0, . . . sm�1i 2 [�0]
n0 ⇥ . . . ⇥ [�m�1]

n
m�1

with

{� < �m : hs0, . . . sm�1i a h{�}i 2 X0 ⇥ . . . ⇥Xm�1 ⇥X} 2 Um

is in (U0, . . . , Um�1)hn0, ... nm�1i, and

(b) if nm > 1, by specifying, for every sequence Xl ✓ [�l]nl (for l < m+ 1)
that X0 ⇥ . . . ⇥Xm is in (U0, . . . , Um)hn0, ... nm

i if and only if the set of

hs0, . . . sm�1i a hsi 2 [�0]
n0 ⇥ . . . ⇥ [�m]

n
m

�1

such that

{� < � : hs0, . . . sm�1i a hs [ {�}i 2 hX0, . . . Xmi} 2 Um

is in (U0, . . . , Um)hn0, ... nm�1, nm

�1i.



Iterations relative to measures on cardinals 26

It is not di�cult to check that, if each �l is a measurable cardinal and each
Ul in the above definition is a normal ultrafilter on �l, then (U0, . . . Um)hn0, ... nm

i

is the set of X0⇥ . . . ⇥Xm such that, for all l < m+1, Xl ✓ [�l]nl and there
is Yl 2 Ul with [Yl]nl ✓ Xl.29

Also, the following fact is an easy consequence of the definition of the
(U0, . . . , Um)hn0, ... nm

i’s.

Fact 3.9 Let M be a transitive ZFC⇤–model. Let W = hWi : i < ⌧ + 1i
and ~⌫ = h⌫i : i < ⌧ + 1i be two sequences in M , let m < !, let 0 < nl < !
and il < ⌧ (for l < m), let f and g in M , and let R such that

(a) the ~⌫–iteration I of M with respect to W exists and is normal,

(b) letting �i =
S

Wi for all i, f and g are functions with domain [�i0 ]
n0 ⇥

. . . ⇥ [�i
m�1 ]

n
m�1, and

(c) R 2 {=,2}.

Let h#⇠ : ⇠ < ⌃i<⌧⌫ii be the critical sequence of I and, for every l < m,
let W ⇤

l 2 M be such that jM,W,~⌫
0,⌃

k<i

l

⌫
k

(W ⇤
l ) = Wi

l

.

Then, given any ⇠l0 < . . . < ⇠ln
l

�1 (for l < m) such that ⌃k<i
l

⌫k  ⇠lj <
⌃ki

l

⌫k for all j < nl, letting

t = h{#⇠00
, . . .#⇠0

n0�1
}, . . . {#⇠

n

m�1
0

, . . .#⇠
n

m�1
n

m�1�1
}i,

the following conditions are equivalent:

(1) jM,W,~⌫
0,⌃

i<⌧

⌫
i

(f)(t)R jM,W,~⌫
0,⌃

i<⌧

⌫
i

(g)(t).

(2) The set of hs0, . . . sm�1i 2 [�i0 ]
n0 ⇥ . . . ⇥ [�i

m�1 ]
n
m�1 such that

f(hs0, . . . sm�1i)Rg(hs0, . . . sm�1i)

is in (W ⇤
0 , . . .W

⇤
m�1)

hn0, ... nm�1i

The next result follows now immediately from Fact 3.9 and the remark
made after Definition 3.3.

29This fact, which is true in general, is easiest to verify in the case that �
l

 �
l+1 for all

l < m, which is the situation we shall be interested in.
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Fact 3.10 Let M be a transitive model of ZFC⇤ and let M be an inner
model of M . Let W = hWi : i < ⌧ + 1i and ~⌫ = h⌫i : i < ⌧ + 1i two

sequences in M , let fW = hW̃i : i < ⌧ + 1i 2 M , m < !, 0 < nl < ! and
il < ⌧ (for l < m), let f and g, and let R such that

(a) both the ~⌫–iteration I of M with respect to W and the ~⌫–iteration eI of

M with respect to fW exist and are normal,

(b) W̃i = M \Wi for all i < ⌧ ,

(c) letting �i =
S

Wi for all i, f and g are functions in M with domain
[�i0 ]

n0 ⇥ . . . ⇥ [�i
m�1 ]

n
m�1, and

(d) R 2 {=,2}.

Let h#⇠ : ⇠ < ⌃i<⌧ ⌫ii and h#̃⇠ : ⇠ < ⌃i<⌧ ⌫ii be, respectively, the critical

sequence of I and the critical sequence of eI.
Then, given any ⇠l0 < . . . < ⇠ln

l

�1 and ⇣ l0 < . . . < ⇣ ln
l

�1 (for l < m) such
that ⌃k<i

l

⌫k  ⇠lj, ⇣
l
j < ⌃ki

l

⌫k for all j < nl, letting

t = h{#⇠00
, . . .#⇠0

n0�1
}, . . . {#⇠

n

m�1
0

, . . .#⇠
n

m�1
n

m�1�1
}i

and
t̃ = h{#̃⇣00

, . . . #̃⇣0
n0�1

}, . . . {#̃⇣
n

m�1
0

, . . . #̃⇣
n

m�1
n

m�1�1
}i,

the following conditions are equivalent:

(1) jM,W,~⌫
0,⌃

i<⌧

⌫
i

(f)(t)R jM,W,~⌫
0,⌃

i<⌧

⌫
i

(g)(t)

(2) jM, fW,~⌫
0,⌃

i<⌧

⌫
i

(f)(t̃)R jM, fW,~⌫
0,⌃

i<⌧

⌫
i

(g)(t̃)

The next lemma shows, for a given ordinal ✏ in a model M , that if an
iteration of M can be split nicely30 into two parts such the first part does
not move ✏, then one can ignore the first part.

Lemma 3.11 (One–step compression lemma) Let M be a transitive model
of ZFC⇤, let ⌧0 and ⌧1 be ordinals, let W := hWi : i < ⌧0 + ⌧1 + 1i and
~⌫ := h⌫i : i < ⌧0 + ⌧1 + 1i be two sequences in M , and let ✏ be such that

30‘Nicely’ in the sense that conditions (b) and (c) apply.
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(a) for each i < ⌧0 + ⌧1, �i :=
S
Wi is an ordinal,

(b) for all i0 with ⌧0  i0 < ⌧0+ ⌧1, �i0 > � := supi<⌧0�i and �i0 > supi<⌧0⌫i,

(c) for all i < ⌧0 and all i0 with ⌧0  i0 < ⌧0 + ⌧1, ⌧1 < �i and ⌫i0 < �i,

(d) ✏ is an ordinal in M ,

(e) the ~⌫–iteration of M relative to W exists and is normal, and

(f) jM,W,~⌫
0,⌃

i<⌧0 ⌫
i

(✏) = ✏.

Let W ⇤
i 2 M , for i < ⌧1 + 1, be such that jM,W,~⌫

0,⌃(⌫
k

: k<⌧0+i)(W
⇤
i ) = W⌧0+i for

every i < ⌧1, and let ~⌫⇤ = h⌫⇤
i : i < ⌧1 + 1i be given by ⌫⇤

i = ⌫⌧0+i for all
i < ⌧1 + 1.

Then, given any i < ⌧1,

jM,W,~⌫
0,⌃

k<⌧0
⌫
k

(W ⇤
i ) = W ⇤

i \MW,~⌫
⌃

k<⌧0
⌫
k

,

and thus
jM,W,~⌫
0,⌃(⌫

i

: i<⌧0+⌧1)
(✏) = jM,W⇤,~⌫⇤

0,⌧1 (✏),

where W⇤ = hW ⇤⇤
i : i < ⌧1 + 1i 2 M is defined recursively by

(i) W ⇤⇤
0 = W ⇤

0 and by

(ii) W ⇤⇤
i = jM,W⇤�i,~⌫⇤�i

0,⌃
k<i

⌫⇤
k

(W ⇤
i ) for i > 0.

Proof: Let M = MW,~⌫
⌃

i<⌧0 ⌫
i

. To start with, note that, since ~⌫ and W are

both in M and M is transitive, M is definable in M . In particular, M ✓ M .
Let j0 = jM,W,~⌫

0,⌃
k<⌧0

⌫
k

, let fW = hW̃i : i < ⌧1 + 1i be defined recursively by

(i) W̃0 = j0(W ⇤
0 ) and by

(ii) W̃i = j
MW, ~⌫

⌃
j<⌧0

⌫

j

, fW�i,~⌫⇤�i
⌃

k<i

⌫⇤
k

(j0(W ⇤
i )) if i > 0,

and let j1 = jM, fW,~⌫⇤

0,⌃
k<⌧1

⌫⇤
k

. Fix i < ⌧1, and let us show j0(W ⇤
i ) = W ⇤

i \ M .
Let X0 2 W ⇤

i be the set of M–inaccessible cardinals between � and �⌧0+i.
Note that every ordinal in X0, as well as �⌧0+i, is a fixed point of j0. Now,
given any X 2 j0(W ⇤

i ), X = j0(f)({⌘0, . . . ⌘n�1}) for some n, some function
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f : [�]n �! W ⇤
i in M and some ⌘0 < . . . < ⌘n�1 on the critical sequence

of the ~⌫ � (⌧0 + 1)–iteration of M with respect to W � (⌧0 + 1). By �1–
completeness of W ⇤

i in M , there is then some Y 2 W ⇤
i such that Y ✓ f(s)

for all s 2 [�]n. Note that for every � 2 Y \X0,

� = j0(�) 2 j0(f)({⌘0, . . . ⌘n�1}) = X

But Y \ X0 is in W ⇤
i , and so X ◆ Y \ X0 is in W ⇤

i as well. This shows
j0(W ⇤

i ) ✓ W ⇤
i \M . For the reverse inclusion, note thatX 2 (W ⇤

i \M)\j0(W ⇤
i )

implies �⌧0+i \X 2 j0(W ⇤
i ) ✓ W ⇤

i , which is a contradiction.
It remains to show

j1(✏) = j1(j0(✏)) � jM,W⇤,~⌫⇤

0,⌃(⌫⇤
k

: k<⌧1)
(✏) � j1(✏)

This will finish the proof since j1 � j0 = jM,W,~⌫
0,⌃(⌫

k

: k<⌧0+⌧1)
.

The equality holds by hypothesis. As to the first inequality, let h#⇠ : ⇠ <
⌧1i be the critical sequence of the ~⌫⇤–iteration ofM with respect toW⇤. Note
that, for any transitive ZFC⇤–model N , any normal measure W in N and
any ordinal ⌫ 2 N , the critical sequence of the iteration of hN,W i of length
⌫ + 1 is definable, within N , from W and ⌫. Hence, since the critical point
of j0 is above ⌫⇤

i for all i < ⌧1 and above ⌧1, hj0(#⇠) : ⇠ < ⌧1i is the critical

sequence of the ~⌫⇤–iteration of M with respect to fW . Also, let m < !, fix
a sequence of nonzero nl < ! and of il < ⌧1 (l < m), let f and g be two
functions in M from [�i0 ]

n0 ⇥ . . . ⇥ [�i
m�1 ]

n
m�1 into ✏, and let R 2 {=, 2}.

Let U = (W ⇤
i0
, . . . W ⇤

i
m�1

)hn0, ... nm�1i be as in Definition 3.3. Let also ⇠lj (for
l < m and j < nl) be such that ⌃k<i

l

⌫⇤
k  ⇠l0 < ⇠l1 < . . . < ⌃ki

l

⌫⇤
k for all

l < m, and let t = h{#⇠00
, . . .#⇠0

n0�1
} . . . {#⇠m�1

0
. . .#⇠m�1

n

m�1�1
}i. Note that

jM,W⇤,~⌫⇤

0,⌃(⌫⇤
k

: k<⌧1)
(f)(t)R jM,W⇤,~⌫⇤

0,⌃(⌫⇤
k

: k<⌧1)
(f)(t)

if and only if

{s 2 [�i0 ]
n0 ⇥ . . .⇥ [�i

m�1 ]
n
m�1 : f(s)Rg(s)} 2 U,

by Fact 3.9, if and only if

{s 2 [�i0 ]
n0 ⇥ . . .⇥ [�i

m�1 ]
n
m�1 : j0(f)(s)R j0(g)(s)} 2 j0(U),

by elementarity of j0, if and only if

j1(j0(f))(t)R j1(j0(g))(t),
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for t = h{j0(#⇠00
), . . . j0(#⇠0

n0�1
)} . . . {j0(#⇠m�1

0
) . . . j0(#⇠m�1

n

m�1�1
)}i, again by

Fact 3.9.
It follows that the mapping sending an ordinal which can be expressed

as jM,W⇤,~⌫⇤

0,⌃(⌫⇤
k

: k<⌧1)
(f)(t), for f 2 M and t as above, to j1(j0(f))(t), where t

is obtained from t as above, is a well-defined one–to–one order–preserving
function from jM,W⇤,~⌫⇤

0,⌃(⌫
k

: k<⌧1)
(✏) into j1(j0(✏)).

The second inequality follows from the fact that M ✓ M and that
W ⇤

i \ M = j0(W ⇤
i ) for all i < ⌧1. As before, let h#⇠ : ⇠ < ⌧1i be the

critical sequence of the ~⌫⇤–iteration of M with respect to W⇤. Consider the
mapping from j1(✏) into jM,W⇤,~⌫⇤

0,⌃
k<⌧1

⌫⇤
k

(✏) sending an ordinal of the form j1(f)(t),

where t = h{j0(#⇠00
), . . . j0(#⇠0

n0�1
)} . . . {j0(#⇠

n

m�1
0

), . . . j0(#⇠
n

m�1
n

m�1�1
)}i,31 and

where m, nl, il (for l < m), ⇠lj (for l < m and j < nl) and f are as before,

except that f is also supposed to be in M , to jM,W⇤

0,⌃
k<⌧1

⌫⇤
k

(f)(t), where t =

h{#⇠00
, . . .#⇠0

n0�1
} . . . {#⇠

n

m�1
0

, . . .#⇠
n

m�1
n

m�1�1
}i. This mapping is well–defined,

since every function in M is also in M , and it is defined on all j1(✏), one–to–
one and order–preserving. This follows from considerations as in the above
paragraph, using the fact that j0(W ⇤

i ) = W ⇤
i \M for all i < ⌧1, together with

Fact 3.10. 2

Lemma 3.12 is a consequence of Lemmas 3.8 and 3.11.

Lemma 3.12 (Compression lemma) Let M be a transitive set model of
ZFC⇤. Let ✏, W = hWi : i < ⌧ + 1i and ~⌫ = h⌫i : i < ⌧ + 1i be such
that

(a) ✏ is an ordinal in M ,

(b) W = hWi : i < ⌧ + 1i and ~⌫ = h⌫i : i < ⌧ + 1i are two sequences in
M ,

(c) for each i < ⌧ , ⌫i is less than the first measurable cardinal in M ,

(d) for all j < k < ⌧ , jM,W,~⌫
⌃

i<j

⌫
i

,⌃
i<k

⌫
i

(
S

Wj) <
S
Wk, and

(e) the ~⌫–iteration of M relative to W exists and is normal.

31Remember that hj0(#⇠

) : ⇠ < ⌃
k<⌧1 ⌫

⇤
k

i is the critical sequence of the ~⌫⇤–iteration of

M with respect to fW.
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Let {i0, . . . in�1}<32 be the finite set of indices i < ⌧ such that

jM,W,~⌫
0,⌃

j<i

⌫
j

(✏) < j
MW, ~⌫

⌃
j<i

⌫

j

,W
i

0, ⌫
i

(jM,W,~⌫
0,⌃

j<i

⌫
j

(✏))33

and let (W ⇤
k )k<n 2 M be such that Wi

k

= jM
W, ~⌫

0,⌃(⌫
j

: j<i
k

)(W
⇤
k ) for all k < n.

Let (Mk)kn be the sequence of ZFC⇤–models given by M0 = M and

by Mk+1 = (Mk)
j
k

(W ⇤
k

)
⌫
i

k

whenever k < n, where (jk)k<n is the sequence of
mappings defined by setting

(i) j0 = idM0, and

(ii) jk+1 = j
M

k

, j
k

(W ⇤
k

)
0,⌫

i

k

� jk for every k < n.

Then,

jM,W,~⌫
0,⌃

i<⌧

⌫
i

(✏) = (jMn

, j
n

(W ⇤
n

)
0,⌫

i

n

� jMn�1, jn�1(W ⇤
n�1)

0,⌫
i

n�1
� . . . � jM0, j0(W ⇤

0 )
0,⌫

i0
)(✏)

Proof: Let us partition ⌧ + 1 into m blocks (Ij)j<m, for some m with
1  m  2n+ 1, in such a way that

(1) i < i0 whenever i 2 Ij, i0 2 Ij0 and j < j0,

(2) for all j with j + 1 < m, all i 2 Ij and all i0 2 Ij+1,

jM,W,~⌫
0,⌃

k<i

⌫
k

(✏) < j
MW, ~⌫

⌃
k<i

⌫

k

,W
i

0, ⌫
i

(jM,W,~⌫
0,⌃

k<i

⌫
k

(✏))

if and only if

jM,W,~⌫
0,⌃

k<i

0 ⌫
k

(✏) = j
MW, ~⌫

⌃
k<i

0 ⌫
k

,W
i

0

0, ⌫
i

0 (jM,W,~⌫
0,⌃

k<i

0 ⌫
k

(✏))

This partition exists, by Lemma 3.8, and is clearly unique. Also, again
by Lemma 3.8, every Ij has a maximum. Also, notice that if j is such that

jM,W,~⌫
0,⌃

k<i

⌫
k

(✏) < j
MW, ~⌫

⌃
k<i

⌫

k

,W
i

0, ⌫
i

(jM,W,~⌫
0,⌃

k<i

⌫
k

(✏)) for all i 2 Ij, then Ij is finite. Let us
temporarily call (Ij)j<m the moving indices decomposition for (M, W , ~⌫, ✏).

32That is, i0 < . . . < i
n�1.

33This set is finite by Lemma 3.6 and by elementarity of each jM,W, ~⌫

0,⌃j<i ⌫j
.
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We will prove the lemma by induction onm, the size of the moving indices
decomposition for (M, W , ~⌫, ✏).

If m = 1, then either ✏ is fixed by jM,W,~⌫
0,⌃

i<⌧

⌫
i

, and so the result holds, or
every Wi moves the corresponding image of ✏ (in this case of course ⌧ is
finite), and so jM,W,~⌫

0,⌃
i<⌧

⌫
i

is already of the desired form.

If m = 2, the result follows trivially (by Lemma 3.8) if jM,W,~⌫
0,⌃

k<i

⌫
k

(✏) is a

fixed point of j
MW, ~⌫

⌃
k<i

⌫

k

,W
i

0, ⌫
i

for all i 2 I1, and from the one–step compression

lemma (Lemma 3.11) if jM,W,~⌫
0,⌃

k<i

⌫
k

(✏) is a fixed point of j
MW, ~⌫

⌃
k<i

⌫

k

,W
i

0, ⌫
i

for all
i 2 I0.

Now supposem > 2 and suppose that the result holds for (M
0
, W 0

, ~⌫
0
, ✏

0
)

whenever this tuple satisfies the hypothesis of the lemma and its moving
indices decomposition is of size less than m.

Suppose jM,W,~⌫
0,⌃(⌫

k

: k<max(I
m�2)+1)(✏) is a fixed point of j

MW, ~⌫

⌃
k<i

⌫

k

,W
i

0, ⌫
i

for every

i 2 Im�1. Then, jM,W,~⌫
0,⌃

i<⌧

⌫
i

(✏) = jM,W,~⌫
0,⌃(⌫

k

: k<max(I
m�2)+1)(✏), by Lemma 3.8, and

by induction hypothesis the right-side term of this equation is equal to

(jMn

, j
n

(W ⇤
n

)
0,⌫

i

n

� jMn�1, jn�1(W ⇤
n�1)

0,⌫
i

n�1
� . . . � jM0, j0(W ⇤

0 )
0,⌫

i0
)(✏)

for (Mk)kn and (jk)kn obtained in the required way.34

The remaining case is when j
MW, ~⌫

⌃
k<i

⌫

k

,W
i

0, ⌫
i

(jM,W,~⌫
0,⌃

k<i

⌫
k

(✏)) > jM,W,~⌫
0,⌃

k<i

⌫
k

(✏) for

every i 2 Im�1 (and thus j
MW, ~⌫

⌃
k<i

⌫

k

,W
i

0, ⌫
i

(jM,W,~⌫
0,⌃

k<i

⌫
k

(✏)) = jM,W,~⌫
0,⌃

k<i

⌫
k

(✏) for every
i 2 Im�2).

By applying Lemma 3.11,35 we first compress the tail of the iteration by
eliminating the segment of it corresponding to Im�2. Then we apply the
induction hypothesis to the iteration thus obtained (whose moving indices
decomposition has less than m elements).

More precisely, let Im�1 ✓ {i0, . . . in�1} be of the form {im, im+1, . . . in�1}
for some m < !. Suppose |Im�1| = r. Let

W⇤ = W � (max(Im�3) + 1) a hfW0, . . .fWr�1i

and
~⌫ ⇤ = ~⌫ � (max(Im�3) + 1) a h⌫̃0, . . . ⌫̃r�1i,

34The induction hypothesis applies because the moving indices decomposition for
(M,W � (max(I

m�2) + 1), ~⌫ � (max(I
m�2) + 1), ✏) is of size m� 1.

35To MW, ~⌫

⌃(⌫k : k<max(Im�3)+1) as M , jM,W, ~⌫

0,⌃(⌫k : k<max(Im�3)+1)(✏) as ✏, etc.
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where ⌫̃l = ⌫i
m+l

for all l < r, and where hfWl : l < ri is defined recursively
by setting

(i) fW0 = jM,W,~⌫
0,⌃(⌫

k

: k<max(I
m�3)+1)(W

⇤
i
m

), and

(ii) by setting, for every nonzero l < r, fWl = jM,Wl,~⌫ l

0,⌃(⌫
k

: k<max(I
m�3)+1)(W

⇤
i
m+l

),

where W l = W � (max(Im�3) + 1) a hfW0, . . . ,fWl�1i and ~⌫ l = ~⌫ �
(max(Im�3) + 1) a h⌫i

m

, . . . , ⌫i
m+l�1

i.

Now, by Lemma 3.11,36

jM,W,~⌫
0,⌃

i<⌧

⌫
i

(✏) = jM,W⇤,~⌫ ⇤

0,⌃(⌫
k

: k<max(I
m�3)+1)+⌫

i0+...+⌫
i

r�1
(✏)

Finally, since the moving indices decomposition for (M,W⇤, ~⌫ ⇤, ✏) is of size
m� 2, it can be seen by induction hypothesis that the right-side term of this
equation is equal to

(jMn

, j
n

(W ⇤
n

)
0,⌫

i

n

� jMn�1, jn�1(W ⇤
n�1)

0,⌫
i

n�1
� . . . � jM0, j0(W ⇤

0 )
0,⌫

i0
)(✏)

for (Mk)kn and (jk)kn as required. 2

3.2 Iterations of non-transitive models (as in Defini-

tion 3.2).

Given two sets N0, N1 and a set F of functions, we will say that N0 and
N1 are dense in each other relative to F if for every ✏ 2 {0, 1} and every
f 2 F \ N ✏ there is a function g 2 F \ N1�✏ with dom(g) = dom(f) and
g(x) ✓ f(x) for all x 2 dom(f).

The following lemma is quite standard.

Lemma 3.13 Suppose

(a) � is a measurable cardinal and W is a normal measure on �,

36With MW, ~⌫

⌃(⌫k : k<max(Im�3)+1) as M , ot(I
m�2) as ⌧0, ot(I

m�1) as ⌧1, W �
[min(I

m�2), ⌧ + 1) as W, ~⌫ � [min(I
m�2), ⌧ + 1) as ~⌫, and jM,W, ~⌫

0,⌃(⌫k : k<max(Im�3)+1)(✏)
as ✏.
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(b) ✓ > 2� is a regular cardinal,

(c) N0 and N1 are elementary substructures of H(✓) containing W ,

(d) given ✏ 2 {0, 1}, hN ✏
↵ : ↵  �i and h⌘✏↵ : ↵ < �i are, respectively, the

iteration of N ✏ relative to W and its critical sequence, and

(e) N0 and N1 are dense in each other relative to
S

n<!(
(n�)W ).

Then, for every ↵ < �, N0
↵ and N1

↵ are dense in each other relative toS
n<!(

(n�)W ).
In particular, h⌘0↵ : ↵ < �i = h⌘1↵ : ↵ < �i.37 Hence, if, in addition,

N0 ✓ N1, then N0
↵ ✓ N1

↵ for all ↵  �.

Lemma 3.13 can be easily proved by induction on ↵ < �. The following
fact will be used, together with Lemma 3.13, in the proof of Lemma 3.15.

Lemma 3.14 Suppose

(a) � = h�i : i < ⌧i is a sequence of measurable cardinals,

(b) for each i < ⌧ , Wi is a normal measure on �i,

(c) � is a measurable cardinal, � /2 range(�),

(d) W is a non-principal �–complete ultrafilter on �,

(e) ✓ > 2supi<⌧

�
i is a regular cardinal,

(f) N is an elementary substructure of H(✓) of size less than �0 and con-
taining W := hWi : i < ⌧i and W ,

(g) ~⌫ = h⌫i : i < ⌧i is a sequence of nonzero ordinals bounded by �0 + 1,
and

(h) the ~⌫–iteration of N relative to W exists.

Then, given any ↵ < ⌧ , N and NW,~⌫
↵ are dense in each other relative toS

n<!(
(n�)W ).

37Because for each ✏ 2 {0, 1} and ↵ < � and each X 2 W \ N ✏

↵

there is then some
Y 2 W \N1�✏

↵

with Y ✓ X, so that in particular min(
T
(W \N ✏

↵

)) = min(
T
(W \N1�✏

↵

)).
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Proof: By induction on ↵. For ↵ = 0 there is nothing to prove and,
for ↵ a nonzero limit ordinal, the result follows immediately by induction
hypothesis as then NW,~⌫

↵ =
S

�<↵ N
W,~⌫
� . For the successor case, suppose

NW,~⌫
↵ is the one–step extension of NW,~⌫

↵0
– so ↵ = ↵0 + 1 – relative to Wi

for some i < ⌧ . Fix n < ! and a function f from n� into W in NW,~⌫
↵ .

We want to see that there is a function g from n� into W in N such that
g(�0, . . . �n�1) ✓ f(�0, . . . �n�1) for all �0, . . . �n�1 2 �.

If �i > �, then 2� < sup(�i \NW,~⌫
↵0

). In particular, NW,~⌫
↵ and NW,~⌫

↵0
have

the same intersection with (
S

n<!(
(n�)W )), and the desired result follows

from the induction hypothesis applied to ↵0. Hence, we may assume �i < �.
f = h(⌘), where ⌘ = min(

T
(Wi\NW,~⌫

↵0
)), for a function h from �i into (n�)W

in NW,~⌫
↵0

. Let h : n� �! W be defined by

h(�0, . . . �n�1) =
\

{h(�)(�0, . . . �n�1) : � < �i}

h is a function in NW,~⌫
↵0

and, as �i < � and W is �–complete, its range is
indeed included in W . By induction hypothesis there is a function g from n�
into W in N such that

g(�0, . . . �n�1) ✓ h(�0, . . . �n�1) ✓ h(⌘)(�0, . . . �n�1) = f(�0, . . . �n�1)

for all �0, . . . �n�1 2 �. 2

Lemma 3.15 shows that for every ordinal �, every N and every sequence
W of measures (on distinct cardinals) there is a unique maximal closed it-
eration I of N relative to W such that any member of any iteration, in any
possible transitive outer model of set theory, of N relative to W and bounded
by � is included in the last model of I. This last model of I can thus be
thought of as the hull of N relative to all such possible iterations.

Lemma 3.15 Suppose

(a) � = h�i : i < ⌧i is a one–to–one sequence of measurable cardinals,38

(b) for each i < ⌧ , Wi is a normal measure on �i,

(c) ✓ > 2supi<⌧

�
i is a regular cardinal,

38� need not be increasing.
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(d) N is an elementary substructure of H(✓) of size less than �0 and con-
taining W := hWi : i < ⌧i,

(e) � is an ordinal and ~� is the ⌧–sequence with constant value �,

(f) ⌧  ⌧ and � : ⌧ �! ⌧ is a strictly increasing function,

(g) ~⌫ = h⌫j : j < ⌧i is a sequence of nonzero ordinals bounded by � + 1,
and

(h) both the ~�–iteration of N relative to W and the ~⌫–iteration of N relative
to W := hW�(j) : j < ⌧i exist.39

Let h⌘⇤↵ : ↵ + 1 < � · ⌧i and h⌘↵ : ↵ + 1 < ⌃j<⌧⌫ji be, respectively,

the critical sequence of the ~�–iteration of N relative to W, and the critical
sequence of the ~⌫–iteration of N relative to W.

Then, for all j < ⌧ , ⌘(⌃
k<j

⌫
k

)+↵ = ⌘⇤�·�(j)+↵ for all ↵ with ↵ + 1 < ⌫j and

NW,~⌫
(⌃

k<j

⌫
k

)+↵ ✓ NW,~�
�·�(j)+↵

for all ↵ < ⌫j.

Proof: We prove the result by induction on j < ⌧ .
NW,~⌫

�·�(j) is the last member of an iteration of N relative to the sequence
W 0 = hWk : k < �(j)i of measures. Since each Wk is a measure on �k
and ��(j) /2 {�k : k < �(j)}, it follows by Lemma 3.14 that N and NW,~�

�·�(j)
are dense in each other relative to

S
n<!(

(n �
�(j))W�(j)). For the same reason,

N and NW,~⌫
⌃

k<j

⌫
k

are also dense in each other relative to
S

n<!(
(n �

�(j))W�(j)).
By the transitivity of the relation of being dense in each other relative toS

n<!(
(n �

�(j))W�(j)), it follows that NW,~⌫
⌃

k<j

⌫
k

and NW,~�
�·�(j) are dense in each

other relative to
S

n<!(
(n �

�(j))W�(j)).

By Lemma 3.13, for every ↵ < ⌫j, N
W,~⌫
(⌃

k<j

⌫
k

)+↵ and NW,~�
�·�(j)+↵ are then

dense in each other relative to
S

n<!(
(n �

�(j))W�(j)) and ⌘(⌃
k<j

⌫
k

)+↵ = ⌘⇤�·�(j)+↵

for every ↵ with ↵+1 < ⌫j. SinceN
W,~⌫
⌃

k<j

⌫
k

✓ NW,~�
�·�(j), this impliesNW,~⌫

(⌃
k<j

⌫
k

)+↵ ✓

NW,~�
�·�(j)+↵ for all ↵ < ⌫j, again by Lemma 3.13. This finishes the proof. 2

Lemma 3.16 follows from Lemma 3.12 via Fact 3.1 and Lemma 3.15.
39Note that this implies �  �

i

+ 1 for all i < ⌧ .
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Lemma 3.16 Suppose

(a) h�i : i < ⌧i is a one–to–one sequence of measurable cardinals,

(b) W⌧ is any set and Wi is a normal measure on �i for each i < ⌧ ,

(c) ✓ > 2supi<⌧

�
i is a regular cardinal,

(d) N 4 H(✓) is countable and with W := hWi : i < ⌧ + 1i 2 N ,

(e) ✏ 2 N is an ordinal,

(f) ~⌫ = h⌫i : i < ⌧ + 1i is, in some outer model of set theory, a sequence
of ordinals with 0 < ⌫i < N \ !1 and with ⌫⌧ = 1,

(g) {i0, . . . in�1}< is the finite set of indices i < ⌧ such that ✏ < jH(✓),W
i

0,!1
(✏),40

and

(h) the ~⌫–iteration of N relative to W exists.

Then,

ot(NW,~⌫
⌃

i<⌧

⌫
i

\ ✏) = ot(N
hW

i0 ,Wi1 , ...Wi

n�1 i, h⌫i0 ,⌫i1 , ... ⌫in�1+1i
⌫
i0+⌫

i1+ ...+⌫
i

n�1
\ ✏)

Proof: Let ~⌫⇤ = h⌫⇤
i : i < ⌧ + 1i be the ⌧ + 1–sequence of ordinals

defined by ⌫⇤
⌧ = 1, by ⌫⇤

i = ⌫i if i 2 {i0, . . . in�1}, and by ⌫⇤
i = !1 \ N

otherwise. Clearly, the ~⌫⇤–iteration of N relative to W exists. Then,

ot(NW,~⌫
⌃

i<⌧

⌫
i

\ ✏)  ot(NW,~⌫⇤

⌃
i<⌧

⌫⇤
i

\ ✏) = ot(N
hW

i0 ,Wi1 , ...Wi

n�1 i, h⌫i0 ,⌫i1 , ... ⌫in�1+1i
⌫
i0+⌫

i1+ ...+⌫
i

n�1
\ ✏)

The inequality holds by Lemma 3.15. As to the equality, let hN↵ : ↵ < ↵i
be the ~⌫⇤–iteration of N relative to W and let ⇡↵ be, for every ↵ < ↵, the
collapsing function of N↵. Also, let W i = ⇡⌃

j<i

⌫⇤
j

(Wi) for every i < ⌧ , and

let W ⌧ be, for example, ;. Note that, by Fact 3.1, hW i : i < ⌧ + 1i can be
computed, inside M := ⇡0“N0, from ⇡0(W),41 and hence it is an element of
M (and therefore ~⌫⇤ also belongs to M). Hence, by Lemma 3.12,

jM,W,~⌫⇤

0,⌃
i<⌧

⌫⇤
i

(⇡(✏)) = (j
M

n�1, jn�1(W
i

n�1 )

0,⌫
i

n�1
� jMn�2, jn�2(W

i

n�2 )

0,⌫
i

n�2
� . . .� jM0, j0(W

i0 )
0,⌫

i0
)(⇡(✏))

40Note that this set is indeed finite, once again by Lemma 3.6, and definable over H(✓)
from W and ✏ (and in particular it belongs to N).

41hW
i

: i < ⌧ + 1i need not be ⇡0(W) in general.
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where (Mk)k<n and (jk)k<n are defined by recursion as in its statement. By
Fact 3.1, this implies

ot(NW,~⌫⇤

⌃
i<⌧

⌫⇤
i

\ ✏) = ot(N
hW

i0 ,Wi1 ,...Wi

n�1 i, h⌫i0 ,⌫i1 ,...⌫in�1+1i
⌫
i0+⌫

i1+...+⌫
i

n�1
\ ✏)

Finally, ot(N
hW

i0 ,Wi1 ,...Wi

n�1 i, h⌫i0 ,⌫i1 ,...⌫in�1+1i
⌫
i0+⌫

i1+...+⌫
i

n�1
\ ✏)  ot(NW,~⌫

⌃
i<⌧

⌫
i

\ ✏) again by
Lemma 3.15, and the desired result follows from putting all the inequalities
(and the fifth equality) together. 2

The final result in this section (Lemma 3.18) deals with iterations relative
to measures in a forcing extension. It will be used in the proof of Lemma
4.1 in the next section. The proof of Lemma 3.18 relies on the following
preliminary fact.

Lemma 3.17 Let � be a measurable cardinal, let W be a normal measure
on �, let ✓ > 2� be a regular cardinal, and let P, Q, W̃ , G be such that

(a) P ✓ Q are partial orders such that P 2 H(✓) is a complete suborder of
Q of size less than �,

(b) W̃ is a P–name for the ultrafilter on � generated by W ,

(c) Ṅ is a Q–name for a countable elementary substructure of H(✓)V con-
taining W and P, and

(d) G is a Q–generic filter over V and, in V [G], every countable set of
ordinals is included in a countable set of ordinals in V .

In V [G],

(e) let N 0 be the one–step extension of ṄG relative to W , and

(f) let N † be the one–step extension of ṄG[G \ P ] relative to W̃G.42

Then, N † = N 0[G \ P ]. If, in addition, G \D \ ṄG 6= ; for every dense
subset D of P in ṄG, then G \D \N 0 6= ; for every dense D ✓ P in N 0.

42Note that, since every countable subset of V in V [G] is covered by a countable set in
V ,

T
(X \ W ) and

T
(Y \ W̃

G

) are nonempty for all countable sets X, Y in V [G] with
W 2 X and W̃

G

2 Y , so it makes sense to define, in the same way as in Definition 3.2,
the one–step iterations of Ṅ

G

and of Ṅ
G

[G \ P] relative to, respectively, W and W̃
G

.
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Proof: Let ⌘ = min(
T
(ṄG \W )) and ⌘ = min(

T
(ṄG[G\P ]\ W̃G)).

N 0[G \ P ] and N † are, respectively, the set of all (f̃⌘)G, where (f̃↵)↵<� is a
�–sequence in ṄG consisting of P–names, and the set of f̃G(⌘), where f̃ 2 ṄG

is a P–name for a function with domain �. Therefore, in order to check the
equality N † = N 0[G\P ], it su�ces to prove that ⌘ is forced to be equal to ⌘.
In fact, we can prove

T
(W \ ṄG) =

T
(W̃G \ ṄG[G \P ]). In order to verify

this equality, it is enough to show that for every X 2 W̃G \ ṄG[G\P ] there
is a Y ✓ X in ṄG \W .

Thus, let X̃ be a P–name in ṄG for X. The set D of conditions p 2 P for
which there is some Y 2 W with p �P Y ✓ X̃ is dense in P . For every p 2 D
we fix some Yp which works as Y for p in the above sentence. Furthermore,
we may assume that F := {(p, Yp) : p 2 D} is in ṄG. By �–completeness
of W , Y :=

T
{Yp : p 2 D} is in W , and as F is in ṄG, Y is in ṄG as well.

Since D is dense, there is some p 2 D \G, and thus Y ✓ Yp ✓ X.
Finally, note that, since � is inaccessible and � \ ṄG is an initial segment

of � \ N 0, ṄG and N 0 have the same subsets of P . Hence, if G \ D \ ṄG

is nonempty for every dense subset D of P in ṄG, then it is also true that
G \D \N 0 is nonempty for every dense subset D of P in Ṅ 0. 2

Lemma 3.18 Let h�i : i < ⌧i be a sequence of measurable cardinals and
let Wi be, for each i, a normal measure on �i. Let ✓ > 2supi<⌧

�
i be a regular

cardinal, and let P, Q, W̃i (for i < ⌧), W, W⇤, Ṅ , G and ~⌫ be such that

(a) P ✓ Q are partial orders such that P 2 H(✓) is a complete suborder of
Q of size less than �i for all i < ⌧ ,

(b) for each i < ⌧ , W̃i is a P–name for the ultrafilter on �i generated by
Wi,

(c) W = hWi : i < ⌧i and W⇤ is a P–name for hW̃i : i < ⌧i,

(d) Ṅ is a Q–name for a countable elementary substructure of H(✓)V con-
taining W and P,

(e) G is Q–generic over V and every countable set of ordinals in V [G] is
included in a countable set in V ,

(f) ~⌫ 2 V [G] is a ⌧–sequence of nonzero ordinals, and
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(g) the ~⌫–iteration hN↵ : ↵ < ↵i of ṄG relative to W and the ~⌫–iteration
hN⇤

↵ : ↵ < ↵i of ṄG[G \ P ] relative to W⇤ exist.43

Then, for every ↵ < ↵, N⇤
↵ = N↵[G\P ]. Furthermore, if ṄG\D\G 6= ;

for every dense subset D of P in ṄG, then N↵ \D \G 6= ; for every ↵ < ↵
and every dense D ✓ P in N↵.

Proof: Since |P| < �i for all i and since all �i are inaccessible, all N↵’s
have the same subsets of P . Hence, as in Lemma 3.17, if ṄG\D\G 6= ; for
every dense subset D of P in ṄG, then also N↵ \D \G 6= ; for every dense
D ✓ P in N↵ and every ↵ < ↵.

Next we prove, by induction on i < ⌧ , that for every ⇠ < ⌫i, N⇤
(⌃

j<i

⌫
j

)+⇠ =
N(⌃

j<i

⌫
j

)+⇠[G \ P ].
Since N⇤

⌃
j<i

⌫
j

=
S

↵<⌃
j<i

⌫
j

N⇤
↵ if ⌃j<i ⌫j is a limit ordinal and N⇤

⌃
j<i

⌫
j

=

N⇤
⇠
if ⌃j<i ⌫j = ⇠ + 1, by induction hypothesis applied to j < i, N⇤

⌃
j<i

⌫
j

=

N⌃
j<i

⌫
j

[G \ P ].
Now we can obtain the conclusion for ⇠ < ⌫i by induction on ⇠. The

desired conclusion for the case ⇠ = 0 has already been proved and, as
N(⌃

j<i

⌫
j

)+⇠ =
S

⇠0<⇠ N(⌃
j<i

⌫
j

)+⇠0 and N⇤
(⌃

j<i

⌫
j

)+⇠ =
S

⇠0<⇠ N
⇤
(⌃

j<i

⌫
j

)+⇠0 for ⇠
limit, the limit case of the induction is trivial.

Now suppose ⇠ = ⇠+1 and assumeN⇤
(⌃

j<i

⌫
j

)+⇠
= N(⌃

j<i

⌫
j

)+⇠[G\P ]. Then,

since N(⌃
j<i

⌫
j

)+⇠ and N⇤
(⌃

j<i

⌫
j

)+⇠ are, respectively, the one–step extension of
N(⌃

j<i

⌫
j

)+⇠ relative to Wi and the one–step extension of N⇤
(⌃

j<i

⌫
j

)+⇠
relative

to (W̃i)G, by Lemma 3.17 it follows that N⇤
(⌃

j<i

⌫
j

)+⇠ = N(⌃
j<i

⌫
j

)+⇠[G\P ]. 2

4 Resuming the proof of Theorem 2.1.

Now we are back in our forcing construction for proving Theorem 2.1 and
with enough notions and tools for stating and proving the following forcing
iteration lemma.

Lemma 4.1 Let ↵   be an ordinal. Then, any countable set of ordinals
in any forcing extension via P↵ is included in a countable set in the ground
model.

43By the same remark as in the footnote to Lemma 3.17, it makes sense to define, in
V [G], the iterations hN

↵

: ↵ < ↵i and hN⇤
↵

: ↵ < ↵i.
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Furthermore, let ⇠0 < ↵ be given and let q0 be a condition in P⇠0. Then,
the following holds in V P

⇠0
�q0:

Let i0 < ⇤ be an ordinal, let ✓ > 2 be a regular cardinal, and let ↵, Ṅ ,
N , q and p̃ be such that

(a) ⇠0  ↵  ↵, ↵ < ,

(b) Ṅ is a P↵/Ġ⇠0–name for a countable elementary substructure of H(✓)V [Ġ
⇠0

]

with Ṅ \ !V
1 2 Si0,

(c) N is a countable elementary substructure of H(✓)V [Ġ
⇠0

] containing U↵
⇠0
,

Ġ⇠0, hP⇠ : ⇠  ↵i and ↵,

(d) Ṅ is forced to be either N or else the last model of an iteration of
N relative to U ⇠0,↵

⇠0
, with closed component iterations, and bounded by

sup{⌫ + 2 : ⌫ < ↵i0},44

(e) q is a (Ṅ ,P↵/Ġ⇠0)–generic condition in P↵/Ġ⇠0 with q � ⇠0 = q0,

(f) p̃ is a P↵/Ġ⇠0–name for a condition in Ṅ \ P↵/Ġ⇠0, and

(g) q �P
↵

/Ġ
⇠0
(p̃)Ġ

↵

� ↵ 2 Ġ↵.

Then there are a condition q+ in P↵/Ġ⇠0 and a P↵/Ġ⇠0–name Ñ such
that

(i) Ñ is forced to be either Ṅ or the last model of an iteration of Ṅ relative
to U↵,↵

⇠0
with closed component iterations and bounded by sup{⌫ + 2 :

⌫ < ↵i0},

(ii) q+ � ↵ = q,

(iii) �P
↵

/Ġ
⇠0
supp(q+) \ ↵ ✓ Ñ ,

(iv) q+ �P
↵

/Ġ
⇠0
(p̃)Ġ

↵

2 Ġ↵, and

(v) q+ is (Ñ ,P↵/Ġ⇠0)–generic.

44In other words, the iteration is bounded by ↵
i0 if ↵

i0 is a limit ordinal, and by ↵
i0 +1

if ↵
i0 is a successor ordinal. Equivalently, this means that every component iteration of

the iteration in question has length ⌫ + 1 for some ⌫ < ↵
i0 .
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Proof: We can prove the lemma by induction on ↵. Fix ↵   and
suppose the result holds for all ↵0 < ↵. Note that, by Fact 3.7 together with
Fact 3.1 and with Lemma 3.15, the second conclusion of the lemma for ↵
(with ⇠0 = ↵ = 0) implies the first conclusion, namely that every countable
set of ordinals in any extension by P↵ is included in some countable set in
the ground model. Hence, in order to prove the lemma for ↵, it su�ces to
prove the second conclusion (for ↵).

Fix ⇠0 < ↵ and q0 2 P⇠0 and work in V P
⇠0

�q0 . Fix i0, ✓, ↵, Ṅ , q and p̃ as
in the hypothesis. Suppose q �P

↵

/Ġ
⇠0
(p̃)Ġ

↵

� ↵ 2 Ġ↵. For ↵ = ↵ the desired
conclusion holds trivially.

Suppose ↵ = ↵0 + 1 for ↵0 � ↵. By induction hypothesis there are a
condition q⇤ in P↵0/Ġ⇠0 and a P↵0/Ġ⇠0–name Ñ⇤ for Ṅ or for the last model
of an iteration of Ṅ relative to U↵,↵0

⇠0
such that (i)–(iv) from the conclusion

hold with ↵0, q⇤, (a name for) p̃ � ↵0 and Ñ⇤ replacing ↵, q+, p̃ and Ñ .
Suppose ↵0 2

S
⇣2A A⇣ . Since, by Lemma 2.2, Q̇↵0 is forced by P↵0 to be

F↵0–proper for the function F↵0 sending a countable N 0 4 H(✓) containing
everything relevant to {(N 0)↵0

↵0, ⌫
: ⌫ < ↵i0}, we may fix a name ⌫̃↵0 for an

ordinal less than ↵i0 , together with a P↵0/Ġ⇠0–name q̇ such that q⇤ forces that
q̇ is a ((Ñ⇤[Ġ↵0 ])

↵0
↵0, ⌫̃↵0

, Q̇↵0)–generic condition in Q̇↵0 extending (p̃)Ġ
↵

(↵0).

Let q+ be q⇤ followed by q̇. Then q+ is a condition forcing (p̃)Ġ
↵

2 Ġ↵, and
supp(q+)\↵ ✓ (supp(q⇤)\↵)[{↵0}, so supp(q+) is certainly forced to be in-
cluded in (Ñ⇤)↵0

⇠0, ⌫̃↵0
. Note that, by Lemma 3.18, q⇤ is ((Ñ⇤)↵0

⇠0, ⌫̃↵0
, P↵0/Ġ⇠0)–

generic and q⇤ �P
↵0/Ġ⇠0

(Ñ⇤[Ġ↵0 ])
↵0
↵0, ⌫̃↵0

= (Ñ⇤)↵0
⇠0, ⌫̃↵0

[Ġ↵0 ]
45 (so that q⇤

forces that q̇ is ((Ñ⇤)↵0
⇠0, ⌫̃↵0

[Ġ↵0 ], Q̇↵0)–generic). It follows that q+ is an

((Ñ⇤)↵0
⇠0, ⌫̃↵0

,P↵/Ġ⇠0)–generic condition (and (Ñ⇤)↵0
⇠0, ⌫̃↵0

is clearly forced to be

the last member of an iteration of Ṅ relative to U↵,↵0+1
⇠0

with closed compo-
nent iterations and bounded by sup{⌫ +1 : ⌫ < ↵0}). The proof when ↵0 is
not in

S
⇣2A A⇣ is a simpler version of the above argument. The point is that

Q̇↵0 is then forced to be a proper poset. This finishes the proof in this case.
It remains to consider the case when ↵ > ↵ and ↵ is a limit ordinal.
Suppose cf(↵) = !. Let us move over to V P

↵

�q. Let (↵n)n<! be a strictly
increasing sequence of ordinals in Ṅ\↵ converging to ↵ and such that ↵0 = ↵.
We build four sequences (qn)n<!, (p̃n)n<!, (Ñn)n<! and (D̃n)n<! such that

45Because q⇤ is (Ñ⇤, P
↵0/Ġ⇠0)–generic and, if ↵0 2

S
⇣2A

A
⇣

, |P
↵0 | < ↵0 in V (and so

in particular |P
↵0/Ġ⇠0 | < ↵0 in V P⇠0 ).
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q0 = q, p̃0 = p̃ and Ñ0 = Ṅ [Ġ↵] and such that, for all n < !,

(a) Ñn+1 is a P↵
n+1/Ġ↵–name forced to be either Ñn or else the last model

of a closed iteration of Ñn relative to U↵
n

,↵
n+1

↵ with closed component
iterations and bounded by sup{⌫ + 2 : ⌫ < ↵i0},

(b) qn is a condition in P↵
n

/Ġ↵ which is forced to be (Ñn, P↵
n

/Ġ↵)–generic,
qn+1 � ↵n = qn and �P

↵

n+1/Ġ↵

supp(qn+1 \ ↵n) ✓ Ñn+1,

(c) p̃n is a P↵
n

/Ġ↵–name for a condition in Ñn \ (P↵/Ġ↵) and �P
↵

n+1/Ġ↵

p̃n+1 ↵ p̃n, and

(d) D̃n is a P↵
n+1/Ġ↵–name forced to be an enumeration in length ! of all

dense and open subsets of P↵/Ġ↵ in Ñn+1.

Moreover, the sequences will be chosen in such a way that, for every n,

(e) P↵
n+1/Ġ↵ forces that p̃n+1 is in

T
k, ln D̃k(l) and that p̃n+1 � ↵n+1 is in

Ġ↵
n+1 in case p̃n � ↵n+1 is in Ġ↵

n+1 , and finally

(f) qn �↵
n

(p̃n)Ġ
↵

n

� ↵n 2 Ġ↵
n

.

Suppose qn, p̃n and Ñn have been defined. Then Ñn+1 and qn+1 can
be found by an application of the induction hypothesis applied to ↵n+1.
Furthermore, in V P

↵

n+1/Ġ↵ , p̃n+1 can be found in Ñn+1 by an application,
within Ñn+1, of the general fact (see Lemma 3.17 in [G]) that if hP⇠ : ⇠  �i
is a forcing iteration, � < �, D is a dense subset of P� and p̃1 is a P�–name for
a condition in P�, then P� forces that there is a condition p̃2 in D extending
p̃1 such that p̃2 � � 2 Ġ� in case p̃1 � � 2 Ġ�.

Let Ñ be a P↵/Ġ↵–name for
S

n Ñn. Since the iteration has been built
with countable supports and since, by induction hypothesis applied to ↵,
every countable set of ordinals in V P

↵ is covered by a countable set in V ,
there is a condition q⇤ 2 P↵ such that q⇤ � � �� q⇤(�) =

S
n qn(�) for

all � < ↵. Also, both q⇤ � ↵ = q and �P
↵

/Ġ
↵

supp(q⇤) \ ↵ ✓ Ñ hold by
construction. Since q⇤ extends all qn and since every qn forces that (p̃)Ġ

↵

� ↵n

is extended by (p̃n)Ġ
↵

n

� ↵n 2 Ġ↵
n

, q⇤ forces (p̃)Ġ
↵

� ↵n 2 Ġ↵
n

for all n,

and therefore it forces (p̃)Ġ
↵

2 Ġ↵. In order to see that q⇤ is (Ñ ,P↵/Ġ↵)–
generic, let l, k < ! be given. Let n be an integer above l and k. p̃n+1 is



Resuming the proof of Theorem 2.1. 44

forced by P↵
n+1/Ġ↵ to be in Ñn+1 \ D̃l(k). Since, by an argument as above,

q⇤ �P
↵

/Ġ
↵

(p̃n+1)Ġ
↵

n+1
2 Ġ↵, q⇤ �P

↵

/Ġ
↵

Ġ↵ \ D̃l(k) \ Ñ 6= ;.
Let q̇⇤ be a P↵/Ġ⇠0–name for q⇤. By Lemma 3.15, q forces supp(q̇⇤) \

↵ ✓ N , where N is the last model of the ~↵i0–iteration of Ṅ [G↵] relative
to U↵,↵

↵ a h;i (where ~↵i0 is h↵i0 : � 2
S

⇣2A A⇣ \ [↵, ↵)i a h1i). Since

q is (Ṅ ,P↵/Ġ⇠0)–generic and P↵/Ġ⇠0 has size less than min(
S

⇣2A A⇣ \ ↵),

by Lemma 3.18 q is also (N
⇤
,P↵/Ġ⇠0)–generic, where N

⇤
is now the last

member of the ~↵i0–iteration of Ṅ relative to U↵,↵
⇠0

a h1i, and furthermore

it forces N = N
⇤
[Ġ↵]. Thus, by Facts 3.7 and 3.1, there is, in V P

⇠0
�q0 , a

countable set X ✓ ↵ – namely N
⇤ \↵ – such that q �↵ supp(q̇⇤) ✓ X̌. Now,

since every countable set of ordinals in V P
⇠0

�q0 is covered by a countable set
in V , it follows that there is a real P↵–condition q+ with q+ � ↵ = q and
q �↵ q̇⇤ = q+. Again by Lemma 3.18, in V P

↵

�q there is a closed iteration of
Ṅ relative to U↵,↵

⇠0
a h;i with closed component iterations and bounded by

sup{⌫+1 : ⌫ < ↵i0} such that q is (Ñ⇤,P↵/Ġ⇠0)–generic for its last member
Ñ⇤ and such that Ñ is Ñ⇤[Ġ↵]. It follows, since q+ is (Ñ ,P↵/Ġ↵)–generic,
that q+ is (Ñ⇤,P↵/Ġ⇠0)–generic as well. Hence, q+ and (any name for) Ñ⇤

satisfy the desired conclusion for ↵ in this case.
Finally, suppose ↵ has uncountable cofinality. It is conceivable, in V P

↵

/Ġ
⇠0 ,

that sup(Ṅ \ ↵) < sup(N 0 \ ↵) holds for some N 0 occurring in some of the
relevant iterations of Ṅ . However, by Fact 3.1 and by Lemmas 3.6 and
3.8, there is some ↵̂ < ↵ such that this does not happen if the measures
used in the iteration are on cardinals above ↵̂. Furthermore, this ↵̂ has the
same property, in V P

↵

/Ġ
⇠0 , with respect to any N 4 H(✓)V [Ġ

⇠0
], not just Ṅ .

Hence, in V P
↵

/Ġ
⇠0 it may be that there is a relevant iteration of Ṅ which

makes sup(N \ ↵) grow, but nevertheless sup(N \ ↵) will be fixed by the
tail of the iteration given by some stage ⇠ if it is the case that we only apply
measures on cardinals above ↵̂ from stage ⇠ on. To be more precise, there
is an ordinal ↵̂ < ↵ above ↵ such that, in V P

↵

/Ġ
⇠0 , it holds that there is

no countable N 4 H(✓)V [Ġ
⇠0

] for which there is a ~⌫–iteration of N , for any
sequence ~⌫ bounded by sup{⌫ + 2 : ⌫ < ↵i0}, relative to U := U ↵̂,↵

⇠0
, and

such that sup(N \ ↵) < sup(NU ,~⌫
� \ ↵) for any �. We may assume that ↵̂ is

definable in H(✓)V
P
⇠0 from U↵,↵

⇠0
and ↵, and therefore that it is forced to be

in Ṅ . Further, by Lemma 3.8 we may assume as well that ↵̂ has the same
property as above in every outer model of set theory.
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By induction hypothesis applied to ↵̂ we may fix a condition q† 2 P↵̂/Ġ⇠0

and a P↵̂/Ġ⇠0–name Ñ † such that (i)–(iv) from the conclusion hold for ↵̂, q†,
(a P↵/Ġ⇠0–name for) p̃ � ↵̂ and Ñ † in place of ↵, q+, p̃ and Ñ .

Let us move over to V P
↵̂

�q† . Let ↵⇤ = sup(Ñ †\↵). Fix a strictly increasing
sequence (↵n)n<! of ordinals in Ñ † converging to ↵⇤ and with ↵0 = ↵̂. We
build sequences (qn)n<!, (p̃n)n<!, (Ñn)n<! and (D̃n)n<! such that q0 = q†,
p̃0 = p̃ and Ñ0 = Ñ †[Ġ↵̂] and such that, for all n < !, (a)–(f) as in the
cf(↵) = !–case construction hold for them and for all n < !. Let q0 and Ñ 0

be, respectively,
S

n qn and
S

n Ñn.
Using the induction hypothesis on ↵̂ and arguing as in the previous case

we can verify that q0 is a condition in P↵/Ġ⇠0 . By construction, q0 � ↵̂ = q†

and q0 �P
↵

/Ġ
⇠0

supp(q0) \ ↵ ✓ Ñ 0. Arguing again as before we obtain that

q0 forces p̃n � ↵⇤ 2 Ġ↵⇤ for all n. Now fix any n and note that there is a
dense set of conditions in Ñn\(P↵

n

/Ġ⇠0) deciding the value of the supremum
of supp(p̃n). Hence, since q0 is (Ñn,P↵

n

/Ġ⇠0)–generic, it forces that there is
a condition in Ġ↵

n

✓ Ġ↵ belonging to Ñn and deciding the value of the
supremum of supp(p̃n) (and therefore deciding that this supremum is some
ordinal less than sup(Ñn \ ↵)). But, by the choice of ↵̂, sup(Ñn \ ↵) = ↵⇤.
This is because, by Lemma 3.18, q0 forces Ñn \ Ord = N \ Ord, where N
is either Ñ † or the last member of a closed iteration of Ñ † relative to U ↵̂,↵

⇠0

and bounded by sup{⌫ + 2 : ⌫ < ↵i0}. Thus, q0 forces, for each n, that the
support of p̃n is bounded by ↵⇤, and therefore that p̃n is in Ġ↵. Hence, q0 is
an (Ñ 0,P↵/Ġ⇠0)–generic condition forcing p̃ 2 Ġ↵.

Now we move back to V P
⇠0

�q0 . Let q̇0 be a name for q0 in the above para-
graph. It remains to see that there is a condition q+ 2 P↵ such that, for all
� < ↵, q+ � � forces q+(�) = q̇0(�). This can be checked by arguing in the
same fashion as we did for the cf(↵) = !–case (using the fact that q0 forces
supp(q0) \ ↵ ✓ Ñ 0). Now, q+ and a name for Ñ 0 (as in the above paragraph)
satisfy the desired conclusion for ↵ . 2

One immediate corollary of the proof of Lemma 4.1 is that P/Ġ⇠0 is
semiproper, in V P

⇠0 , for every ⇠0 < , which was the part of (3) in Theorem
2.1 that remained to be proved.

The proof of Theorem 2.1 will be complete once we show, in V P
 , that

for every i0 < ⇤ and every stationary S⇤ ✓ Si0 there is a function F : S⇤ �!
P(!1) with ↵i0  ot(F (⌫)) < !↵

i0 ·! for all ⌫ 2 S⇤ if ↵i0 > 1 and F (⌫) a
singleton for all ⌫ 2 S⇤ if ↵i0 = 1, and such that {⌫ 2 S⇤ : g(⌫) 2 F (⌫)} is
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stationary for every ordinal ✏ < !2 and every canonical function g for ✏. For
this it su�ces to prove46 in V P

⇣0 , for any given ⇣0 2 A, that the following
holds:

Let ✏0 < , i0 < ⇤ be given, letN0 be a countable elementary substructure
of H(✓) (for some large enough regular cardinal ✓) containing P, Ġ⇣0 , ✏0, ↵i0

and U ⇣0,
⇣0

and with N0\!1 2 '(⇣0) and let p 2 N0\(P/Ġ⇣0). Suppose '(⇣0)
is a stationary subset of Si0 .

47 Then there is a condition q 2 P extending p
and with N0\!1 2 dom(q(⇣0)) and there is a P/Ġ⇣0–name Ñ for a countable

elementary substructure of H(✓)V [Ġ
⇣0

] such that

(i) q � N0 ✓ Ñ ^N0 \ !1 = Ñ \ !1,

(ii) q is an (Ñ , P/Ġ⇣0)–generic condition, and

(iii) q � ot(Ñ \ ✏0) 2 q(⇣0)(N0 \ !1).

Let us work in V P
⇣0 . Let ↵ := ↵i0 . By Lemma 3.6, the set

K := {� 2
[

⇣2A

A⇣ : � > ⇣0 ^ (9⌫ < ↵)(✏0 < j
H(✓), Ũ�

⇣0
⌫ (✏0))}

is finite.
It will be useful to fix some more notation:
Let K✏0 = {�0, . . . �n�1}< for some n < !. Note that �n�1, if n > 0,

is at most ✏0 and that Ũ
�
j

⇣0
is in N0 for all j < n. We define a sequence

hYk : k < ni by setting Y0 = {(N0)
�0
⇣0, ⌫

: ⌫ < ↵} (if n > 0) and by
specifying that, given any nonzero k < n, if Yk�1 has been defined, then
Yk = {(N)�k⇣0, ⌫ : N 2 Yk�1, ⌫ < ↵}. Of course, if ↵ = 1, then Yk = {N0} for
every k < n. In general we have the following.

Lemma 4.2 For every k < n, {ot(N \ ✏0) : N 2 Yk} has order type at
most equal to the k + 1–fold ⌦–product of ↵ with itself, and hence at most

46Since ' is a suitable bookkeeping function and since every P


/Ġ
⇣0 preserves stationary

subsets of !1 in V P⇣0 .
47So that Q̇

⇣0 is the forcing for adding, with countable conditions, a function F :
'(⇣0) �! P(!1) with ot(F (⌫)) < !↵i0 ·! for all ⌫ if ↵

i0 > 1 and |F (⌫)| = 1 for all ⌫
if ↵

i0 = 1.
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!↵·(k+1).48

Proof: To start with, notice that Fact 1.2, together with ↵  !↵,
implies that the k + 1–fold ⌦–product of ↵ with itself – let us call it ↵⇤ – is
at most !↵·(k+1).

We are going to prove ot({ot(N \ ✏0) : N 2 Yk})  ↵⇤. Let M be the
transitive collapse of N0. Let ✏0 = ⇡(✏0) and let Ul = ⇡(Ũ�

l

⇣0
) for every l  k,

where ⇡ is the collapsing function for N0. Let jlel denote j
M,U

l

0,el for every l  k.
Notice, in the first place, that by Fact 3.1 and by Lemma 3.5, the order

type of {ot(N \ ✏0) : N 2 Yk} is equal to the order type of the set of all
ordinals of the form

(jk⌫
k

� jk�1
⌫
k�1

� . . . � j0⌫0)(✏0),

where ⌫l < ↵ for all l  k.
Secondly, notice that, for every t 2k+1 ↵ and every permutation � of k+1,

both

(jkt(k) � jk�1
t(k�1) � . . . � j

0
t(0))(✏0) = (j�(k)t(�(k)) � j

�(k�1)
t(�(k�1)) � . . . � j

�(0)
t(�(0)))(✏0)

and

(j�(k)t(�(k)) � j
�(k�1)
t(�(k�1)) � . . . � j

�(0)
t(�(0)))(✏0) < (j�(k)t(�(k))+1 � j

�(k�1)
t(�(k�1)) � . . . � j

�(0)
t(�(0)))(✏0)

hold. This follows easily from Lemma 3.5 and from the fact that ✏0 is moved

by j
M,U

�(k)

0,1 . Hence, if hti : i < ⌧i is an enumeration of k+1↵ such that
i < i0 < ⌧ implies

(jkt
i

(k) � jk�1
t
i

(k�1) � . . . � j
0
t
i

(0))(✏0)  (jkt
i

0 (k) � j
k�1
t
i

0 (k�1) � . . . � j
0
t
i

0 (0))(✏0),

then ⌧ is at most ↵⇤. This is because

(jkt(k) � jk�1
t(k�1) � . . . � j

0
t(0))(✏0) < (jkt0(k) � jk�1

t0(k�1) � . . . � j
0
t0(0))(✏0)

holds whenever t, t0 are distinct tuples in k+1↵ such that t  t0 (in the product
order on k+1↵), which follows from the above observation.

48It is conceivable that a better bound for {ot(N \ ✏0) : N 2 Y
n�1} can be found, and

thus that a finer form of Theorem 2.1 is true, in the sense that the distance between �0
i

and �1
i

, in (4) of the statement of Theorem 2.1, can be made smaller (and similarly with
Theorem 5.4 in Section 5). Nevertheless, the bound proved here su�ces for the present
purposes.
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These two facts together imply the desired conclusion. 2

Let now (fi)i<! be an (N0, Q̇⇣0)–generic sequence extending p(⇣0) and let
f be

S
i fi [ {hN0 \ !1, {ot(N \ ✏0) : N 2 Y }i} for Y = Yn�1 if n > 0 and

for Y = {N0} if n = 0.
Since, by Lemma 4.2, {ot(N \ ✏0) : N 2 Y } has order type less than !↵·!

if n > 0, we have that f is a condition in Q̇⇣0 extending p(⇣0). Thus we will
be done if we can show that there is a P–name Ñ for a countable elementary
substructure of H(✓)V [Ġ

⇣0
] extending N0 and with the same intersection with

!1 as N0 and there is a (Ñ , P/Ġ⇣0)–generic condition extending p⇤ and
forcing ot(Ñ \ ✏0) 2 {ot(N \ ✏0) : N 2 Y } for Y as above and for the P–
condition p⇤ such that p⇤ � ⇣0 = p � ⇣0 and p⇤ � [⇣0 + 1, ) = p � [⇣0 + 1, )
and such that p⇤(⇣0) is (a P⇣0–name for) f .

We apply Lemma 4.1 with ⇠0 = ⇣0, ↵ = , ↵ = ⇣0 + 1, Ṅ = Ň0, q = p⇤ �
⇣0 + 1, and with p̃ = p̌. By this instance of the lemma we know that there is
a P/Ġ⇠0–name Ñ for the last model of an iteration of N0 relative to U ⇣0,

⇣0

with closed component iterations and bounded by sup{⌫ + 2 : ⌫ < ↵} and
that there is a condition q+ 2 P/Ġ⇣0 extending p⇤ such that q+ � ⇣0 + 1 =
p⇤ � ⇣0 + 1 and such that q+ is (Ñ , P)–generic. Thus, we just need to show
that q+ forces ot(Ñ \ ✏0) 2 {ot(N \ ✏0) : N 2 Y }. But, by Lemma 3.16,
{ot(N\✏0) : N 2 Y } is precisely the set of all ordinals of the form ot(N\✏0),
where N is, in V P

 , the last model of a closed iteration of N0 bounded by
sup{⌫ + 2 : ⌫ < ↵}. This finishes the proof of Theorem 2.1.

5 A model of PFA++
with a definable (with-

out parameters) well–order of H(!2).

This final section presents an application of Theorem 2.1 to the problem of
forcing a well–order of H(!2) definable, over the structure hH(!2),2i, by a
formula without parameters.49 Each of the papers [A1], [A2] and [A3] present
forcing iterations for constructing models in which there are well–orders of
H(!2) as above. All of those constructions are flexible enough to allocate
arbitrary posets with the countable chain condition. As a consequence, all
models constructed can be taken to be models of MA!1 .

On the other hand, we run into di�culties if we want to modify any

49The reader is referred to [A1] for background on this problem.
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of the constructions in [A1], [A2] or [A3] so as to produce a model of a
stronger forcing axiom, for example of BPFA.50 The reason is that all of
those constructions involve some form or another of guessing of clubs by
club–sequences. By a club–sequence here I mean a sequence of the form
↵ = h↵� : � 2 Si, for S a subset of countable limit ordinals, such that
each ↵� is a club of �. All of the models built in the above papers exhibit
some nontrivial pattern of club–guessing properties (of some kind or another)
for club–sequences. In fact, for the relevant codings to work, it is essential,
in all those models, that there be club–sequences ↵ = h↵� : � 2 Si with
stationary domain and with the property that for every club C ✓ !1 there
are stationarily many � 2 S such that sup(↵� \ C) = �. However, it is not
di�cult to see that if ↵ is as above, then the standard poset for adding a
club avoiding ↵51 is proper. Hence, none of the codings considered in any of
those papers can work in the presence of BPFA.

Recall the following strengthening of the Proper Forcing Axiom.

Definition 5.1 PFA++ is the statement that for every proper poset P, every
sequence hDi : i < !1i of dense subsets of P and every sequence h⌧i : i < !1i
of P–names for stationary subsets of !1 there is a filter G ✓ P such that,
for every i < !1, G \ Di 6= ; and {⌫ < !1 : (9p 2 G)(p �P ⌫ 2 ⌧i)} is a
stationary subset of !1.

The Levy hierarchy
S

n<!(⌃n [ ⇧n) of formulas in the language for the
structure hH(!2),2, NS!1i can be defined, in the natural way, as for the
language of set theory. The main results in this section are the following.

Theorem 5.1 Suppose  is a supercompact cardinal and A is a subset of !1.
Then there is a semiproper poset P ✓ V such that

(1) P forces PFA++, and

(2) P forces that A is definable, over the structure hH(!2),2, NS!1i, by a
⌃4 formula without parameters. In particular, P forces that A is defin-
able, over the structure hH(!2),2i, by a formula without parameters.

50The Bounded Proper Forcing Axiom, BPFA, is the weak form of the Proper Forcing
Axiom asserting that, for every proper poset P, hH(!2),2i is a ⌃1–elementary substruc-

ture of hH(!2),2iV
P
.

51That is, for adding a club C ✓ !1 such that ↵
�

\ C is bounded in � for every � 2
dom(↵) \ C.
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Theorem 5.2 Suppose  is a supercompact cardinal. Then there is a semi-
proper poset P ✓ V such that

(1) P forces PFA++, and

(2) P forces the existence of a well–order of H(!2) definable, over the struc-
ture hH(!2),2, NS!1i, by a ⌃4 formula without parameters. In parti-
cular, P forces the existence of a well–order of H(!2) definable, over
hH(!2),2i, by a formula without parameters.

Note that the last sentence in (2) of the statement of each of these theo-
rems follows from the fact that NS!1 is a definable predicate over hH(!2),2i.

It is worth recalling at this point that forcing axioms, even in their
bounded forms, are known (see for example [M] and [C-V]) to imply the exis-
tence of well–orders of H(!2) definable over hH(!2),2i, but that these defini-
tions always depend on some parameter. In fact it is not known whether any
strong enough forcing axiom implies the existence of a well–order of H(!2)
definable over hH(!2),2i by a parameter–free formula (see the questions at
the end of the paper).

Lemma 5.3 Let h(↵0
⇠ , ↵

1
⇠) : ⇠ < !1i be a sequence of pairs of ordinals with

2  ↵0
⇠ < ↵1

⇠ < ↵0
⇠0 < !1 for all ⇠ < ⇠0 < !1. Suppose hSi : i < ⇤i is a

partition of !1 into stationary sets such that Si \ (i+1) = ; for every i > 0,
and suppose (⇠i)i<⇤ is such that each Si has guessing density equal to a pair
(�0, �1) with ↵0

⇠
i

 �0 and �1  ↵1
⇠
i

.
Then {⇠i}i<⇤ is equal to the set of indices ⇠ such that there is a stationary

subset of !1 with guessing density equal to a pair (�0, �1) such that ↵0
⇠  �0

and �1  ↵1
⇠ .

Proof: Let S ✓ !1 be stationary and suppose ⇠ < !1 is such that S
has guessing density equal to a pair (�0, �1) with ↵0

⇠  �0 and �1  ↵1
⇠ . The

function sending every ordinal ⌫ < !1 to the unique i < ⇤ such that ⌫ 2 Si

is regressive. Thus, there is some i with S \ Si stationary. Suppose ⇠ > ⇠i.
Then, �(S \ Si) � ↵0

⇠ > ↵1
⇠
i

,52 which is impossible since ↵1
⇠
i

� sup{�(S⇤) :
S⇤ ✓ Si, S⇤ stationary}. Now suppose ⇠i > ⇠. Then, �(S \ Si)  ↵1

⇠ < ↵0
⇠
i

,
which again is a contradiction since ↵0

⇠
i

 �(Si)  �(S\Si). Hence, ⇠ = ⇠i. 2

Theorem 5.1 is a consequence of the following result.

52Where �(·) is as in Definition 1.1.
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Theorem 5.4 Suppose  is a supercompact cardinal, A is a nonempty subset
of !1 and hSi : i < ot(A)i is a partition of !1 into stationary sets such that
Si \ (i + 1) = ; for every i > 0. Let (⌘⇠)⇠<!1 be the strictly increasing
enumeration of the club C0 of nonzero ⌘ < !1 such that !✏·! < ⌘ for all
✏ < ⌘. If h⇠i : i < ot(A)i is an enumeration of A, then there is a semiproper
poset P ✓ V such that

(1) P forces PFA++, and

(2) P forces, for every i < ot(A), that Si has guessing density equal to a
pair (�0, �1) with ⌘⇠

i

+ 1  �0 and �1  !⌘
⇠

i

·!. Hence, P forces that A
is the set of ordinals ⇠ such that there is a stationary subset of !1 with
guessing density equal to some pair (�0, �1) such that ⌘⇠ + 1  �0 and
�1  !⌘

⇠

·!.53

Consider the following property P (x):
“x is a countable ordinal and there is a stationary subset of !1 with guessing
density equal to an ordered pair (�0, �1) with ⌘x + 1  �0 and �1  !⌘

x

·!”.
This property can be expressed by writing

x 2 !1 ^ (9S ✓ !1)(S /2 NS!1 ^ (8S⇤ ✓ S)(S⇤ /2 NS!1 ! Q(S⇤, x)))

where Q(S⇤, x) is the conjunction of Q0(S⇤, x) and Q1(S⇤, x), with Q0(S⇤, x)
and Q1(S⇤, x) being, respectively, the properties “there is a function F :
S⇤ �! P(!1) with ot(F (⌫)) 2 [⌘x, !⌘

x

·!) for all ⌫ 2 S⇤ and such that F
guesses all canonical functions” and “for every function F : S⇤ �! P(!1)
such that ot(F (⌫)) < ⌘x for every ⌫ 2 S⇤ there is some ordinal ↵ < !2 and
some surjection ⇡ : !1 �! ↵ such that {⌫ 2 S⇤ : ot(⇡“⌫) 2 F (⌫)} 2 NS!1”.
“F guesses all canonical functions” can be expressed by saying that for every
ordinal ↵ < !2 and every surjection ⇡ : !1 �! ↵, {⌫ 2 S⇤ : ot(⇡“⌫) 2
F (⌫)} /2 NS!1 . Thus, since the club C0 is �1 definable, Q0(S⇤, x) and
Q1(S⇤, x) can be expressed over hH(!2),2, NS!1i by formulas with S⇤ and x
as parameters of complexity, respectively, ⌃2 and ⇧2. It follows that Q(S⇤, x)
can be expressed over hH(!2),2, NS!1i as a ⇧3 formula with S⇤ and x as
parameters and, finally, that P (x) can be expressed as a ⌃4 formula without
parameters.

53This is by Lemma 5.3 with h(↵0
⇠

, ↵1
⇠

) : ⇠ < !1i being h(⌘
⇠

+ 1, !⌘⇠·!) : ⇠ < !1i.
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Theorem 5.1 follows from Theorem 5.4, since the property P (x) from
the above paragraph is expressible over hH(!2),2, NS!1i by a ⌃4 formula
without parameters.

The proof of Theorem 5.2 uses Theorem 5.4, together with the following
formulation of a result of Moore.

Theorem 5.5 ([M]) There is a ⌃2 formula ⇥(x, y, z) in the language of set
theory such that BPFA implies that

{(x, y) 2 H(!2)⇥H(!2) : hH(!2),2i |= ⇥(x, y, p)}

is a well–order of H(!2) of order type !2 whenever ✏ is a ladder system54

with stationary domain, (Ui)i<!1 is a sequence of pairwise disjoint stationary
subsets of !1 and p = h✏, (Ui)i<!1i.

Let us fix a formula ⇥(x, y, z) as given by Theorem 5.5. In order to prove
Theorem 5.2, we apply Theorem 5.4 to a subset A of !1 coding, in some
canonical �1 way, a parameter of the form p = h✏, (Ui)ii, with ✏ and (Ui)i as
in Theorem 5.5. The definition of the well–order is then given by a formula
�(x, y) expressing the following property:

There is a sequence hSi : i < !1i of stationary subsets of !1 such that
Si \ (i+1) = ; for all i < !1 and there is a sequence h⇠i : i < !1i of nonzero
countable ordinals such that each Si has guessing density a pair (�0, �1) with
⌘⇠

i

+ 1  �0 and �1  !⌘
⇠

i

·! (where (⌘⇠)⇠<!1 is the strictly increasing enu-
meration of the club C0 from Theorem 5.4), such that {⇠i : i < !1} codes
(in some fixed �1 way) a parameter p as in Theorem 5.5, and ⇥(x, y, p).

Thus, it remains to prove Theorem 5.4. Recall the result of Laver ([Lav])
saying that for every supercompact cardinal  there is a function F :  �! V

with the property that for every set x and every ordinal � there is a transi-
tive class M closed under sequences of length � and there is an elementary
embedding j : V �! M with critical point  and j() > � and such that
j(F )() = x. We fix such a function F . We also fix a set M of measurable
cardinals with sup(M) = , together with a club C ✓ , such that  \ C
is unbounded in , M ✓  \ C, and such that F � (C \ �) 2 V� for every
� 2 M. The desired conclusion follows now from Theorem 2.1 with F , M, C

54That is, ✏ is a club–sequence with ot(✏(�)) = ! for all � in its domain.
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and ⇤ = ot(A), with h↵i : i < ⇤i = h⇠i : i < ot(A)i (where h⇠i : i < ot(A)i
is as in the hypothesis of Theorem 5.4), and with hSi : i < ot(A)i again as
in the hypothesis of Theorem 5.4.

Let P be the poset P, where hP⇠ : ⇠  i is the forcing iteration
coming from this instance of Theorem 2.1. By the classical Baumgartner’s
construction of a model of PFA++, this forcing axiom holds in V P . This
is because, by Theorem 2.1 (3), P/Ġ⇠ is forced, for each ⇠ < , to be
semiproper, and so in particular to preserve stationary subsets of !1. On the
other hand, P forces, for each i, that Si has guessing density a pair (�0, �1)
with ⌘⇠

i

+ 1  �0 and �1  !⌘
⇠

i

·!. This finishes the proof of Theorem 5.4.
Note that, although the proof of Theorem 2.1 is robust enough to accom-

modate arbitrary proper posets in it, it breaks down completely if we intend
to make it work with arbitrary semiproper posets.55 In fact, there is no hope
that a version of the construction for Theorem 2.1 can produce a model of
BMM , as BMM implies !1  �0 whenever (�0, �1) is the guessing density
of a stationary subset of !1 (Fact 1.1).

In a previous version of this paper I was asking whether the assumption
that there exists is a supercompact cardinal (or some other reasonable large
cardinal assumption) implies that it is possible to force in such a way that
Martin’s Maximum (MM) holds in the extension, together with the exis-
tence of a well–order ofH(!2) definable, over hH(!2),2i, by a parameter–free
formula (or by a formula with only a real number as parameter). Concern-
ing this question, P. Larson ([L]) has recently forced, over a model with a
supercompact limit of supercompact cardinals, in such a way that, in the
extension, MM+! holds and there is a well–order of H(!2) definable over
hH(!2),2i by a formula without parameters. MM+! is the strengthening
of MM saying that for every poset Q preserving stationary subsets of !1,
every set {Di : i < !1} of dense subsets of Q and every set {⌧n : n < !}
of Q–names for stationary subsets of !1 there is a filter G ✓ Q such that
G\Di 6= ; for every i < !1 and such that {↵ < !1 : (9p 2 G)(p �Q ↵ 2 ⌧n)}
is stationary for every n < !.56 And MM++ is the strengthening of MM+!

incorporating sets of size @1 – instead of just countable size – of names for
stationary subsets of !1.

In Larson’s model, MM++ fails necessarily. As far as I know, the follow-

55As then we would lose the necessary control, in the relevant ground models, on the
order types of the structures for which we can find (Ñ ,Q)–generic conditions (for the
relevant Q’s).

56By a result in [S], MM+! does not imply PFA++.
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ing questions remain open.

Questions 5.1 Assume some reasonable large cardinal hypothesis. Is it pos-
sible to force in such a way that MM++ holds in the extension, together with
the existence of a well–order of H(!2) definable, over hH(!2),2i, by a for-
mula without parameters (or even by a formula with only a real number as
parameter)?

Does MM++ imply that there is a well–order of H(!2) definable, over
hH(!2),2i, by a formula with at most a real number as parameter?

Acknowledgement: I thank the referee for reading (previous versions of)
this paper carefully. Thanks to his/her suggestions and skepticism the paper
has improved substantially.
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