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Abstract

There is a partial order P preserving stationary subsets of !1 and

forcing that every partial order in the ground model V that collapses

a su�ciently large ordinal to !1 over V also collapses !1 over V P
.

The proof of this uses a coding of reals into ordinals by proper forcing

discovered by Justin Moore and a symmetric extension of the universe

in which the Axiom of Choice fails. Also, using one feature of the proof

of the above result together with an argument involving the stationary

tower it is shown that sometimes, after adding one Cohen real c, there
are, for every real a in V [c], sets A and B such that c is Cohen generic

over both L[A] and L[B] but a is constructible from A together with

B.

1 On the nonexistence of nice forcing notions,

in a ground model, collapsing a given ordi-

nal

This first section is devoted to showing that one can always extend the uni-
verse in a nice way (preserving stationary subsets of !1) so that in the exten-
sion there are no ‘nice’ partial orders Q in V collapsing, when forcing with
them over V , some given ordinal ↵ to be of size @1. Here ‘nice’ means that
Q preserves !1 when forcing with it over the extension. In particular, the
collapse of ↵ to !1 with countable conditions from the point of view of V
will necessarily collapse !1 over the extension. It is also shown that some
restriction on the niceness of the extension in the result mentioned above is
necessary. Specifically, one cannot expect to produced the desired conclusion
after forcing with a reasonable partial order in the sense of [Fo-M].
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The proof of the main theorem proceeds by contradiction in the follow-
ing way: Some forcing construction is carried out for which there is some
intermediate model N of ZF in which there is no well–order of the reals.
Assuming the result fails (that is, that there is a ‘nice’ partial order in V
collapsing, over V , the given ordinal ↵ to !1), a well–order of the reals can
be nonetheless defined in N .

Theorem 1.1 There are a partial order P and an ordinal ↵ such that

(1) Forcing with P preserves all stationary subsets of !1.

(2) V P |= ↵ < !2

(3) In V P it holds that for every partial order Q in V , if forcing with Q over
V collapses ↵ to be of size @1, then forcing with Q over V P collapses
!1.

Proof: Start by adding one Cohen real c. It is a well–known fact due
to Cohen that after forcing with 2<! there is a symmetric extension N of V
in which there is an infinite set X of reals which is also Dedekind–finite, i.e.
such that there is no one–to–one map from ! into X (see for example [J1],
Section 5.3 or [J2], Theorem 14.36). Thus we may fix a transitive model N
of ZF , V ✓ N ✓ V [c], so that in N there is no well–order of the reals. I will
show how to build a stationary–set–preserving forcing iteration P of V [c] and
how to find an ordinal ↵ which is forced by P to be less than !2 and such
that, under the assumption that Q 2 N and G are such that

(a) G is P–generic over V [c],

(b) N |= Q forces |↵| = @1, and

(c) V [c][G] |= Q preserves !1,

there is, in N , a definable well-order of the reals. This contradiction will
prove the theorem.

I need to fix the following objects in V :

(i) A ladder system on !1, that is, a sequence

�!
C = (C⇠ : ⇠ < !1, ⇠ a limit ordinal)

such that each C⇠ is a cofinal subset of ⇠ of order type !.
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(ii) A sequence (Sn : n < !) of pairwise disjoint stationary subsets of !1.

Let hri : i < �i be an enumeration in V [c] of the infinite reals r ✓ !
in N for � = (2@0)V . P will be a three–stage iteration. The first stage C0
of the iteration will be a proper poset coding each ri into an ordinal ↵i in
a certain way to be made precise below. The second stage of the iteration
codes all relevant objects added by C0 into a real x by ccc almost disjoint
forcing. Finally we shoot a club through a projective stationary subset of
[]@0 , for a suitable cardinal , consisting of sets coding x in yet another way.
↵ will be this .

C0 will be a countable support iteration (Pi : i  � + 1) based on (Q̇i :
i < �+ 1). Suppose i < � and suppose Pi has been defined.

In V [c]Pi , Q̇i is a name for the forcing Qr given by the following lemma,
recently proven by Justin Moore ([Mo]), where r = ri.

Lemma 1.2 (Moore) Suppose (C⇠ : ⇠ < !1, ⇠ a limit ordinal) is a ladder
system on !1, (Sn : n < !) is a sequence of pairwise disjoint stationary
subsets of !1 and r ✓ !. There is a partial order Qr such that

(1) Qr is proper,

(2) Qr forces the existence of an ordinal ↵r and a strictly ✓–increasing and
✓–continuous sequence hXr

⌫ : ⌫ < !1i of countable subsets of ↵r such
that

(a)
S

⌫ X
r
⌫ = ↵r, and

(b) for every limit ordinal ⌫ < !1 there is some ⌫0 < ⌫ such that for
all ⇠, ⌫0 < ⇠ < ⌫,

Xr
⇠ \ !1 2

[

n2r
Sn i↵ w(Xr

⇠ \ !1, X
r
⌫ \ !1) < w(Xr

⇠ , X
r
⌫)

where, given two countable sets X ✓ Y of ordinals with ot(Y ) a
limit ordinal, w(X, Y ) is the cardinality of sup(X) \ ⇡�1

Y “Cot(Y )

(and ⇡Y is the transitive collapse of Y ).

Note that the correspondence r �! ↵r yields a coding of reals in the sense
that if r, r0 ✓ ! are distinct and ↵, ↵0 are such that there are continuous
decompositions of [↵]@0 and [↵0]@0 satisfying (b) from Lemma 1.2 for r and
r0, respectively, then necessarily ↵ 6= ↵0.
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Finally, to make sure that supi<�↵r
i

and � are both forced to be less than
!2, let Q̇� be a name for the �–closed collapse of � to !1. (Note that Q̇�

indeed collapses supi<�↵r
i

to !1 since all ↵r
i

are of size @1.) This completes
the definition of C0. Since all Q̇i are names for proper posets, C0 is proper.

In V [c]C0 , let A be a subset of !1 such that

(hXr
i

⇠ : ⇠ < !1i : i < �) 2 L[A]

The second stage of the iteration, C1, will be the ccc forcing for adding a
real x coding A with respect to some sequence hy⌫ : ⌫ < !1i in V consisting
of pairwise almost disjoint reals (that is, x\y⌫ is infinite if and only if ⌫ 2 A).

Fix a regular cardinal  � !2 in V such that 2<!⇤(C0⇤C1) has the –chain
condition. Let

�!
D = hD⇠ : ⇠ 2  \ cf(!)i be a club–guessing sequence in V

for  \ cf(!). This means that

(1) D⇠ is a cofinal subset of ⇠ for each ⇠ <  of countable cofinality, and

(2) for each club D ✓  there is some ⇠ <  of countable cofinality such
that D⇠ ✓ D.

The existence of such a sequence is a well–known result of Shelah. We
may clearly assume that each D⇠ has order type !. Also, note that since
2<! ⇤ (C0 ⇤C1) has the –chain condition, every club of  in V [c]C0⇤C1 includes

a club in V , and therefore
�!
D is still a club–guessing sequence for  \ cf(!)

in V [c]C0⇤C1 .
Let (D⇠(n) : n < !) be, for each ⇠ <  of countable cofinality, the

increasing enumeration of D⇠. Consider the set

Sx = {X 2 []@0 : (8n < !)X \ [Dsup(X)(n), Dsup(X)(n+ 1)) 6= ; i↵ n 2 x}

where, given two ordinals ↵ < �, [↵, �) denotes the interval of ordinals �
such that ↵  � < �.

The following strengthening of being a stationary set is defined in [F-J].

Definition 1.1 Given a set X such that !1 ✓ X , A ✓ [X ]@0 is said to be
projective stationary if and only if {X 2 A : X \ !1 2 T} is a stationary
subset of [X ]@0 for each stationary subset T of !1.
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Given a set A ✓ [X ]@0 there is a natural forcing notion PA for adding
an !1–club of [X ]@0 consisting of members of A: A condition of PA is a
✓–continuous ✓–chain of members of A of length some successor countable
ordinal, and extension in PA is reverse inclusion. The relevance of the notion
of projective stationary set in the context of shooting clubs is shown by the
following easily verified fact.

Fact 1.3 ([F-J]) Let X be a set including !1 and let A ✓ [X ]@0.

(a) If A is a stationary subset of [X ]@0, then PA forces the existence of an
✓–increasing and ✓–continuous sequence (X⌫)⌫ of elements of A such
that X =

S
⌫<!1

X⌫.

(b) A is a projective stationary subset of [X ]@0 if and only if forcing with
PA preserves stationary subsets of !1.

Claim 1.4 In V [c]C0⇤C1, Sx is a projective stationary subset of []@0.

It should be pointed out that the sets Sr (for any real r) and the fact that
they are projective stationary were previously considered by Todorčević in a
di↵erent context.

Proof: Work in V [c]C0⇤C1 . Fix a function F : []<! �!  and a
stationary T ✓ !1. We want to find some X 2 []@0 such that F“[X]<! ✓ X,
X \!1 2 T and X 2 Sx. Finding such a set will involve the following games
GF
⌫ (⌫ < !1).

Definition 1.2 Given a countable ordinal ⌫, GF
⌫ is the following game of

length ! with two players I and II. The two players collaborate in building
a sequence

hhI0, ⇠0i, ⌘0, hI1, ⇠1i, ⌘1, . . .i
such that for all k,

• Ik is a bounded interval of ordinals in  and ⇠k 2 Ik,

• ⌘k < ,

• ⌘k < min(Ik+1)

Player I chooses the pairs hIk, ⇠ki and player II chooses the ordinals ⌘k.
Player I wins if and only if, letting Y be the closure of ⌫ [ {⇠k : k < !}
under F ,
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• Y \ !1 = ⌫, and

• Y ✓ ⌫ [
S

k<! Ik

These games were considered previously by Veličković in [V]. Let

BF = {⌫ < !1 : player I has a winning strategy in GF
⌫ }

Subclaim 1.5 BF includes a club.

Proof: This follows from the fact that  is a regular cardinal bigger
than !1 (see [V], Lemma 3.7). 2

Now fix any ⌫ 2 BF \T and let � be a winning strategy for player I in GF
⌫ .

Let ✓ be a large enough cardinal and let G : []<! �!  be such that for every
subset X of  closed under G, every Skolem function h for hH✓,2, �, ⌫, F,<✓i
(where <✓ is some fixed well-order of H✓) and every ~x 2 X<!, if h(~x) 2 ,
then h(~x) 2 X.

Let D = {� <  : G“[�]<! ✓ �}. Since
�!
D is a club–guessing sequence,

we may fix some ⇠ <  such that cf(⇠) = ! and D⇠ ✓ D. Since each D⇠(n)
is closed under G, we can fix for each n some Nn 4 H✓ such that � 2 Nn

and Nn \  = D⇠(n).
Now consider a play

hhI0, ⇠0i, ⌘0, hI1, ⇠1i, ⌘1, . . .i

of GF
⌫ in which I plays according to � and II forces I to play in such a

way that, letting Y be the F–closure of ⌫ [ {⇠k : k < !}, for all n, Y \
[C⇠(n), C⇠(n+1)) is nonempty exactly when n 2 x. That such a play exists is
ensured by the facts that each Nn contains � and that � is a winning strategy
for I. Suppose for example that 0 2 x, 1 /2 x and 2 2 x. I starts playing
according to � inside N0. Then II plays some ordinal in  \ (N1\N0). Now
player I applies � inside N1. In the next move, player II plays an ordinal in
 \ (N3\N2). Then I plays according to � inside N3.

Since x is infinite, sup(Y ) = ⇠. Thus, Y is a set in Sx closed under F and
whose intersection with !1 is in T . 2

The final stage of our iteration is PS
x

. By Fact 1.3, PS
x

preserves sta-
tionary subsets of !1 in V [c]C0⇤C1 , and therefore 2<! ⇤ P preserves stationary
subsets of !1 in V .
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Let G be P–generic over V [c], let ↵ =  and suppose Q 2 N is a partial
order satisfying (b) and (c) at the beginning of this proof. Given an infinite
real r ✓ ! in N let �r be, in N , the first ordinal � such that Q forces that
� codes r with respect to

�!
C and (Sn)n<! in the sense of Lemma 1.2, that is,

Q forces that there is a continuous and increasing decomposition (X⌫)⌫<!1

of [�]@0 such that for every limit ordinal ⌫ < !1 there is some ⌫0 < ⌫ such
that for all ⇠, ⌫0 < ⇠ < ⌫,

X⇠ \ !1 2
[

n2r
Sn i↵ w(X⇠ \ !1, X⌫ \ !1) < w(X⇠, X⌫)

where w is as in Lemma 1.2. Let us see that the mapping r �! �r, which
belongs to N thanks to the definability over models of ZF of the forcing
relation, is defined for all infinite reals in N . This will yield the desired con-
tradiction, since the mapping is trivially one–to–one (see the first paragraph
after Lemma 1.2), and so there will be then a well–order of RN in N .

Let r 2 N be an infinite set of integers. Let i < � be such that r = ri. It
will su�ce to show that every condition in Q forces over N that ↵i codes r in
the sense of Lemma 1.2 with respect to

�!
C and (Sn)n<!. Suppose otherwise

and let q 2 Q be a condition forcing over N that ↵i does not code r. Let
H be any filter of Q containing q which is generic for Q over V [c][G]. Since
H is in particular Q–generic over N , we may fix a club {Y⌫ : ⌫ < !1}
of [↵]@0 belonging to N [H]. Let {X⌫ : ⌫ < !1} be a club of [↵]@0 in
V [c][G] consisting of members of Sx. Since Q preserves !1 over V [c][G],
{X⌫ : ⌫ < !1} \ {Y⌫ : ⌫ < !1} is a club of [↵]@0 in V [c][G][H]. Therefore
there are ⌫, ⌫ 0 such that X⌫ = Y⌫0 2 N [H]. But then, x can be decoded from

Y⌫0 and from
�!
D inside N [H], and hXr

⇠ : ⇠ < !1i can be decoded from x and
hy⌫ : ⌫ < !1i. Thus, in N [H] there is after all a club of [↵i]@o witnessing

that ↵i codes r with respect to
�!
C and (Sn)n<!. This contradiction finishes

the proof. 2

It should be remarked that there is no proper forcing P yielding the
conclusion of Theorem 1.1. In fact, there is no such reasonable forcing, where
being reasonable is the following weakening of properness defined in [Fo-M].

Definition 1.3 A partial order P is reasonable if and only if ([↵]@0)V is a
stationary subset of [↵]@0 in V [G] for every V –generic G ✓ P.

This is a consequence of the following fact.
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Theorem 1.6 Let ↵ be an uncountable ordinal. Then there is a proper par-
tial order Q collapsing ↵ to !1 such that whenever P is a reasonable partial
order, Q preserves !1 in V P.

Proof: Let  > ↵ be a cardinal. Define Q to consist of all finite
functions q ✓ !1⇥ [H]@0 , ordered by reverse inclusion, such that q(↵) 2 q(�)
for all ↵ < � in the domain of q. It is clear that forcing with Q collapses
H to !1. To see that Q is proper, note that for every countable M 4 H✓

(for any large enough ✓) containing  and for every condition q of Q in M ,
q [ {hM \ !1,M \Hi} is an (M,Q)–generic condition extending q. This is
due to the fact that r � (M\!1) 2 M for every condition r extending q. Now
suppose P is a reasonable forcing. Let G be P–generic, let q be any condition
in Q and let Ḟ be a Q–name in V [G] for an !–sequence of countable ordinals.
Let ✓ >  be some large enough cardinal and let E be a club of [HV

 ]
@0 in V [G]

consisting of the intersection with HV
 of countable elementary substructures

of H✓ containing Q, q and Ḟ . Since P is reasonable, E remains stationary in
V [G], and so there are countable M 4 HV

 and N 4 H✓ such that

(a) M belongs to V ,

(b) Q, q, Ḟ 2 N ,

(c) N \HV
 = M .

But then, q [ {hM \ !1,Mi} is in V [G] an (N,Q)–generic condition
extending q. Hence, q does not force over V [G] that the range of Ḟ is not
bounded by M \ !1.

2

A similar argument shows that if P is proper, then forcing with Q over
V P preserves in fact all stationary subsets of !1 in V . This is due to the fact
that the set of countable M 4 H such that M \ !1 2 S remains then a
stationary subset of [HV

 ]
@0 in V P for every stationary S ✓ !1.
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2 Adding a real that is generic over two mo-

dels but can be decoded from them to-

gether

In this section I will show that, under a suitable large cardinal hypothesis,
after adding a Cohen real c there are, for every real a in V [c], sets A and B
such that c is Cohen generic over both L[A] and L[B] but a is in L[A,B].
Furthermore, one can take one of these two sets to be a fixed club–guessing
sequence for !2 \ cf(!) in V .

The proof of this result relies on the use of a relevant version of the set
Sx from the proof of Theorem 1.1. It also uses the fact that if � is a Woodin
cardinal and the second uniform indiscernible (u2) is !2, then the image J of
!2 under the elementary embedding derived from forcing with the countable
stationary tower restricted to V� (denoted by Q<�) is already in the ground
model, and moreover that for every partial order P in V� that preserves !1, J
is still the image of !V

2 under the elementary embedding coming from forcing
with Q<� over V P.

Theorem 2.1 Suppose � is a Woodin cardinal and u2 = !2. Let
�!
D = hD⇠ :

⇠ 2 !2 \ cf(!)i be a club–guessing sequence for !2 \ cf(!). Then, if c
is Cohen generic over V , in V [c] it holds that for every real a there is a
countable sequence ~r = hri : i < �i of reals, all of them belonging to V , such
that

(1) c is Cohen generic over L[~r], and

(2) a 2 L[~r,
�!
D ]

It may be worth noting that the hypothesis of the theorem is consistent
with 2@0 being arbitrarily large. To see this, suppose  < � < � are regular
cardinals,  is supercompact and � is Woodin. Force Martin’s Maximum
with a forcing included in V as in [Fo-M-S]. It is a result from [Fo-M-S] that
Martin’s Maximum implies that the nonstationary ideal on !1 is saturated
and that its saturation is preserved under ccc forcing. Hence we may go to a
ccc forcing extension in which 2@0 is � and the nonstationary ideal remains
saturated. Since in this extension there are measurable cardinals, by a result
of Woodin ([W], Theorem 3.17), u2 = !2 holds in it. Furthermore, � remains
a Woodin cardinal there.
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Proof: Given a limit ordinal �, Q<� is the set of stationary sets in V�

consisting of countable sets,1 ordered by setting b  a if and only if [a ✓ [b
and b\[a ✓ a. Fact 2.2 states the properties of Q<� that we shall need. All
results stated there, as well as the definition of the stationary tower, are due
to Woodin.

Fact 2.2 Suppose � is a Woodin cardinal and suppose G is Q<�–generic over
V . Then, if j : V �! M is the canonical elementary embedding coming from
G, it holds that

(a) the critical point of j is !1 and j(!1) = �,

(b) M is a transitive class definable from V and G, and

(c) given any stationary a 2 Q<�, a 2 G if and only if j“ [ a 2 j(a).

It should be noted that (a) and (b) are true in more general cases and
that (c), as well as the fact that the critical point of j is !1, are true in
general.

[L] contains thorough proofs of everything stated in Fact 2.2. We shall
use the following general fact.

Fact 2.3 Suppose u2 = !2 and � is a Woodin cardinal and let P 2 V�

be a forcing notion preserving !1. Suppose H is P–generic over V , G is
(Q<�)V [H]–generic over V [H] and j : V [H] �! M is the corresponding ele-
mentary embedding. Then, j“!V

2 belongs to V . In fact, j“!V
2 is the set of all

tL[x](�), where x is a real from V and t(y) is a Skolem term in L[x] for an
ordinal.

Proof: Since Woodinness is preserved under small forcing, we know
that (a)–(b) of Fact 2.2 hold for j and M . Moreover, since u2 = !2 holds in
V , every ordinal less than !V

2 is of the form tL[x](!V
1 ) for some real x in V

and some Skolem term in L[x] for some ordinal. Thus, it follows from the

fact that !V
1 = !

V [H]
1 , together with Fact 2.2 (a) for j and M and with the

elementarity of j, that j“!V
2 is the set of all tL[x](�), where x is a real from

V and t(y) is a Skolem term in L[x] for an ordinal. 2

1
That is, Q<� consists of all sets a in V� such that each member of a is a countable set

and such that a is a stationary subset of [[a]@0
.
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Since 2<! is ccc, we know by the proof of Theorem 1.1 that

Sa = {X 2 [!2]
@0 : (8n < !)[Dsup(X)(n), Dsup(X)(n+ 1)) \X 6= ; i↵ n 2 a}

is a stationary subset of [!2]@0 . In particular it is a condition in Q<�. There-
fore we may force with Q<� � Sa over V [c] and obtain an elementary embed-
ding j : V [c] �! M such that j“!2 2 j(Sa). Note that a can be decoded

from j“!2 and j(
�!
D). Let ~r = hri : i < �i be an enumeration in V of the

reals. By Fact 2.3, j“!2 2 L[~r], and so a 2 L[~r, j(
�!
D)]. Of course c is Cohen

generic over L[~r] ✓ V . Finally, � is countable in M and each ri is in j(RV ).
Now the desired result follows from the elementarity of j. 2

P. Welch has observed that the existence of 0] su�ces to perform the
action expressed in the title of this section. I thank him for letting me
include this result here.

Theorem 2.4 (Welch) In L[0]] there are reals a, b and c such that

(1) c is Cohen generic over both L[a] and L[b], and

(2) c] 2 L[a, b]2

Proof: Work in L[0]]. Let a be a real coding a bijection between !

and !L
1 so that !

L[a]
1 is countable (for example pick a 2 L[h] where h is

Coll(!,!L
1 )–generic over L). In L[a] let hDn : n < !i be an enumeration of

all dense and open subsets of Cohen forcing in L and let T = {ps : s 2 2<!}
be a tree of Cohen conditions such that psah0i and psah1i are incompatible for
each s 2 2<! and such that each ps is in D|s|. Pick a Cohen generic b over
L such that ps 2 b if and only if s is an initial segment of the characteristic
function of 0]. Note that 0] 2 L[b, T ] ✓ L[a, b]. Since b is Cohen generic over

L, !L[b]
1 is countable in L[0]], so we may fix a real c there which is Cohen

generic over L[a] and L[b]. Again, since c is in a set–generic extension of L,
c] 2 L[0]], and therefore c] 2 L[a, b]. 2

2
Note that in Theorem 2.1 a can be taken to be c].
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