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Abstract

This paper is mainly a survey of recent results concerning the pos-
sibility of building forcing extensions in which there is a simple defini-
tion, over the structure 〈H(ω2),∈〉 and without parameters, of a pre-
scribed member of H(ω2) or of a well–order of H(ω2). Some of these
results are in conjunction with strong forcing axioms like PFA++ or
MM , some are not. I also observe (Corollary 4.4) that the existence
of certain objects of size ℵ1 follows outright from the existence of large
cardinals. This observation is motivated by an attempt to extend the
PFA++ result to a result mentioning MM++.

1 Main starting questions and some pieces of

notation

The work presented here deals mostly with the problem of finding optimal
definitions of well–orders of the reals and other objects. More precisely, it
addresses the following two questions.1

Question 1: Suppose A is a subset of ω1. Suppose we are given the task
of going over to a nice set-forcing extension2 in which A admits a simple
definition Φ(x), without parameters, over the structure 〈H(ω2),∈〉 or over
some natural (definable) extension of this structure, like 〈H(ω2),∈, NSω1〉.

1As quoted from [As2].
2So, if nice is to be interpreted as preserving stationary subsets of ω1 in the ground

model and A is a stationary and co-stationary subset of ω1, then A will remain stationary
and co-stationary in the extension.
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What is the lowest degree of logical complexity that can be attributed to a
definition Φ(x) for which we can perform the above task?

Question 2: What is the lowest degree of logical complexity of formulas
for which there is a formula Φ(x, y) (again without parameters) with that
complexity and with the property that we can go over to a set-forcing exten-
sion in which the set of real numbers admits a well–order defined by Φ(x, y)
(again over the structure 〈H(ω2),∈〉 or over some natural extension of it)?

For some background on these problems the reader is referred to [As2].
Logical complexity – for formulas of a language extending the language of
set theory – will be measured in this paper by the familiar Levy hierarchy⋃

n<ω{Σn, Πn}. Recall that a formula is Σ0 (equivalently, Π0) if all of its
quantifiers are restricted3 and that, for n > 0, a formula is Σn (respectively,
Πn) if it is of the form (∃x)ϕ for a Πn−1 formula ϕ (respectively, if it is of the
form (∀x)ϕ for a Σn−1 formula ϕ). Note that, in any model M of ZF without
the Power Set Axiom, if P is a definable class in M and ϕ(x0, . . . xk) is a
formula in the language of the structure 〈M,∈, P 〉, then there is some formula
ψ(x0, . . . xk) ∈ ⋃

n<ω{Σn, Πn} (in the same language) such that, in 〈M,∈, P 〉,
ϕ(x0, . . . xk) is logically equivalent to ψ(x0, . . . xk).

4 In other words, the Levy
hierarchy provides a classification, up to logical equivalence, of all formulas
over structures 〈M,∈, P 〉 as above. Also, note that, for every n < ω, every
formula in Σn ∪ Πn is logically equivalent to a formula in Σn+1 ∩ Πn+1.

Throughout this paper, H(ω2) denotes the set of all sets whose transitive
closure has size at most ℵ1, and NSω1 denotes the nonstationary ideal on
ω1. Given a regular cardinal κ, cf(κ) is the class of all ordinals of cofinality
κ. L will denote the first order language of the structure 〈H(ω2),∈, NSω1〉.
Given a set X of ordinals, ot(X) will denote the order type of X. Recall
that a partial order P is proper if for every regular cardinal θ > |TC(P)|,
every countable N 4 H(θ) containing P and every p ∈ P ∩N there is some
q ∈ P extending p such that q is (N,P)–generic, i.e. such that q °P τ ∈ Ň
whenever τ ∈ N is a P–name for an ordinal. Also, P is semiproper in case
for every θ, N and p as above there is a condition q extending p such that
q is (N,P)–semigeneric, i.e. such that q °P τ ∈ Ň for every name τ ∈ N

3In other words, if all its quantifiers occur in a subformula of the form (∀x)(x ∈ y → ϕ)
or (∃x)(x ∈ y ∧ ϕ).

4That is, 〈M,∈, P 〉 |= (∀x0, . . . xk) (ϕ(x0, . . . xk) ↔ ψ(x0, . . . xk)).
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for an ordinal in ωV
1 . Every proper partial order is semiproper and, if P

is semiproper, then every stationary subset of ω1 remains stationary after
forcing with P .

L(R) is the ⊆–minimal transitive inner model of ZF containing all reals
and all ordinals. Some arguments in Section 4, and in the proofs of Theorems
2.8 and 2.9 in Section 2, involve Pmax forcing. Pmax is a poset belonging to
L(R) and definable in L(R) (without parameters). If x† exists for every real
x,5 then Pmax is a homogeneous forcing and is σ–closed (in V and in L(R)).
In particular, forcing with it over L(R) does not add new reals. The standard
reference for Pmax forcing is [W].

It will be convenient to fix a notion of incompatibility, for pairs of for-
mulas, which is absolute with respect to sufficiently arbitrary models of set
theory. We will say that two L–formulas Φ0(x) and Φ1(x) are ZFC–provably
incompatible if ZFC proves that for every uncountable regular cardinal κ
and every x ∈ H(κ+), 〈H(κ+),∈, NSκ〉 |= ¬(Φ0(x)∧Φ1(x)). Also, for an L–
formula in two free variables Φ(x, y), we will say that Φ(x, y) is ZFC–provably
antisymmetric if ZFC proves that for every uncountable regular cardinal κ
and every x, y ∈ H(κ+), x 6= y, 〈H(κ+),∈, NSκ〉 |= ¬(Φ(x, y) ∧ Φ(y, x)).6

Acknowledgment. Many of the results in this paper were presented in
two talks that I gave in Singapore in July 2005. These talks were part of the
IMS workshop “Computational Prospects of Infinity”. I thank the members
of the Organizing Committee for inviting me.

2 Results not mentioning forcing axioms

The following theorems are proved in [As4].

Theorem 2.1 ([As4]) There are Σ3 L–formulas Φ0(x) and Φ1(x) and Π3

L–formulas Ψ0(x) and Ψ1(x) with the following two properties.

5Which follows from all large cardinal assumptions used in the arguments alluded to
here.

6The notions of provably incompatible pairs of formulas over 〈H(ω2),∈, NSω1〉 and
of provably incompatible formulas in the language of set theory (over 〈H(ω2),∈〉) are of
course defined in the natural way. And the same goes for the corresponding notions of
provably antisymmetric formulas.
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(1) (Φ0(x), Φ1(x)) and (Ψ0(x), Ψ1(x)) are two pairs of ZFC–provably in-
compatible formulas over the structure 〈H(ω2),∈, NSω1〉.

(2) Given any A ⊆ ω1 there is a proper poset forcing that

(a) A is defined, over 〈H(ω2),∈, NSω1〉, by Φ0(x) and by Ψ0(x), and

(b) ω1\A is defined, over 〈H(ω2),∈, NSω1〉, by Φ1(x) and by Ψ1(x).

Theorem 2.2 ([As4]) There is a Σ3 L–formula Φ(x, y) and a Π3 L–formula
Ψ(x, y) with the following two properties.

(1) Φ(x, y) and Ψ(x, y) are ZFC–provably antisymmetric formulas over
the structure 〈H(ω2),∈, NSω1〉.

(2) If there is an inaccessible cardinal, then there is a proper poset P forcing
the existence of a well–order ≤ of H(ω2) of order type ω2 such that ≤
is defined, over 〈H(ω2),∈, NSω1〉, both by Φ(x, y) and by Ψ(x, y).

In fact, Theorem 2.1 can be easily derived7 from the following result.

Theorem 2.3 ([As4]) There is a Σ2 L–formula Φ(x) such that for every
uncountable regular cardinal κ and every A ⊆ κ there is a poset P with the
following properties.

(1) P is κ–distributive,8 proper, and preserves κ. Also, if 2µ = µ+ when-
ever µ is an infinite cardinal with µ+ < κ, then P preserves all sta-
tionary subsets of κ. Finally, if 2<κ = κ and 2κ = κ+, then P has the
κ+–chain condition.

(2) P forces
A = {ξ < κ : 〈H(κ+),∈, NSκ〉 |= Φ(ξ)}

Similarly, Theorem 2.2 is a consequence of the following result, also proved
in [As4], by taking κ = ω1.

7By taking κ = ω1 and by taking Φ0(x) and Ψ0(x) to be Φ(x) and Φ1(x) and Ψ1(x) to
be ¬Φ(x).

8Recall that a forcing notion is κ–distributive if and only if it does not add new se-
quences of ordinals of length less than κ.
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Theorem 2.4 ([As4]) There is a Σ3 L–formula Φ(x, y) and a Π3 L–formula
Ψ(x, y) satisfying (1) and (2) below.

(1) Φ(x, y) and Ψ(x, y) are ZFC–provably antisymmetric formulas.

(2) Given any uncountable regular cardinal κ there is a poset P with the
following properties.

(a) P preserves ω1 and, if κ > ω1, then it satisfies (1) from Theorem
2.3.

(b) P forces that

{(x, y) ∈ H(κ+)×H(κ+) : 〈H(κ+),∈, NSκ〉 |= Φ(x, y)}

is equal to

{(x, y) ∈ H(κ+)×H(κ+) : 〈H(κ+),∈, NSκ〉 |= Ψ(x, y)}

and is a well–order of H(κ+) of order type κ+ (assuming there is
an inaccessible cardinal in the case κ = ω1).

Note that none of Theorems 2.3 and 2.4 can hold for κ = ω: By [Mar-St],
Projective Determinacy holds if there are infinitely many Woodin cardinals.
In particular, under this large cardinal assumption there can be no well–order
of the reals definable over 〈H(ω1),∈〉 (even allowing parameters). And it can
be seen that if δ < κ are such that δ is a limit of infinitely many Woodin
cardinals and κ is a measurable cardinal, then given any poset P of size less
than δ, any P–generic filter G over V and any real r ∈ V [G]\V , r is not
definable over 〈H(ω1)

V [G],∈〉 by any formula with a real number in V as
parameter.9

Given a regular cardinal κ ≥ ω1, the proofs of Theorems 2.3 and 2.4
involve the manipulation, by forcing, of certain weak club–guessing properties
for club–sequences defined on stationary subsets of κ, in such a way that the
Σ2 theory of 〈H(κ+),∈, NSκ〉 with ordinals in κ as parameters codes any
prescribed subset of κ.

9This follows from a result of Woodin to the effect that the theory of L(R) with real
numbers as parameters cannot be changed by forcing with P whenever P is a poset with
|P| < δ and δ < κ are as above (see [L], Theorem 3.1.12 for a proof).



Results not mentioning forcing axioms 6

Given an ordinal γ, Lim(γ) denotes the set of nonzero limit ordinals in γ.
A club–sequence will be a sequence of the form α = 〈αδ : δ ∈ Lim(γ)〉 – for
some ordinal γ – such that each αδ is a subset of δ. The set S of δ ∈ Lim(γ)
such that αδ is a club of δ is called the domain of α. It will also be denoted
by dom(α). We may say that α is defined on S. If α is a club–sequence
and γ is such that sup(dom(α)) = γ, then we may say that α is a club–
sequence on γ. If τ is an ordinal such that the order type of αδ is τ for each
δ ∈ dom(α), then we say that the height of α is τ . ht(α) will denote the
height of α (if it exists). As in [A-Sh] (for ladder systems, that is, for club–
sequences of height ω), if α is a club–sequence and δ ∈ dom(α), then αδ will
denote α(δ) (and similarly with other Greek letters). We will say that α is a
coherent club–sequence if there is a club–sequence β with dom(α) ⊆ dom(β)
and β ¹ dom(α) = α ¹ dom(α),10 and such that β is coherent in the usual
sense, that is, such that for every δ ∈ dom(β) and every limit point γ of βδ,
γ ∈ dom(β) and βδ ∩ γ = βγ .

The concepts in this paragraph are defined in [A-Sh] for ladder systems.11

Let α be a club–sequence on an ordinal γ of uncountable cofinality. We say
that α is guessing in case for every club C ⊆ γ there is some δ ∈ C ∩dom(α)
such that αδ\C is bounded in δ. Furthermore, we say that α is strongly
guessing if for every club C ⊆ γ there is a club D ⊆ γ such that αδ\C is
bounded in δ for every δ ∈ D ∩ dom(α).12 α is avoidable if there is a club
C ⊆ γ such that αδ ∩C is bounded in δ for each δ ∈ dom(α)∩C. Given two
club–sequences α and β on the same ordinal γ, γ of uncountable cofinality,
β is disjoint from α if βδ ∩ αδ = ∅ for every δ ∈ dom(α) ∩ dom(β). Given a
strongly guessing club–sequence α on an ordinal γ and a set X ⊆ γ including
dom(α), α is said to be maximal for X in case every ladder system defined
on X and disjoint from α is avoidable.

The proofs of Theorems 2.3 and 2.4 make use of a certain weak club–
guessing property for club–sequences,13 which is best defined after introduc-
ing the following strong version of intersection of two sets of ordinals: Given
two sets of ordinals, X and Y , X ∩∗ Y is defined as the set of δ ∈ X ∩Y such
that δ is not a limit point of X. Now, given a club–sequence α on an ordinal

10Where, given a club–sequence α and a set X, the restriction of α to X, to be denoted
by α ¹ X, is that club–sequence which is equal to α on X and is ∅ elsewhere.

11They will occur in Definition 2.3.
12Note that a strongly guessing club–sequence is guessing if and only if its domain is

stationary.
13Defined in [As4].
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γ of uncountable cofinality, we will say that α is type-guessing in case for
every club C ⊆ γ there is some δ ∈ C ∩ dom(α) with ot(αδ ∩∗ C) as high as
possible, that is, with ot(αδ ∩∗ C) = ot(αδ). We will say that α is strongly
type-guessing in case for every club C ⊆ γ there is a club D ⊆ γ such that
ot(αδ ∩∗ C) = ot(αδ) for every δ ∈ D ∩ dom(α).

Also, for a set X of ordinals and an ordinal δ, the Cantor–Bendixson rank
of δ with respect to X, rnkX(δ), is defined by specifying that rnkX(δ) = 0 if
and only if δ is not a limit point of X, that rnkX(δ) ≥ 1 if and only if δ is a
limit point of X and, for each ordinal η ≥ 1, that rnkX(δ) > η if and only
if δ is a limit ordinal and there is a sequence (δξ)ξ<ot(δ) converging to δ such
that rnkX(δξ) ≥ η for every ξ.14 An ordinal δ will be said to be perfect if
rnkδ(δ) = δ.15 Note that rnkδ(δ) ≤ δ for every ordinal δ and that, given any
uncountable regular cardinal κ, the set of perfect ordinals below κ is a club.

Definition 2.1 ([As4]) Given an uncountable regular cardinal κ, A = {αν :
ν < λ} (for 1 ≤ λ ≤ κ) is an almost specifiable set of club–sequences on κ
(asscs on κ, for short) if and only if

(a) there is a one–to–one sequence 〈τν : ν < λ〉 of perfect ordinals below κ
such that, for each ν, τν has countable cofinality and αν is a coherent
club–sequence on κ of height τν,

(b) 〈dom(αν) : ν < λ〉 is a sequence of pairwise disjoint stationary sets,

(c) each αν is strongly type-guessing, and

(d) given any coherent club–sequence β on κ with stationary domain, if β
has height υ of countable cofinality and υ 6= ht(αν) for every ν < λ,
then β is not strongly type-guessing.

Lemma 2.5 gives a justification for the use of the phrase ‘almost specifi-
able’ in Definition 2.1. It implies that {ht(αν) : ν < λ0} = {ht(β

ν
) : ν <

λ1} holds whenever {αν : ν < λ0} and {βν
: ν < λ1} are two asscs’s on the

same κ.

14Thus, for example, rnkX(δ) = 1 if and only if δ is a limit point of ordinals in X but
not a limit point of limit points of X.

15Thus, with this definition, the first perfect ordinal is 0, the second is ε0 =
sup{ω, ωω, ω(ωω), ω(ω(ωω)), . . .}, etc.
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Lemma 2.5 ([As4]) Suppose A = {αν : ν < λ} is an almost specifiable
set of club–sequences on an uncountable regular cardinal κ. Then, {ht(αν) :
ν < λ} is equal to the set of perfect ordinals τ < κ of countable cofinality
and such that there is a strongly type-guessing coherent club–sequence on κ
of height τ and with stationary domain.

The above lemma follows immediately from the definition of asscs. The-
orem 2.3 is an immediate consequence of Lemma 2.5 and of the following
result.

Theorem 2.6 ([As4]) Let κ ≥ ω1 be a regular cardinal, let A be a subset of
κ and let (ξη)η<κ be the strictly increasing enumeration of all perfect ordinals
ξ less than κ with cf(ξ) = ω. Then there is a poset P satisfying the niceness
properties in (1) from Theorem 2.3 and forcing that there is an asscs {αν :
ν < ot(A)} on κ such that A = {η < κ : (∃ν < ot(A))(ht(αν) = ξη)}.

Theorem 2.3 follows then since, for any given regular κ ≥ ω1 and any
A ⊆ κ, the poset given by the above theorem forces that A is the set of
η < κ with the property that there is a coherent strongly type-guessing
club–sequence with stationary domain included in κ and of height ξη (where
(ξη)η<κ is as in the above theorem).16 The strategy for building the poset
P in Theorem 2.6 is quite as one would expect: P is the limit of a forcing
iteration of length κ+ built with supports of size less than κ. We may assume
that 2<κ = κ and 2κ = κ+ hold in the ground model. In the first step of the
iteration one adds, by initial segments, a set A of coherent club–sequences
with the relevant heights. Then one kills, along the iteration, all possible
obstacles to A being an asscs. In fact, it suffices to force, for all clubs
C ⊆ κ arising during the iteration, with the natural poset for shooting a
club D ⊆ κ such that ot(αδ ∩∗ C) = ot(αδ) for all δ ∈ D ∩ dom(α) (for all
α ∈ A). This is enough to ensure that (d) from Definition 2.1 holds for A.
The bulk of the proof is of course the verification that this poset P has the
desired properties. Also, several of the technicalities involves in the coding –
for example the restriction to perfect ordinals of countable cofinality or the
consideration of the operation ∩∗ – are there precisely to make (d) hold.

The proof of Theorem 2.4 involves a certain principle which provides a
simple way of encoding members of H(κ+) (for some κ) by ordinals in κ+,
quite in the spirit of the principle ψAC (for H(ω2)) from [W].

16Noting that this property can indeed be expressed by a Σ2 L–formula over the struc-
ture 〈H(κ+),∈, NSκ〉.
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Definition 2.2 ([As4]) Let κ be an uncountable regular cardinal, let F be a
function from κ into P(κ), and let S = 〈Si : i < κ〉 be a sequence of pairwise

disjoint stationary subsets of κ. Ψ
F,S
AC is then the statement that there is an

enumeration 〈Bζ : κ ≤ ζ < κ+〉 of all subsets of κ such that, for each ζ,
there is a club E ⊆ [ζ]<κ with the property that for every X ∈ E and every
i < κ,

(a) ot(X) ∈ F (X ∩ κ) if X ∩ κ ∈ Si and i ∈ Bζ, and

(b) ot(X) /∈ F (X ∩ κ) if X ∩ κ ∈ Si and i /∈ Bζ.

It is easy to see that there is a Σ1 formula Θ(x, y, z) with the property
that if κ, F and S are such that

(1) κ is an uncountable regular cardinal, F : κ −→ P(κ) is a function and
S is a κ–sequence of pairwise disjoint stationary subsets of κ, and

(2) Ψ
F,S
AC holds,

then ≤F,S := {〈x, y〉 ∈ H(κ+)×H(κ+) : 〈H(κ+),∈〉 |= Θ(x, y, 〈F,S〉)} is
a well–order of H(κ+) of order type κ+. Moreover, this formula can be taken
so that ZFC proves that there are no κ, F and S as in (1) for which there
are any distinct x, y ∈ H(κ+) with H(κ+) |= Θ(x, y, 〈F,S〉)∧Θ(y, x, 〈F,S〉).

The following result is proved in [As4].

Theorem 2.7 Let κ ≥ ω1 is a regular cardinal, and suppose 2<κ = κ and
2κ = κ+ hold. Then there is a κ–distributive poset P adding a function
F : κ −→ [κ]<κ and a κ–sequence S of pairwise disjoint stationary subsets

of κ such that Ψ
F,S
AC holds. Furthermore, P has the κ+–chain condition and,

if 2µ = µ+ whenever µ is an infinite cardinal with µ+ < κ, then P preserves
all stationary subsets of κ.

When κ > ω1, Theorem 2.4 is proved by combining the forcing construc-
tion for proving the above result with the one for proving Theorem 2.6 with

respect to a subset of κ coding the parameter (F,S) for which we force Ψ
F,S
AC :

We may assume that 2<κ = κ and 2κ = κ+ hold in the ground model. We
start by adding, by forcing with initial segments, a function F : κ −→ [κ]<κ

and a κ–sequence S of mutually disjoint stationary subsets of κ. Then we
build a forcing iteration of length κ+ with supports of size less than κ in
which we simultaneously perform the tasks of
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(1) forcing Ψ
F,S
AC (as in the proof of Theorem 2.7), and

(2) adding a suitable asscs on κ (as in the proof of Theorem 2.6) coding a
fixed subset of κ that encodes (in some Σ1 way) the pair (F,S).

The desired forcing is then the limit of this iteration. Now, the L–formula
Φ(x, y) witnessing Theorem 2.4 can be taken to express the following property
P0(x, y): “There is a maximal set T of perfect ordinals τ < κ of countable
cofinality with the property that there is a coherent strongly type-guessing
club–sequence with stationary domain and with height τ such that T encodes
a pair (F,S) with F a function from κ into P(κ) and S a κ–sequence of
mutually disjoint stationary subsets of κ, and x ≤F,S y17”.

P0(x, y) can also be expressed, in a slightly more convoluted way, by
saying that there is a set T such that

(a) for every τ ∈ T , τ is a perfect ordinal in κ of countable cofinality and
there is a coherent club–sequence α of height τ , with dom(α) ⊆ κ and
dom(α) /∈ NSκ, and such that for every club C ⊆ κ, {δ ∈ dom(α) :
ot(αδ ∩∗ C) 6= τ} ∈ NSκ,

(b) for every τ ∈ κ∩ cf(ω), τ ∈ T or else for every coherent club–sequence
α of height τ , either dom(α) is not a stationary subset of κ or there is
a club C ⊆ ω1 such that {δ ∈ dom(α) : ot(αδ ∩∗ C) 6= τ} /∈ NSκ, and
such that

(c) T encodes a pair (F,S) with F a function from κ into P(κ) and S a
κ–sequence of mutually disjoint stationary subsets of κ, and x ≤F,S y.

Clearly, (a) and (b) are, respectively, a Σ2 property of T over the structure
〈H(κ+),∈, NSκ〉 and a Π2 property of T , also over 〈H(κ+),∈, NSκ〉. And,
since ≤F,S is as described right after Definition 2.2, (c) is a Σ1 property,
over 〈H(κ+),∈〉, about T , x and y. Thus, P0(x, y), being expressible over
〈H(κ+),∈, NSκ〉 as (∃T )[Φa(T ) ∧ Φb(T ) ∧ Φc(T , x, y)], with Φa(u) a Σ2 L–
formula, Φb(u) a Π2 L–formula, and Φ(u, v, w) a Σ1 formula in the language
of set theory, can be written as a Σ3 L–formula over 〈H(κ+),∈, NSκ〉.

As to Ψ(x, y), it can be taken to express the property – let us call it
P1(x, y) – that every maximal set T of ordinals τ < κ with the property
stated in the description of Φ(x, y) encodes a pair (F,S) as before, and

17Where ≤F,S is as in the paragraph right after Definition 2.2.
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x ≤F,S y. Let us call Q(T ) the property of T expressed by the conjunction
of (a) and (b) in the above description. P1(x, y) can be written as

(∀T )[Q(T ) → (T encodes a pair (F,S) and x ≤F,S y)].

Q(T ) is a Σ3 property of T over 〈H(κ+),∈, NSκ〉, and the expression to the
right of the implication sign is a Σ1 property of T , x and y. It follows then
that P1(x, y) can be written as a Π3 formula over 〈H(κ+),∈, NSκ〉.

The idea behind the proof when κ = ω1 is the same. The proof in this
case combines the forcing iteration for Theorem 2.6 with a certain iteration of
proper posets, due to Moore [Mo] (see the next section), which codes subsets
of ω1 by ordinals using some fixed parameter p. Now we force this coding
while at the same time making p definable. In the extension, the inaccessible
cardinal becomes ω2.

One final word on the proofs of Theorems 2.6 and 2.4: They do not
depend on any general forcing iteration lemmas. Instead, they rely on direct
constructions depending quite closely on the actual definition of the iteration.
By a forcing iteration lemma here I mean a statement typically asserting
that if 〈Pξ : ξ ≤ λ〉 is any forcing iteration built with some fixed kind of
supports, based on a sequence 〈Q̇ξ : ξ < λ〉 of names for posets,18 and each
Q̇ξ is forced, by Pξ, to have a certain property P , then Pλ also has property
P . It is well–known19 that fairly general iteration lemmas can be obtained
for countable support iterations (or for some reasonable variation of this
type of iterations). On the other hand, there are serious obstacles to proving
similar general lemmas for iterations built using uncountable supports, which
are precisely the kind of iterations one is typically faced with when forcing
some statement about subsets of κ, for some κ > ω2, while at the same time
preserving ω1 and ω2.

It turns out that Theorems 2.1 and 2.2 are optimal as stated from the
point of view of the Levy hierarchy. More specifically, by appealing mainly
to results of Woodin one can prove that, in the presence of sufficiently strong
large cardinals,20 3 cannot be replaced by 2 in the statement of either The-
orem 2.1 or Theorem 2.2. In fact, one cannot prove a version of either
Theorem 2.1 or Theorem 2.2 in which Σ3 (equivalently, Π3) is replaced by
Π2. Theorems 2.8 and 2.9 present more precise formulations of this claim.

18That is, for all ξ with ξ + 1 ≤ λ, Pξ+1 is the set of ξ + 1–sequences p such that
p ¹ ξ ∈ Pξ and such that p ¹ ξ °ξ p(ξ) ∈ Q̇ξ.

19See for example [Sh].
20For example a proper class of Woodin cardinals.
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Theorem 2.8 ([As2]) Given any stationary and co-stationary A ⊆ ω1, if
AD, the Axiom of Determinacy, holds in L(R) (ADL(R)) and if there is a
Woodin cardinal below a measurable cardinal, then there is no pair Φ0(x),
Φ1(x) of necessarily incompatible Π2 formulas over 〈H(ω2),∈, NSω1 , r〉r∈R
such that A is defined, over 〈H(ω2),∈, NSω1 , r〉r∈R, by Φ0(x) and ω1\A is
defined, over 〈H(ω2),∈, NSω1 , r〉r∈R, by Φ1(x).

Theorem 2.9 ([As2]) Assume ADL(R) and suppose there is a Woodin car-
dinal with a measurable cardinal above. Then there is no necessarily anti-
symmetric Π2 formula Φ(x, y) over the structure 〈H(ω2),∈, NSω1 , r〉r∈R such
that Φ(x, y) defines, over 〈H(ω2),∈, NSω1 , r〉r∈R, a well–order of R.

In Theorem 2.8 above, two formulas Φ0(x) and Φ1(x) in the language of
the structure 〈H(ω2),∈, NSω1 , r〉 – where r is a real number – are said to be
necessarily incompatible if, for every generic extension M of L(R) satisfying
ZFC,

〈H(ω2),∈, NSω1 , r〉M |= ¬(Φ0(x) ∧ Φ1(x))

for every x ∈ H(ω2)
M . Also, in Theorem 2.9, a formula Φ(x, y) in the lan-

guage of the structure 〈H(ω2),∈, NSω1 , r〉 – where, again, r is a real number
– is necessarily antisymmetric in case for every generic extension M of L(R)
satisfying ZFC,

〈H(ω2),∈, NSω1 , r〉M |= (¬∃x, y)(x 6= y ∧ Φ(x, y) ∧ Φ(y, x))

Theorems 2.8 and 2.9 are easily proved using the theory of Pmax forcing
by arguments very much contained in the proof of Observation 4.3 in Section
4.21 From Theorem 2.8 it follows that if there is a proper class of Woodin
cardinals and A is a stationary and co-stationary subset of ω1, then there is no
pair (Φ0(x), Φ1(x)) of ZFC–provably incompatible Π2 L–formulas for which
there is a poset P such that P preserves the stationarity of both A and ω1\A
and such that P forces that A and ω1\A are defined over 〈H(ω2),∈, NSω1〉 by,
respectively, Φ0(x) and Φ1(x).22 Likewise, Theorem 2.9 implies that, under
the same large cardinal assumption, there is no poset forcing the existence

21Using the fact that, under ADL(R), Pmax is homogeneous and σ–closed and using,
respectively, the fact that AD prohibits the existence of stationary and co-stationary
subsets of ω1, and the fact that AD prohibits the existence of well–orders of R.

22Since, by a result of Woodin, ADL(R) follows from the existence of infinitely many
Woodin cardinals with a measurable cardinal above them.
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of a well–order of H(ω2) definable over the structure 〈H(ω2),∈, NSω1〉 by a
ZFC–provably antisymmetric Π2 L–formula.

One may ask wether it is possible to drop the predicate NSω1 in the
statement of either Theorem 2.1 or 2.2. Concerning this question, there is a
version of the above theorems with 〈H(ω2),∈〉 replacing the more expressive
〈H(ω2),∈, NSω1〉. The coding techniques employed in the proof of these
theorems are quite different from the ones used in the proofs of Theorems
2.6 and 2.4. These results use ZFC + ”There is an inaccessible limit of
measurable cardinals” as base theory, rather than just ZFC (+ there is an
inaccessible cardinal).

Recall that, if α < ω2 is an ordinal and π : ω1 −→ α is a surjection,
the function g : ω1 −→ ω1 defined by letting g(ν) = ot(π“ν) for each ν is
called a canonical function for α. This name is justified by the fact that any
two functions thus obtained (for the same α) coincide on a club of ω1. By a
canonical function will be meant a canonical function for some ordinal below
ω2. Given S ⊆ ω1 and two functions f , g : S −→ ω1, we will say that g
dominates f on S mod. a club (equivalently, f is dominated by g on S mod.
a club) if there is a club C ⊆ ω1 such that f(ν) < g(ν) for every ν ∈ S ∩ C.

The following notion is defined in [As5].

Definition 2.3 ([As5]) Given an ordinal λ, 1 ≤ λ ≤ ω1, 〈S, 〈Si : i <
λ〉, f, α〉 is a simple decoding object if

(a) {Si : i < λ} ∪ {S, ω1\(S ∪⋃
i<λ Si)} is a collection of pairwise disjoint

stationary subsets of ω1,

(b) every function from S into ω1 is dominated on S mod. a club by some
canonical function,

(c) f is a function from ω1\(S∪⋃
i<λ Si) into ω1 dominating every canonical

function on ω1\(S ∪ ⋃
i<λ Si) mod. a club,

(d) α is a ladder system defined on
⋃

i<λ Si which is strongly guessing and
maximal for ω1, and αδ ∩ ⋃

i<λ Si = ∅ for every δ ∈ ⋃
i<λ Si, and

(e) there is a sequence 〈ri : i < λ〉 such that for every i < λ and every δ ∈
Si, ri is the set of k < ω for which there are infinitely many n < ω such
that {αδ(n), αδ(n + k + 1)} ⊆ S and {αδ(n + j) : 1 ≤ j ≤ k} ∩ S = ∅.
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If 〈S, 〈Si : i < λ〉, f, α〉 is a simple decoding object, then we let code(S, 〈Si :
i < λ〉, f, α) = {ri : i < λ}, where 〈ri : i < λ〉 witnesses (e) for 〈S, 〈Si :
i < λ〉, f, α〉. We will say that 〈S, 〈Si : i < λ〉, f, α〉 encodes {ri : i < λ}.

Lemma 2.10 shows that simple decoding objects are unique in a quite
strong sense.

Lemma 2.10 ([As5]) Suppose 〈S0, 〈S0
i : i < λ0〉, f0, α

0〉 and 〈S1, 〈S1
i : i <

λ1〉, f1, α
1〉 are simple decoding objects. Then there are clubs D ⊆ C of ω1

such that

(i) S0 ∩ C = S1 ∩ C and
⋃

i<λ0
S0

i ∩ C =
⋃

i<λ1
S1

i ∩ C,

(ii) for every δ ∈ D, both α0
δ∆α1

δ and α0
δ\C are finite.

In particular, code(S0, 〈S0
i : i < λ0〉, f0, α

0) = code(S1, 〈S1
i : i <

λ1〉, f1, α
1).

The following theorem is proved in [As5].

Theorem 2.11 ([As5]) Suppose κ is an inaccessible limit of measurable car-
dinals. Let λ be an ordinal, 1 ≤ λ ≤ ω1, and let 〈ri : i < λ〉 be a
sequence of sets of integers. There is a semiproper poset P ⊆ Vκ forc-
ing that there is a simple decoding object 〈S, 〈Si : i < λ〉, f, α〉 such that
code(S, 〈Si : i < λ〉, f, α) = {ri : i < λ}.

The first of the following two results is a corollary of Theorem 2.11, and
the second follows from combining the forcing construction for proving The-
orem 2.11 with, for example, the one for proving Theorem 2.7.23

Theorem 2.12 ([As5]) There are Σ3 formulas Φ0(x) and Φ1(x) in the lan-
guage of set theory such that

(1) (Φ0(x), Φ1(x)) are ZFC–provably incompatible formulas over the struc-
ture 〈H(ω2),∈〉, and

(2) given any A ⊆ ω1, if there is an inaccessible limit κ of measurable
cardinals, then there is a semiproper poset P ⊆ Vκ forcing that A and
ω1\A are defined over 〈H(ω2),∈〉 by, respectively, Φ0(x) and Φ1(x).

23Very much as in the proof of Theorem 2.4.
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Theorem 2.13 ([As5]) There is a Σ3 formula Φ(x, y) in the language of set
theory such that

(1) Φ(x, y) is a ZFC–provably antisymmetric formula over 〈H(ω2),∈〉, and

(2) if there is an inaccessible limit κ of measurable cardinals, then there is a
semiproper poset P ⊆ Vκ forcing that Φ(x, y) defines, over 〈H(ω2),∈〉,
a well–order of H(ω2) of order type ω2.

For Theorem 2.12, each formula Φε(x) (for ε ∈ {0, 1}) will be a Σ3 for-
mulas expressing the property Pε(x), where P0(x) and P1(x) are defined by,
respectively, “x is a countable ordinal and there is a real r encoding x (in
some Σ1 way), together with a simple decoding object encoding a set of re-
als to which r belongs” and “x is a countable ordinal and there is a simple
decoding object encoding a set of reals X such that r /∈ X whenever r is a
real encoding x (in the same way as before)”.

It is easy to see that both properties can be expressed by Σ3 formulas over
〈H(ω2),∈〉: For P0(x), since “x ∈ ω1” and “r encodes x” are Σ1 properties
of the relevant objects, the verification will be finished once we see that

(∃S, (Si)i<λ, f, α) Q(S, (Si)i<λ, f, α, r)

can be written as a Σ3 sentence over 〈H(ω2),∈〉 with r as parameter, where
Q(S, (Si)i<λ, f, α, r) expresses that (S, (Si)i<λ, f, α) is a simple decoding ob-
ject and that r ∈ code(S, (Si)i<λ, f, α). But Q(S, (Si)i<λ, f, α, r) can be ex-
pressed by saying that (a)–(d) from Definition 2.3 hold for the relevant pa-
rameters, and that r ∈ code(S, (Si)i<λ, f, α). Since ω1 is Σ2 definable over
〈H(ω2),∈〉, (a) from Definition 2.3 is a Σ2 property of S and (Si)i<λ (over
〈H(ω2),∈〉). (b) from Definition 2.3 is clearly a Π2 property of S, and (c) is
also a Π2 property (of f , S and (Si)i<λ). (d) is expressed by saying that α
is a ladder system with dom(α) =

⋃
i<λ Si, that for every club C ⊆ ω1 there

is a club D ⊆ ω1 such that αδ\C is bounded in δ for every δ ∈ D ∩ dom(α),
and that for every ladder system β disjoint from α there is a club C ⊆ ω1

such that βδ ∩C is finite for every δ ∈ C ∩ dom(β); hence, it can be written
as a Π2 formula over 〈H(ω2),∈〉. Finally, “r ∈ code(S, (Si)i<λ, f, α)” can be
expressed by saying that there is some i < λ such that r = {k < ω : (∃∞n <
ω)({αδ(n), αδ(n+ k +1)} ⊆ S ∧{αδ(n+ j) : 1 ≤ j ≤ k}∩S = ∅)} for every
δ ∈ Si, and so it is a Σ0 property of r, S and (Si)i<λ. It follows that P0(x)
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can be written as a Σ3 formula over 〈H(ω2),∈〉. The verification for P1(x) is
along the same lines.

The formula Φ(x, y) witnessing Theorem 2.13 can be taken to say that
there is a simple decoding object encoding a set of reals X such that X
encodes (in some simple standard way) a pair (F,S) as in Definition 2.2 (for
κ = ω2) and x ≤F,S y, for the relation ≤F,S described after Definition 2.2.
It is easy to see, by an analysis as before, that there is indeed a Σ3 formula
expressing the above property of x and y over 〈H(ω2),∈〉.

Question 2.1 Is it possible to prove versions of either Theorem 2.12 or 2.13
with Π3 replacing Σ3?

3 Results mentioning strong forcing axioms

The forcing constructions presented in the previous section are flexible enough
to accommodate posets with the countable chain condition. Thus, all models
built there can be taken to be models of MAω1 . However, it is not possi-
ble to modify those constructions so as to produce models of, for example,
BPFA.24 In fact, the techniques presented there for coding a fixed subset of
ω1 are incompatible with BPFA. The reason for this is that BPFA implies
that every club–sequence is avoidable.25

PFA++ is the following strong form of PFA:

Given any proper poset P , any sequence 〈Di : i < ω1〉 of dense subsets
of ω1 and any sequence 〈τi : i < ω1〉 of P–names for stationary subsets
of ω1 there is a filter G ⊆ P such that, for each i < ω1, G ∩ Di 6= ∅ and
{ν < ω1 : (∃p ∈ G)(p °P ν ∈ τi)} is a stationary subset of ω1.

The first main result in this section is the following.

Theorem 3.1 ([As3]) Suppose κ is a supercompact cardinal and A is a sub-
set of ω1. Then there is a semiproper poset P ⊆ Vκ such that

24BPFA is the assertion that 〈H(ω2),∈〉 is a Σ1–elementary substructure of the struc-
ture 〈H(ω2),∈〉 as computed in any forcing extension via a proper poset. BPFA is a
trivial consequence of the Proper Forcing axiom (PFA).

25One can easily verify that the standard poset for introducing, by initial conditions, a
club avoiding a fixed club–sequence defined on a subset of ω1 and whose height exists is
always proper.
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(1) P forces PFA++,

(2) P forces that A is definable over the structure 〈H(ω2),∈〉 by a Σ5 for-
mula without parameters, and

(3) P forces the existence of a well–order of H(ω2) definable over the struc-
ture 〈H(ω2),∈〉 by a Σ5 formula without parameters.

This time the proofs involve the manipulation of certain guessing prop-
erties of functions F : S −→ P(ω1)

26 with respect to canonical functions.

Definition 3.1 ([As3]) Let S be a stationary subset of ω1. Given I ⊆ ω1, S
has guessing density I if for every stationary S∗ ⊆ S,

(a) there is a function F : S∗ −→ P(ω1) such that ot(F (ν)) ∈ I for all
ν ∈ S∗ and such that {ν ∈ S∗ : g(ν) ∈ F (ν)} is stationary for every
α < ω2 and every canonical function g for α, and

(b) given any function F ′ : S∗ −→ P(ω1), if ot(F ′(ν)) < min(I) for all
ν ∈ S∗, then there is an ordinal α < ω2 such that {ν ∈ S∗ : g(ν) ∈
F ′(ν)} is nonstationary for every canonical function g for α.

Note that every stationary S ⊆ ω1 has density ω1 and that there is no
such thing as the unique guessing density of S: if S has guessing density I0

and I1 ⊆ ω1 is such that min(I1) ≤ min(I0) and sup(I0) ≤ sup(I1), then S
also has guessing density I1. Also, it is easy to see that for every stationary
S ⊆ ω1, the assumption that ♦(S∗)27 holds for every stationary S∗ ⊆ S
implies that S has guessing density {1}. Finally, BMM28 implies that no
stationary subset of ω1 has guessing density bounded in ω1.

The following theorem is proved in [As3].

Theorem 3.2 ([As3]) Suppose κ is an inaccessible cardinal which is a limit
of measurable cardinals. Let 〈Si : i < ω1〉 be a sequence of pairwise disjoint

26Where S ⊆ ω1 and where, for every ν ∈ S, ot(F (ν)) is in some prescribed interval of
countable ordinals.

27Namely the statement that there is a sequence 〈Xα : α ∈ S∗〉 with Xα ⊆ α for all α
and {α ∈ S∗ : X ∩ α = Xα} stationary for each X ⊆ ω1.

28Namely the statement that the structure 〈H(ω2),∈〉 is a Σ1–elementary substructure
of 〈H(ω2),∈〉V P for every partial order P preserving stationary subsets of ω1.
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stationary subsets of ω1 and let 〈αi : i < ω1〉 be a sequence of nonzero
countable ordinals.

Then there is a semiproper poset P ⊆ Vκ forcing, for every i < ω1, that
Si has guessing density the interval [αi, ωαi·ω)29 if αi > 1 and that Si has
guessing density {1} if αi = 1.

The proof of Theorem 3.2 involves an analysis of iterations of models of
set theory relative to sequences of (possibly different) measurable cardinals.
It uses a generalization of a theorem of Kunen ([Ku]) saying that for every
ordinal ε there are only finitely many measurable cardinals γ for which there
is a normal measure U on γ such that ε is not a fixed point by the elementary
embedding of the universe derived from U .

The forcing iteration for proving Theorem 3.2 consists of semiproper
posets. In fact, the posets Q used there are quite close to being proper,
in the sense that, although it may not be true that, for an arbitrary struc-
ture N containing Q and an arbitrary p ∈ Q∩N , there is an (N,Q)–generic
condition extending p, it is nevertheless true that for every N and p as above
there is a name Ñ for a structure including N and there is a condition ex-
tending p which is (Ñ ,Q)–generic (in a natural way) and, moreover, there is
sufficient control in V on what the order type of the interpretation of Ñ ∩ κ
(for the relevant κ) is going to be. This ensures that things work as de-
sired.30 This type of argument also shows that our forcing iteration is robust
enough to accommodate arbitrary proper posets (of size less than κ), even
on a suitable club with complement unbounded in κ.

By a result of Moore ([Mo]), BPFA implies the existence, given any lad-
der system ε on ω1 and any sequence (Ui)i<ω1 of pairwise disjoint stationary
subsets of ω1, of a well–order of H(ω2) definable over 〈H(ω2),∈〉 by a Σ2 for-
mula with p = (ε, (Ui)i<ω1) as parameter. The proof of Theorem 3.1 follows
from the above considerations: Suppose we start from a supercompact car-
dinal instead of just an inaccessible limit of measurable cardinals. Suppose
〈Si : i < ω1〉 and 〈αi : i < ω1〉 (in the statement of Theorem 3.2) are such
that Si∩(i+1) = ∅ for all i > 0 and such that A∗ = {αi : i < ω1} is a sparse
enough set of countable ordinals coding in some simple (say, Σ1) way, both a
prescribed A ⊆ ω1 and a parameter (ε, (Ui)i<ω1) as in Moore’s theorem. We

29An expression of the form βγ denotes ordinal exponentiation.
30It is worth mentioning that, unlike the forcing construction for proving Theorem 2.11

– which is a revised countable support iteration –, the construction for Theorem 3.2 works
with a countable support iteration.
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build a forcing iteration in which we perform the usual Baumgartner con-
struction for PFA++ on a suitable club C of κ, and in which we force as in
Theorem 3.2 on the complement of C. In the end we obtain a model in which
PFA++ holds and in which A∗ is defined as the set of of α < ω1 for which
there is a stationary subset of ω1 with guessing density equal to the interval
[α, ωα·ω). It follows easily that in this model A∗ – and therefore also A – is
definable over 〈H(ω2),∈〉 by a Σ5 formula without parameters. Since A∗ also
codes a parameter as in Moore’s theorem, it follows by that theorem that in
the resulting model there is a well–order of H(ω2) definable over 〈H(ω2),∈〉
also by a Σ5 formula without parameters. This proves Theorem 3.1.

The second main result in this section is due to P. Larson and involves a
strong form of Martin’s Maximum (MM). Recall that MM is the following
provably maximal forcing axiom for collections of ℵ1–many dense:31

Suppose P is a poset such that forcing with P preserves the stationarity
of all stationary subsets of ω1 and suppose 〈Di : i < ω1〉 is a sequence of
dense subsets of P . Then there is a filter G ⊆ P such that G ∩ Di 6= ∅ for
every i < ω1.

MM is a maximal forcing axiom in the sense that, on the one hand, if P
is a poset forcing that some stationary subset of ω1 from the ground model
is no longer stationary, then one can easily find a collection 〈Di : i < ω1〉
of dense subsets of ω1 such that Di ∩ G = ∅ for some i whenever G ⊆ P
is a filter; whereas, on the other hand, MM can be forced over any model
with a supercompact cardinal. In an older version of this paper I was asking
whether the hypothesis that there is a supercompact cardinal (or some other
reasonable large cardinal assumption) implies that there is a partial order
forcing Martin’s Maximum, together with the existence of a well–order of
H(ω2) definable, over 〈H(ω2),∈〉, by a formula without parameters (or even
by a formula with a real number as parameter). Regarding this question, P.
Larson has recently proved the following result ([L2]).

Theorem 3.3 (Larson) Suppose κ is a supercompact limit of supercompact
cardinals. Then there is semiproper poset P ⊆ Vκ such that

(1) P forces MM+ω,32 and

31Defined and proved consistent in [F-M-Sh].
32MM+ω is the strengthening of MM saying that for every poset Q preserving station-
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(2) P forces that there is well–order of H(ω2) definable, over 〈H(ω2),∈〉,
by a formula without parameters.

4 Open questions and some consequences of

large cardinal axioms.

In the model of Theorem 4.1, MM++ fails necessarily. As far as I know, the
following questions remain open.

Questions 4.1 Assume some reasonable large cardinal hypothesis. Is it pos-
sible to force in such a way that MM++ holds in the extension, together
with the existence of a well–order of H(ω2) definable, over 〈H(ω2),∈〉, by
a formula without parameters (or even by a formula with a real number as
parameter)?

Does MM++ imply that there is a well–order of H(ω2) definable, over
〈H(ω2),∈〉, by a formula with at most a real number as parameter?

Let D denote the class of all subsets of H(ω2) which are definable, over
〈H(ω2),∈〉, by a formula with at most a real number as parameter. I will
finish this paper with a remark motivated by a failed attempt (so far) to
construct a model of MM++ in which there is a well–order of H(ω2) belonging
to D (thus providing an answer to the first question above).

One first observation – due to Larson – I want to mention is that, in
the presence of MM , the existence of a subset A ⊆ ω2 ∩ cf(ω) such that
A belongs to D and such that both A and (ω2 ∩ cf(ω))\A are stationary
suffices to prove the existence of a stationary and co-stationary subset of ω1

belonging to D. In fact,

Fact 4.1 (Larson) Suppose NSω1 is saturated and suppose (P(ω1))
] exists.

Suppose as well that for every stationary subset A of ω2∩cf(ω) there is some
δ < ω2 of cofinality ω1 such that both A and ω2\A reflect at δ. If there is some
A ⊆ ω2∩cf(ω) such that A ∈ D and such that both A and (ω2∩cf(ω))\A are

ary subsets of ω1, every sequence 〈Di : i < ω1〉 of dense subsets of Q and every sequence
〈τn : n < ω〉 of Q–names for stationary subsets of ω1 there is a filter G ⊆ Q such that
G∩Di 6= ∅ for every i < ω1 and such that {α < ω1 : (∃p ∈ G)(p °Q α ∈ τn)} is stationary
for every n < ω. MM++ is the strengthening of MM+ω incorporating sequences of length
ω1 – instead just of length ω – of names for stationary subsets of ω1.
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stationary subsets of ω2, then there is a stationary and co-stationary S ⊆ ω1

such that S ∈ D.

Proof: Let r0 be a real such that A is definable over 〈H(ω2),∈〉 by a
formula with only r0 as parameter. Let δ < ω2 be an ordinal of uncountable
cofinality such that both A∩δ and δ\A are stationary subsets of δ. From the
saturation of NSω1 and the existence of (P(ω1))

] it follows, by [W], Theorem
3.17, that the second uniform indiscernible33 (u2) is ω2. In particular, we may
fix a real r such that |δ|L[r] = ωV

1 and such that δ is definable, in L[r], from
ωV

1 . Notice that cf(δ)L[r] is then exactly ωV
1 . Let C be the <L[r]–least club

of δ of order type ωV
1 and let (αν)ν<ωV

1
be its strictly increasing enumeration.

Then, since A∩ δ and δ\A are both stationary, S := {ν < ω1 : αν ∈ A} is a
stationary and co-stationary subset of ω1 which is definable, over 〈H(ω2),∈〉,
by a formula with r0, δ and r as parameters, and therefore also by a formula
with r0 and r as parameters. 2

The hypotheses of Fact 4.1 follow from MM : The saturation of NSω1

follows from [F-M-Sh], the existence of the sharp of every set follows in fact
from BMM by a result of Schindler ([S]), and the simultaneous reflection of
pairs of stationary subsets of ω2 ∩ cf(ω) follows from [F-M-Sh].

A second observation is that, again in the presence of MM , the existence
of a stationary and co-stationary subset belonging to D suffices to prove that
in fact every subset of ω1 belongs to D:

Fact 4.2 ([As1], Observation 1.1) Suppose that BMM holds and NSω1 is
saturated. Then, given any stationary and co-stationary S ⊆ ω1 and any
A ⊆ ω1 there is a real r such that A ∈ L[r, S]. In particular, if S ∈ D, then
A is also in D.

Finally, MM implies the existence, given a sequence 〈Sα : α < ω1〉 of
pairwise disjoint stationary subsets of ω1, of a well–order of H(ω2) which is
definable over 〈H(ω2),∈〉 by a formula with 〈Sα : α < ω1〉 as parameter (for
example by [W], Theorem 5.14 and Lemma 5.13).

A consequence of these observations is that, under MM , the existence of
a well–order of H(ω2) belonging to D follows from – and in fact is equivalent
to – the existence of a stationary A ⊆ ω2 ∩ cf(ω) belonging to D and such

33An ordinal is a uniform indiscernible if it is a Silver indiscernible for L[r] for every
real r.
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that (ω2 ∩ cf(ω))\A is also stationary. Now, suppose we are in a context in
which MM holds and we want to argue that there is a well–order of H(ω2)
in D. One possibility would be to prove that there is some formula Φ(x),
perhaps with a real parameter, such that AΦ(x) and (ω2 ∩ cf(ω))\AΦ(x) are
both stationary for AΦ(x) := {α ∈ ω2 ∩ cf(ω) : 〈H(ω2),∈〉 |= Φ(α)}.

This strategy asks for the stationarity of sets of ordinals of countable
cofinality. On the other hand, Namba forcing (Nm) preserves stationary
subsets of ω1 and forces cf(ωV

2 ) = ω. It certainly forces the following property
about x = ωV

2 , for any collection ∆ of axioms of set theory of bounded
Levy complexity:34 “cf(x) = ω, there is a transitive set M |= ∆ such that
ωM

1 = ω1 and such that x is ωM
2 , and there is a NmM–generic filter over M”.

By general arguments involving forcing axioms it easily follows then that,
by MM , there are stationarily many α < ω2 of countable cofinality such
that this statement holds with x = α. Thus, it seemed to be a good idea
to choose as Φ(x) a formula expressing something like the above property.
In other words, it seemed a good idea to try to argue that the complement,
relative to ω2 ∩ cf(ω), of the set defined by the above property – or some
other related property – must be stationary. For example, one could have
expected to start with a model with a supercompact cardinal κ, perform the
usual MM++–forcing construction by a forcing with the κ–chain condition,
as in [F-M-Sh], and argue that, in the extension, the above property fails for
(say) stationarily many α < ω2 = κ of countable cofinality in the ground
model. However, the observations I am about to present show that this hope
is sterile.

It is well–known that certain properties for definable sets of reals follow
from the existence of large cardinals. The first observation I want to make
extends this type of results to the level of H(ω2). In other words, it shows that
the existence, in the universe, of certain objects of size ℵ1 follows outright
from large cardinal axioms.

Observation 4.3 Suppose there are cardinals δ < κ such that δ is a limit of
infinitely many Woodin cardinals and κ is measurable. Let Φ(x) be either a
Σ1 formula or a Π1 formula (in the language L∗ for the structure 〈H(ω2),∈
, NSω1 , r〉r∈R), let λ ∈ {ω, ω1} and let Φ∗(x) be a Σ1 L∗–formula or a Π1 L∗–
formula expressing Φ(x)∧cf(x) = λ. Suppose there is a poset P ∈ Vδ forcing
that there are stationarily many α < u2 such that 〈H(ω2),∈, NSω1 , r〉r∈R |=

34Or even for ∆ = ZFC if, for example, some rank–initial segment of the universe
satisfies ZFC.
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Φ∗(α). Then, in V , there is a club C ⊆ u2 in L(R) such that 〈H(ω2),∈
, NSω1 , r〉r∈R |= Φ∗(α) holds, in V , for every α ∈ C.

Proof: Let Φ(x), λ and P provide a counterexample. Suppose Φ∗(x)
is a Σ1 formula (the argument when Φ∗(x) is Π1 is the same). Let A be,
in V P , the set of α < u2 such that 〈H(ω2),∈, NSω1 , r〉r∈R |= Φ∗(α). In V P ,
there are infinitely many Woodin cardinals with a measurable above them.
In particular, ADL(R) holds and there is a Woodin cardinal with a measur-
able above. Hence, by the proof of [W], Theorem 4.65, in V P , Pmax forces
〈H(ω2),∈, NSω1 , r〉r∈R |= Φ∗(α) over L(R)V P whenever α ∈ A.35 In particu-
lar, by the definability of the forcing relation over ZF–models, A ∈ L(R)V P .
If u2\A were stationary in V P , then A and (ω2 ∩ cf(λ))\A would be sta-
tionary subsets of ω2 (= u2) in L(R)V P .36 But this contradicts a result, of
Martin and Paris, saying that {C ∩ cf(λ) : C a club of ω2} generates an
ultrafilter of ω2 ∩ cf(λ) under AD (see [K], p. 395). Hence, in L(R)V P

it holds that there is a club C ⊆ u2 of ordinals of cofinality λ such that
Pmax forces 〈H(ω2),∈, NSω1 , r〉r∈R |= Φ(α) for every α ∈ C of cofinality λ.
By another result of Woodin referred to already in Section 2, forcing with
P does not change the theory of L(R) with real numbers as parameters.
Hence, in L(R)V there is also a club C ⊆ u2 with the above property. Take
any α ∈ C of cofinality λ and suppose, towards a final contradiction, that
〈H(ω2),∈, NSω1 , r〉r∈R |= ¬Φ(α) holds in V . Again by the proof of [W],
Theorem 4.65, this time applied in V , 〈H(ω2),∈, NSω1 , r〉r∈R |= ¬Φ(α) also
holds in L(R)Pmax . Contradiction. 2

The following consequence of Observation 4.3 is relevant to the possible
scenario presented in this section for building a model of MM++ with a
well–order of H(ω2) belonging to D.

Corollary 4.4 Suppose there is a supercompact cardinal. Then there is a
club C ⊆ u2, C ∈ L(R), with the property, in V , that for every λ ∈ {ω, ω1}
and every formula ϕ(x), if ZFC proves that ϕ(x) defines a poset – call it
Pϕ(x) – preserving stationary subsets of ω1 and forcing cf(ωV

2 ) = λ, then for
every α ∈ C of cofinality λ there is a transitive model M of ZFC computing
stationary subsets of ω1 correctly and with ωM

2 = α and there is a (Pϕ(x))
M–

generic filter over M .

35Since every α < u2 is Σ1 definable from ω1 together with a real.
36As L(R)V P computes u2 and cofinalities below u2 correctly and as AD |= u2 = ω2.



Open questions and some consequences from large cardinals. 24

Proof: Fix λ ∈ {ω, ω1} and a formula ϕ(x) a above. Since cf(u2) ≥ ω1,
it suffices to show that there is a club C ⊆ u2 such that every α ∈ C ∩ cf(λ)
has the following property (in V ):

P (α): There is a transitive model M of ZFC computing stationary sub-
sets of ω1 correctly and such that ωM

2 = α and there is a (Pϕ(x))
M–generic

filter over M .

By the construction in [F-M-Sh] there is an iteration 〈Pα : α ≤ κ〉,
Pκ ⊆ Vκ, such that each Pκ/Ġα is semiproper in V Pα , and forcing both
u2 = ω2 and that there are stationarily many α < ω2 = κ such that α = ωV Pα

2

and such that there is a (Pϕ(x))
V Pα

–generic filter over V Pα . Hence, by re-
flection, we may fix κ < κ and a semiproper poset P ⊆ Vκ forcing u2 = ω2

and, since κ is inaccessible in V Pκ , forcing that there are stationarily many
α < ω2 = κ such that P (α). Now we can apply Observation 4.3 since P (α)
can be written as a Σ1 sentence, over 〈H(ω2),∈, NSω1〉, with α as parameter.
2

Remember the approach pointed out before for producing, in the presence
of MM and using Namba forcing, a stationary A ⊆ ω2 ∩ cf(ω) in D with
(ω2 ∩ cof(ω))\A also stationary. Corollary 4.4 shows that this approach
cannot work (just take ϕ(x) to be a definition of Namba forcing).
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