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Abstract

We isolate natural strengthenings of Bounded Martin’s Maximum which

we call BMM⇤
and A–BMM⇤,++

(where A is a universally Baire set of reals),

and we investigate their consequences. We also show that if A–BMM⇤,++

holds true for every set of reals A in L(R), then Woodin’s axiom (⇤) holds

true. We conjecture that MM++
implies A–BMM⇤,++

for every A which is

universally Baire.

W.H. Woodin, P. Larson, I. Farah, and M. Magidor asked the second author
whether the method developed in [1] and [3] can be applied to show other ⇧

2

–
statements which are discussed in [13]. In particular, they asked if the statements
from Definition 1.2 below can be shown from Bounded Martin’s Maximum, BMM,
together with the precipitousness of NS!

1

. This led the second author to the for-
mulation of the “maximality” principle BMM⇤ (cf. Definition 1.9) which says that
if a ⌃

1

statement ' (with parameters from H!
2

) is “honestly consistent,” then '
holds true in V .

A scenario for proving BMM⇤ from BMM plus NS!
1

is precipitous appears natu-
rally: one would have to show that if a ⌃

1

statement is “honestly consistent,” then
it can be forced by a stationary set preserving forcing. It has been conjectured (cf.
e.g. [10, Conjecture 6.8]) that Martin’s Maximum++ implies Woodin’s axiom (⇤).
Showing that if a ⌃

1

statement is “honestly consistent,” then it can be forced by a
stationary set preserving forcing would verify this conjecture, but the present paper
has to leave this conjecture unanswered.

We are able to show, though, that a strengthening of BMM⇤ implies (⇤). This
strengthening allows NS!

1

as well as universally Baire sets A as parameters and will
be written as A–BMM⇤,++, cf. Definition 2.6. Our Theorem 2.7 says that in the
presence of large cardinals, (⇤) follows from A–BMM⇤,++ for all sets of reals A in
L(R). We conjecture that MM++ implies A–BMM⇤,++ for every universally Baire
set A.

We assume the reader to have some familiarity with forcing axioms as well as
with Woodin’s P

max

. Classical texts on forcing axioms are [5] and [6] (cf. also [10]).
The forcing P

max

was introduced in [13] (cf. also [9]).

1The first author was supported by Austrian Science Fund (FWF) project M 1408-N25.
2The second author is indebted to W. Hugh Woodin, Ilijas Farah, and Menachem Magidor

for crucial conversations on the topics of this paper. He is also grateful to Andrés Caicedo and
Paul Larson for many conversations on the topics of this paper in particular during the SQuaRE
meetings at the AIM in Palo Alto, May 16–20, 2011, and April 16–20, 2012. Both authors would
like to thank W. Hugh Woodin, Paul Larson, Jindra Zapletal, and the anonymous referee for their
many helpful comments on earlier drafts of this paper.
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Throughout this paper, we let NS = NS!
1

denote the nonstationary ideal on
!
1

. The Bounded Proper Forcing Axiom, BPFA (cf. [6]), says that for every proper
poset P and every P–generic filter G over V ,

((H!
2

)V ;2) �
⌃

1

((H!
2

)V [G];2).

The formulation of Bounded Martin’s Maximum, BMM, results from that of BPFA
by replacing “proper” with “stationary set preserving.” Given a universally Baire
set A ⇢ R, A-Bounded Martin’s Maximum++ (cf. [13, Definition 10.91]) says that
for every stationary set preserving poset P and every P–generic filter G over V ,

((H!
2

)V ;2, (NS!
1

)V , A) �
⌃

1

((H!
2

)V [G];2, (NS!
1

)V [G], A⇤),

where A⇤ is V [G]’s version of A, i.e., if the trees T and U witness that A is |P|+–
universally Baire with A = p[T ], then A⇤ = p[T ] \ V [G].

A P
max

–condition is a countable transitive structure p = (M ;2, I, a) such that
M is a model of a fragment of ZFC plus MA!1 , p |= “I is a normal uniform ideal

on !
1

,” a 2 P(!M
1

) \M is such that !M
1

= !
L[a,x]
1

for some x 2 R \M , and p is
generically iterable (cf. [13, Definition 3.5]). If p = (M ;2, I, a) and q = (N ;2, J, b)
are in P

max

, then q <P
max

p i↵ there is a generic iteration of p which gives rise to
an embedding

j : p = (M ;2, I, a) ! (M⇤;2, I⇤, j(a))

such that j(a) = b, {M⇤, j} 2 N , and J \ M⇤ = I⇤. Woodin’s Axiom (⇤) (cf.
[13, Definition 5.1]) says that AD, the Axiom of Determinacy, holds in L(R) and
L(P(!

1

)) is a P
max

–extension of L(R), i.e., there is some G which is P
max

–generic
over L(R) and

L(P(!
1

)) = L(R)[G].

1 Bounded Martin’s Maximum

⇤

Let us start with some examples.

Definition 1.1 Let B ⇢ !
1

. We say that B is amenably closed i↵ for all D ⇢ !
1

,
if D \ ⇠ 2 L[B] for all ⇠ < !

1

, then D 2 L[B].

By [4], “B is amenably closed” may be formulated in the presence of BPFA in a
⌃

1

fashion as follows.
Let B ⇢ !

1

be amenably closed. The set of all cofinal branches through the
tree T = <!

1!
1

\L[B] is then contained in L[B] and has cardinality @
1

in V since,
under BPFA, !V

2

is inaccessible (in fact ⌃
2

–reflecting) in every inner model of the
form L[X] for X ⇢ !

1

(cf. [6]). If BPFA holds true, then T is weakly special, i.e.,
there is a function f : T ! ! such that for all s, t, t0 2 T , if f(s) = f(t) = f(t0),
s ⇢ t and s ⇢ t0, then t ⇢ t0 or t0 ⇢ t (cf. [4]). For each cofinal branch b through T
there is then some s 2 T such that

b = {t 2 T : 9t0 � s (t ⇢ t0 ^ f(t0) = f(s)}.
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We then have that under BPFA a given B ⇢ !
1

is amenably closed i↵ there is
some ↵ < !

2

and some f : <!
1!

1

\ J!
1

[B] ! ! witnessing that <!
1!

1

\ J!
1

[B] is
weakly special and such that for all s 2 T ,

{t 2 T : 9t0 � s (t ⇢ t0 ^ f(t0) = f(s)} 2 J↵[B].

Definition 1.2 We will be concerned with the following two statements.

(1) (Cf. [13, Theorem 5.74 (5)].) Let S ⇢ !
1

be stationary and costationary.
There is then some x 2 R and some G which is Col(!, < !V

1

)–generic over
L[x] such that L[x, S] = L[x,G].

(2) (Cf. [13, Theorem 6.108 (5)].) Let A ⇢ !
1

. There is then some amenably
closed B ⇢ !

1

with A 2 L[B].

It is not hard to see that e.g. if BPFA holds true, then both (1) and (2) may be

formulated as ⇧
H!

2

2

–sentences. For (2), this uses the remark after Definition 1.1.
The following observation is very easy.

Lemma 1.3 If (1) holds, then R is closed under ]’s, and �1
2

= !
2

.

Proof. Let z ⇢ !. In order to show that z] exists it su�ces to see that every
X 2 P(!

1

) \ L[z] either contains a club or is disjoint from a club, as then the club
filter on !

1

, restricted to L[z], is an L[z]–ultrafilter. Suppose that S0 2 P(!
1

)\L[z]
is stationary and costationary in V . Then S = (S0 \ !) [ z is also stationary and
costationary. By (1), there is some x 2 R and some G which is Col(!, < !

1

)–
generic over L[x] with L[x, S] = L[x,G]. But L[x, S] = L[x, z], so that there is
some Ḡ which is Col(!, < !

1

)–generic over L[x, z] with L[x,G] = L[x, z, Ḡ]. But
then L[x, z] = L[x, S] = L[x,G] = L[x, z, Ḡ], which contradicts the fact that every
real z 2 L[x,G] is in L[x,G � ↵] for some ↵ < !

1

.
To see that �1

2

= !
2

, let � < !
2

, and let A ⇢ !
1

be such that � < (!V
1

)+L[A].
Let S0 ⇢ !

1

be stationary and costationary, and let

S = {! · ↵ : ↵ 2 S0} [ {! · ↵+ 1: ↵ 2 A}.

Then S is again stationary and costationary, and if x 2 R and G Col(!, < !
1

)–
generic over L[x] are such that L[x, S] = L[x,G], then

(!V
1

)+L[x] = (!V
1

)+L[x,G] = (!V
1

)+L[x,S] � (!V
1

)+L[A] > �,

so that � < �1
2

. ⇤

In particular, (1) by itself implies ¬CH, the negation of the Continuum Hypoth-
esis. On the other hand, in L, every subset of !

1

is trivially amenably closed, so
that (2) holds in L and does not by itself imply ¬CH. The situation is a bit more
tricky under forcing axioms. As we said, under BPFA, !V

2

is inaccessible in every
inner model of the form L[B] for B ⇢ !

1

. Suppose (2) and that !V
2

is inaccessible
in every inner model of the form L[B] for B ⇢ !

1

. If W ⇢ V is an inner model of
GCH, then we may pick some A 2 W , A ⇢ !

1

, such that HC \W = HC \ L[A].
If A 2 L[B], where B ⇢ !

1

is amenably closed, then P(!
1

) \ W ⇢ L[B], so that
(!V

1

)+W < !
2

. In particular:
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Lemma 1.4 If (2) holds and H!
2

is closed under #’s, then CH fails.

Whereas Lemma 1.3 shows that (1) by itself is a fairly strong principle, (2) is only
strong in the presence of e.g. a precipitous ideal on !

1

:

Lemma 1.5 If (2) holds and there is a precipitous ideal on !
1

, then there is an
inner model with a Woodin cardinal.

Proof. If there is a precipitous ideal on !
1

, then H!
2

is closed under ]’s. Suppose
Lemma 1.5 to fail, and let K denote the core model below a Woodin cardinal.
By the remarks before the statement of Lemma 1.4, (!V

1

)+K < !
2

. On the other
hand, by [2, Theorem 0.3], if there is a precipitous ideal on !

1

, then (!V
1

)+K = !
2

.
Contradiction! ⇤

We are now about to propose our strengething of BMM (Bounded Martin’s
Maximum). Recall that BMM says that if A 2 H!

2

, '(x) is a ⌃
1

–formula, and
P 2 V is a poset which preserves stationary subsets of !

1

, then

V P |= '(A) =) V |= '(A).

We might strengthen this statement by saying that if '(A) is “consistent,” then
'(A) is true, where we might try to spell out “consistent” as in the following version
of BMM.

Let us write BMMo for the statement that if A 2 H!
2

, if '(x) is a ⌃
1

–formula,
and if there is some transitive model A such that

(a) A 2 V Col(!,2@1

),

(b) (H!
2

)V ⇢ A,

(c) if T ⇢ !V
1

, T 2 V , V |= T is stationary, then A |= T is stationary, and

(d) A |= ZFC� + '(A),

then '(A) is true in V .

If in (a) we demand A to be in V rather than just V Col(!,2@1

), then the hypothesis
would already say that '(A) is true in V . If we dropped (c), then a counterexample
would be given by '(A) ⌘ “A is disjoint from a club” for some A ⇢ !

1

which is
stationary in V but not in A.

Clearly, BMMo is a strengthening of BMM. By [11], BMMo thus implies that V
is closed under #’s. This may be used to show that BMMo is in fact inconsistent.

Let us consider the statement '(!
1

) ⌘ “there is some x 2 R such that !
1

= !
L[x]
1

.”
Let V↵ be a model of a su�ciently rich finite fragment of ZFC. We may force
over V↵ by Jensen coding to add some G which is class generic over V↵ such that
in V↵[G], there is some real x with V↵[G] = J↵[x]. As Jensen coding preserves
stationary subsets of !

1

(cf. [11]), Shoenfield absoluteness yields that there is some
A with (a), (b), (c), and (d) for A = !

1

and '(!
1

) ⌘ “there is some x 2 R such

that !
1

= !
L[x]
1

.” Then BMMo would imply that in V there is a real x such that

!
1

= !
L[x]
1

, which contradicts the existence of x#.
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The problem with BMMo is that it ignores that the model A has to be “as closed
as” V . For BMM this is automatic, as every set generic extension of V is “as closed
as” V . We need to make this requirement explicit if we aim to arrive at a consistent
weakening of BMMo that strengthens BMM. We’ll spell out the neccessary closure
of A in terms of universally Baire sets of reals, basically as in [13].

We call a function F : R ! R universally Baire i↵ its graph F = {(x, F (x)) : x 2
R} is a universally Baire subset of R2. Let U : R ! R be universally Baire, as being
witnessed by the class sized trees T and U with F = p[T ] and V P |= p[U ] = !!\p[T ]
for all P 2 V . Then if P 2 V is any poset and if G is P–generic over V , FG denotes
the (possibly partial) function p[T ]V [G]. It is easy to see that FG is indeed a function.
Also, this function is independent from the choice of T and U , so the notation FG

is unambiguous.

Definition 1.6 Let F : R ! R be universally Baire. Let ⌦ be an uncountable
cardinal, and let G be Col(!,⌦)–generic over V . Let A 2 V [G] be a transitive
model of ZFC� which is countable in V [G]. We say that A is closed under F (or,
F–closed) i↵ for all posets P 2 A and for all g 2 V [G] which are P–generic over A,
A[g] is closed under FG, i.e., FG(x) 2 A[g] for all x 2 R \ A[g] in the domain of
FG.

The following lemma can be proved easily by an absoluteness argument.

Lemma 1.7 Let F : R ! R be universally Baire. Let P 2 V be a poset, and
let H be P–generic over V . If V [H 0] is a set–generic extension of V [H], then
FH0 � RV [H] = FH .

Here is an example, of which the case n = 1 will be important later. Let n < !,
and let V be closed under X 7! M#

n (X). Then F : x 7! M#

n (x), construed as a
function from R to R, is universally Baire, cf. [2, Lemma 2.9]. If A is closed under
F in the sense of Definition 1.6, then A must be closed under X 7! M#

n (X) in the
ordinary sense. The same is of course true for mouse operators other than M#

n .

Definition 1.8 Let X 2 H!
2

, and let '(x) be a ⌃
1

formula in the language of set
theory. We say that '(X) is honestly consistent i↵ for every F : R ! R which is
universally Baire there is an F–closed transitive model A such that

(a) A 2 V Col(!,2@1

),

(b) (H!
2

)V ⇢ A,

(c) if T ⇢ !V
1

, T 2 V , V |= T is stationary, then A |= T is stationary, and

(d) A |= ZFC� + '(X).

Definition 1.9 By Bounded Martin’s Maximum⇤, BMM⇤, we mean the conjunc-
tion of the following two statements.

(a) NS!
1

is precipitous, and

(b) if X 2 H!
2

and if '(x) is a ⌃
1

formula such that '(X) is honestly consistent,
then '(X) holds true in V .
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Theorem 1.10 If BMM⇤ holds true, then so does (1).

Proof. Let ✓ = 2@1 and ⇢ = (2✓)+, and let H be Col(!, < ⇢)–generic over

V . Note that ⇢ = !
V [H]

1

. Let x 2 R \ V [H] be a real coding the structure
(H

(2

@
1

)

+

;2,NS)V . There is some G which is Col(!, < ⇢)–generic over V [x] with
the property that V [x,G] = V [H]. We have that

S
G : ! ⇥ ⇢ ! ⇢, and for each

⌘ < ⇢,
S
G(·, ⌘) : ! ! ⌘ is a surjection. Setting

S̄⇠ = {⌘ < ⇢ :
[

G(0, ⌘) = ⇠}

for ⇠ < ⇢, (S̄⇠ : ⇠ < ⇢) is a family of pairwise disjoint subsets of ⇢ = !
V [H]

1

such that
each S̄⇠ is stationary in V [H].

Let e : ⇢ ! [⇢]<⇢ \ L[x,G], e 2 L[x,G] be an enumeration of all the bounded
subsets of ⇢ which exist in L[x,G].

Let D̄ = {↵ < ⇢ : J↵[x] |= ZFC�}, let D0 ⇢ ⇢ be the club of all limit points of
D̄, and let D = D̄ \ D0. Then D is an unbounded nonstationary subset of ⇢. We
let d : ! ⇥ ⇢⇥ ⇢ ! D be some bijection which exists in L[x]. Setting S⇠ = S̄⇠ \D0

for ⇠ < ⇢, we have that (S⇠ : ⇠ < ⇢) is a family of pairwise disjoint subsets of ⇢ each
of which is stationary in V [x,G] and such that S⇠ \D = ; for all ⇠ < ⇢.

We now fix S 2 V , S ⇢ !V
1

, stationary and costationary in V . Working inside
L[x,G], we may construct a generic iteration

((Mi,⇡ij : i  j  ⇢), (Gi : i < ⇢))

of M
0

= (H
(2

@
1

)

+

;2,NS)V with the following properties.

(i) If ⇠, i < ⇢ and e(⇠) 2 Mi \
S

k<i ran(⇡ki) is stationary in Mi, then S⇠ \
crit(Gi) ⇢ ⇡i⇢(e(⇠)).

(ii) For n < ! and ⌘, ⇠ < ⇢, G(n, ⌘) = ⇠ i↵ d(n, ⌘, ⇠) 2 ⇡
0⇢(S).

In particular, if T ⇢ ⇢, T 2 M⇢, M⇢ |= T is stationary, then T is stationary in
V [H].

Also, L[x,⇡
0⇢(S)] = L[x,G]. This is true as D, d 2 L[x], so that G may be read

o↵ from d and ⇡
0⇢(S) inside L[x,⇡

0⇢(S)], i.e., L[x,G] ⇢ L[x,⇡
0⇢(S)]. On the other

hand, the generic iteration ((Mi,⇡ij : i  j  ⇢), (Gi : i < ⇢)) is inside L[x,G], so
that we certainly have that ⇡

0⇢(S) 2 L[x,G], so that L[x,⇡
0⇢(S)] = L[x,G].

We may lift the iteration maps to act on V , i.e., there is a unique generic iteration

((Ni, ⇡̃ij : i  j  ⇢), (Gi : i < ⇢))

of (V ;2,NS) such thatMi = (H
(2

@
1

)

+

)Ni for i  ⇢ and ⇡ij = ⇡̃ij � Mi for i  j  ⇢.
Let us write N = N⇢.

Now let F : R ! R be universally Baire, and let T
0

, U
0

be the class sized trees
witnessing that F is universally Baire (with F = p[T

0

]). Set T⇢ = ⇡̃
0⇢(T0

) and
U⇢ = ⇡̃

0⇢(U0

), so that p[T⇢] = p[T
0

] and p[U⇢] = p[U
0

].
By Lemma 1.7, every rank initial segment of V [H] is closed under F . Hence in

V [H], there is some transitive F–closed A with (H
(2

@
1

)

+

)N ⇢ A, A |= T is stationary
for all T ⇢ ⇢, T 2 M⇢, such that M⇢ |= T is stationary, and such that A is a model
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of ZFC� plus “there is some real x and some G which is Col(!, < ⇢)–generic over
L[x] with L[x,⇡

0⇢(S)] = L[x,G].” (Just take an appropriate rank initial segment
of V [H] as A.)

We may use the tree T⇢ to witness the fact that A is F–closed. By absoluteness

then, in NCol(!,⇡̃
0,⇢(2

@
1

)) there is some transitive F–closed (as being witnessed by

T⇢) A with the above properties. Pulling this back via ⇡̃
0⇢ we get that in V Col(!,2@1

)

there is some transitive F–closed (as being witnessed by T
0

) A with (H!
2

)V ⇢ A,
A |= T is stationary for all T ⇢ !

1

, T 2 V , such that V |= T is stationary, and
such that A is a model of ZFC� plus “there is some real x and some G which is
Col(!, < !

1

)–generic over L[x] with L[x, S] = L[x,G].”
We have shown that (1) is honestly consistent. ⇤ (Theorem 1.10)

Theorem 1.11 If BMM⇤ holds true, then so does (2).

Proof. Let us again write ✓ = 2@1 and ⇢ = (2✓)+, and let G be Col(!, <
⇢)–generic over V . Let H be Col(⇢, ⇢)–generic over V [G]. We have that ⇢ =

!
V [G,H]

1

and 3 holds in V [G,H]. Let e⇤ : ⇢ ! [⇢]<⇢ \ V [G,H], e⇤ 2 V [G,H], be an
enumeration of all the bounded subsets of ⇢ which exist in V [G,H]. Let (⌧i : i < ⇢)
witness that 3 holds in V [G,H]. As in the previous proof, we may set

S̄⇠ = {⌘ < ⇢ :
[

G(0, ⌘) = ⇠}

for ⇠ < ⇢, so that (S̄⇠ : ⇠ < ⇢) is a family of pairwise disjoint subsets of ⇢, each S̄⇠

being stationary in V [G,H].
Let x 2 R \ V [G] be such that the structure (H

(2

@
1

)

+

;2,NS)V is in L[x] and

is countable there. Let x# = (J↵[x];2, U), and let  = crit(U). Let g 2 V [G] be
Col(!, < )–generic over x# (equivalently, over L[x]), and let

I = {X 2 P() \ x#[g] : 9Y 2 U Y \X = ;}.

Then (x#[g];2, I) |= I is a �–complete uniform normal ideal on , and (x#[g];2, I)
is generically iterable via I and its images in a way that every iteration map lifts
an iteration map resulting from iterating the ground model x#.

We may let (W⇠ : ⇠ < ) 2 x#[g] be a partition of  into I–positive sets. We
may also let e :  ! []< \L[x, g] be an enumeration of all the bounded subsets of
 which exist in L[x, g].

Working inside (x#[g];2, I), we may construct a generic iteration

((Mi,⇡ij : i  j  ), (Gi : i < ))

of M
0

= (H
(2

@
1

)

+

;2,NS)V with the following property.

(i) If ⇠, i <  and e(⇠) 2 Mi \
S

k<i ran(⇡ki) is stationary in Mi, then W⇠ \
crit(Gi) ⇢ ⇡i(e(⇠)).

In particular, M 2 x#[g] and (NS)M = I \ M. Working inside V [G,H], we
may then construct a generic iteration

((M⇤
i ,⇡

⇤
ij : i  j  ⇢), (G⇤

i : i < ⇢))

of M⇤
0

= (x#[g];2, I) with the following properties.

7



(ii) If ⇠, i < ⇢ and e⇤(⇠) 2 ⇡⇤
0i(I

+)\
S

k<i ran(⇡ki), then S̄⇠ \crit(G⇤
i ) ⇢ ⇡i(e⇤(⇠)).

(iii) If i < ⇢, then G⇤
i is generic over L[M⇤

i , (⌧k : k  i)] (not just over M⇤
i ).

In particular, ⇡⇤
0⇢(I) = (NS⇢)V [G,H] \M⇤

⇢. Also, if k  i  ⇢, then

⌧k 2 M⇤
k () ⌧k 2 M⇤

i .

Let

((Mi,⇡ij : i  j  ⇢), (Gi : i < ⇢)) = ⇡⇤
0⇢((Mi,⇡ij : i  j  ), (Gi : i < )),

which is a generic iteration ofM
0

= (H
(2

@
1

)

+

;2,NS)V . We have that ⇡
0,⇢((NS)V ) =

⇡
0,⇢(I)\M⇤

⇢ = (NS⇢)V [G,H]\M⇢, so that every T ⇢ ⇢, T 2 M⇢, which is stationary
in M⇢ is also stationary in V [G,H].

Let D ⇢ ⇢, D 2 V [G,H]. Let SD = {i < ⇢ : ⌧i = D \ i} which is stationary in
V [G,H]. Suppose that D \ ⇠ 2 M⇤

⇢ for every ⇠ < ⇢. There is then a club C ⇢ ⇢

such that D \ i 2 M⇤
i for all i < ⇢. This gives some stationary S̄ ⇢ SD \ C and

some i
0

< ⇢ and D̄ 2 M⇤
i
0

such that ⇡⇤
i
0

j(D̄) = D \ j for all j 2 S̄. But then
D = ⇡⇤

i
0

⇢(D̄) 2 M⇤
⇢. Writing M⇤

⇢ = (J↵⇤ [x, g⇤];2,⇡
0⇢(I)) and letting B ⇢ ⇢ code

x� g⇤ in a simple way, we have shown that B is amenably closed in V [G,H].
We may again lift ((Mi,⇡ij : i  j  ⇢), (Gi : i < ⇢)) to a generic iteration

((Ni, ⇡̃ij : i  j  ⇢), (Gi : i < ⇢)) of (V ;2, (NS)V ). Let us write N = N⇢.
Let us fix some A ⇢ !

1

, A 2 V . Also let F : R ! R be universally Baire,
and let T

0

, U
0

be the class sized trees witnessing that F is universally Baire (with
F = p[T

0

]). Set T⇢ = ⇡̃
0⇢(T0

) and U⇢ = ⇡̃
0⇢(U0

), so that p[T⇢] = p[T
0

] and
p[U⇢] = p[U

0

].
By Lemma 1.7, every rank initial segment of V [G,H] is closed under F . In

V [G,H], there is thus some transitive F–closed (as being witnessed by T⇢) A with
(H

(2

@
1

)

+

)N ⇢ A, A |= T is stationary for all T ⇢ ⇢, T 2 N , such that N |= T is

stationary, and such that A is a model of ZFC� plus “there is some amenably closed
B ⇢ ⇢ with ⇡̃

0⇢(A) 2 L[B].” (Take an appropriate rank initial segment of V [G,H]
as A.)

Hence by absoluteness, in NCol(!,⇡̃
0,⇢(2

@
1

)) there is some transitive F–closed (as
being witnessed by T⇢) A with the above properties. Pulling this back via ⇡̃

0,⇢ we

get that in V Col(!,2@1

) there is thus a transitive F–closed (as being witnessed by T
0

)
A with (H!

2

)V ⇢ A, A |= T is stationary for all T ⇢ !
1

, T 2 V , such that V |= T
is stationary, and such that A is a model of ZFC� plus “there is some amenably
closed B ⇢ ⇢ with A 2 L[B].”

We have shown that (2) is honestly consistent. ⇤ (Theorem 1.11)

There is an obvious question which we have to leave unanswered: Does BMM
plus NS!

1

is precipitous prove BMM⇤? We will explore this question further in the
next section.

2 BMM⇤
and Woodin’s axiom (⇤)

We now aim to discuss the relationship between BMM⇤ and (⇤). In order to do so,
we shall need strengthenings of BMM⇤ which we call BMM⇤,++ (in analogy with
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MM++ and BMM++, cf. Definition 2.2) and A–BMM⇤,++ (where A is a universally
Baire set of reals, cf. Definition 2.6). We apologize for the awkward notation.

Definition 2.1 Let X 2 H!
2

, and let '(x, İNS) be a ⌃
1

formula in the language of
set theory, augmented by a predicate İNS for the non–stationary ideal on !

1

. We say
that '(X, İNS) is honestly consistent i↵ for every F : R ! R which is universally
Baire there is an F–closed transitive model A such that

(a) A 2 V Col(!,2@1

),

(b) (H!
2

)V ⇢ A,

(c) if T ⇢ !V
1

, T 2 V , V |= T is stationary, then A |= T is stationary, and

(d) A |= ZFC� + '(X, İNS).

Definition 2.2 By Bounded Martin’s Maximum⇤,++, BMM⇤,++, we mean the con-
junction of the following two statements.

(a) NS!
1

is precipitous, and

(b) if X 2 H!
2

and if '(x, İNS!
1

) is a ⌃
1

formula in the language of set the-
ory, augmented by a predicate for the non–stationary ideal on !

1

, such that
'(X, İNS!

1

) is honestly consistent, then '(X, İNS!
1

) holds true in V .

In Definitions 2.1 and 2.2 we understand that the predicate İNS!
1

is inter-

preted by (NS!
1

)A and (NS!
1

)V inside A and V , respectively. Of course, BMM⇤,++

strengthens both BMM⇤ as well as BMM++.
After the first version of this paper had been written, J. Zapletal mentioned the

following principle to us.

Definition 2.3 (3) (Cf. [14].) Let A ⇢ !
1

. There is then some B ⇢ !
1

with
A 2 L[B] such that for every D 2 P(!

1

)\L[B], if L[B] |= “D is stationary,”
then V |= “D is stationary.”

Our proof of Theorem 1.11 presented above also produces the following result.

Theorem 2.4 If BMM⇤,++ holds true, then so does (3).

Definition 2.5 Let X 2 H!
2

, let A ⇢ R be universally Baire, and let '(x, Ȧ, İNS!
1

)

be a ⌃
1

formula in the language of set theory, augmented by predicates Ȧ and
İNS!

1

for A and for the non–stationary ideal on !
1

, respectively. We say that

'(X, Ȧ, İNS!
1

) is honestly consistent i↵ for every F : R ! R which is universally
Baire there is an F–closed transitive model A such that

(a) A 2 V Col(!,2@1

),

(b) (H!
2

)V ⇢ A,

(c) if T ⇢ !V
1

, T 2 V , V |= T is stationary, then A |= T is stationary, and
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(d) A |= ZFC� + '(X, Ȧ, İNS!
1

).

Definition 2.6 Let A ⇢ R be universally Baire. By A–Bounded Martin’s Maximum⇤,++,
A–BMM⇤,++, we mean the conjunction of the following two statements.

(a) NS!
1

is precipitous, and

(b) if X 2 H!
2

and if '(x, Ȧ, İNS!
1

) is a ⌃
1

formula in the language of set theory,
augmented by predicates for A and for the non–stationary ideal on !

1

, such
that '(X, Ȧ, İNS!

1

) is honestly consistent, then '(X, Ȧ, İNS!
1

) holds true in
V .

In Definitions 2.5 and 2.6 we again understand that the predicate İNS!
1

is in-

terpreted by (NS!
1

)A and (NS!
1

)V inside A and V , respectively; moreover, if the
trees T and U witness that A is universally Baire with A = p[T ], then Ȧ is sup-
posed to be interpreted by A inside V and by p[T ] \ A = A⇤ \ A inside A, where

A⇤ = p[T ] \ V Col(!,2@1

) is the version of A inside V Col(!,2@1

).
We now prove the following result which is in the spirit of [13, Theorems 10.127,

128, 129, and 137]. This result also shows that BMM⇤ is consistent, in case the
reader may have wondered. This is true because if we let V be the least inner
model of ZFC which has ! Woodin cardinals �

0

< �
1

< . . . and is closed under
X 7! M#

#

! (X), if G is Col(!, < supn<!�n)–generic over V , and if

R⇤ =
[

{R \ V [G � �n] : n < !},

then we may construct inside V [G] an inner model

LM#

#

! (R⇤)

of ZF plus AD which is the least inner model whose set of reals is R⇤ and is closed
under X 7! M#

#

! (X), and

LM#

#

! (R⇤)Pmax

satisfies the hypotheses of Theorem 2.7 as well as (⇤).

Theorem 2.7 Suppose that M#

#

! exists3 and is fully iterable.4 Suppose NS!
1

is
precipitous. Then the following statements are equivalent.

(A) (⇤)

(B) For every set A of reals with A 2 L(R), A–Bounded Martin’s Maximum⇤,++

holds true.

Proof. We first show (B) =) (A). Let sat(NS) denote the saturation of NS, i.e.,
the least cardinal µ such that every antichain in P(!

1

)/NS has cardinality less than
µ. In what follows, we shall write  for 2<sat(NS) = Card(Hsat(NS)). If 2@1 = @

2

,
then  = 2@1 = @

2

if NS is saturated, and  = 2@2 otherwise.
(B) =) (A) is now an immediate consequence of the following result.

3M##

! is a mouse with ! Woodin cardinals and a top measure which is closed under #’s.
4E.g., suppose that there is a proper class of Woodin cardinals.
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Theorem 2.8 Let M be an inner model of ZF such that R ✓ M , and let � =
P(R) \M . Let  = 2<sat(NS). Assume the following hypotheses.

(a) NS is precipitous.

(b) AD holds true in M .

(c) Every set of reals in � is +–universally Baire.

(d) If A is a set of reals in �, ' is a ⇧1

2

–formula, and g is Col(!, )–generic over
V , then

'(A) () '(Ag),

where Ag is V [g]’s version of A, i.e., if the trees T and U witness that A is
+–universally Baire with A = (p[T ])V , then Ag = (p[T ])V [g].

(e) For every set A of reals in �, A–Bounded Martin’s Maximum⇤,++ holds true.

Let A
0

⇢ !
1

be such that !
L[A

0

]

1

= !
1

. Then there is some G 2 V such that G is
P
max

–generic over M and

L(R)[G] = L(R)[A
0

] = L(P(!
1

)).(1)

Proof of Theorem 2.8. Let us fix M as in the statement of the theorem. Let us

also fix, until the end of this proof, some A
0

⇢ !
1

such that !L[A
0

]

1

= !
1

. Let G be
the set of all p = (M

0

;2, J
0

, a
0

) 2 P
max

such that there is some generic iteration

((Mi,⇡i,j : i  j  !
1

), (Gi : i < !
1

))

of M
0

= p such that ⇡
0,!

1

(a
0

) = A
0

and, writing M!
1

= (M!
1

;2, J!
1

, A
0

), every
set in

J+

!
1

= (P(!
1

) \M!
1

) \ J!
1

is stationary in V .
We claim that G is P

max

–generic over M and that (1) holds true for G. In order
to verify this, we shall need to prove the following three Claims which will be shown
from the hypotheses of Theorem 2.8.

Claim 2.9 G is a filter.

Claim 2.10 If D 2 M is a dense subset of P
max

, then D \G 6= ;.

By a standard P
max

–argument, if p 2 G, then there is a unique generic iteration

((Mi,⇡i,j : i  j  !
1

), (Gi : i < !
1

))

of M
0

= p such that ⇡
0,!

1

(a
0

) = A
0

. Assuming Claims 2.9 and 2.10 and following
[13], we shall then write P(!

1

)G for the set of all X ⇢ !
1

for which there is some
p 2 G such that if

((Mi,⇡i,j : i  j  !
1

), (Gi : i < !
1

))

is the generic iteration of M
0

= p with ⇡
0!

1

(a
0

) = A
0

, then X 2 ran(⇡i,!
1

) for
some i < !

1

.
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Claim 2.11 P(!
1

) = P(!
1

)G.

If NS were assumed saturated, then Claim 2.9 would be given by [13, Theorem
4.74] and Claim 2.11 would follow from [13, Lemma 3.12 and Corollary 3.13]. Un-
der the hypotheses (a) and (e) instead, one can prove Claims 2.9 and 2.11 by an
easy application of the forcing developed in [1]: Using hypothesis (a), [1] designs a
stationary set preserving forcing which (for a given regular cardinal ✓ � @

2

) adds a
generic iteration

(Mi,⇡i,j : i  j  !
1

)

of a countable model M
0

= (M
0

;2, I
0

) such that M!
1

= (H✓;2,NS). This im-
mediately gives Claim 2.11 by Bounded Martin’s Maximum++. Also, if p, q 2 G,
then we may assume without loss of generality that p, q, A

0

\ !M
0

1

2 M
0

, so that
Bounded Martin’s Maximum++ also yields Claim 2.9.

It remains to verify Claim 2.10.
Let us fix D ⇢ P

max

, D 2 M , a dense set in P
max

, and let D⇤ 2 � be a set of
reals coding D according to some natural coding device. As D⇤ is +–universally
Baire, we may pick trees T and U on ! ⇥ 2 such that

D⇤ = p[T ] and ||�
Col(!,) p[U ] = !! \ p[T ].

The following is a variant of the argument for Theorems 1.10 and 1.11.

Let us pick some g which is Col(!,)–generic over V , so that (+)V = !
V [g]
1

and Hsat(NS) is countable in V [g]. By our hypothesis (a) and the proof of [13,
Lemma 3.10], p

0

= ((Hsat(NS))
V ;2, (NS)V , A

0

) is then a P
max

condition in V [g].
The statement

8p 2 P
max

9q 2 P
max

(q P
max

p ^ q 2 D)(2)

which expresses that D is dense in P
max

is ⇧1

2

in P
max

� D in the codes, so that
by hypothesis (d) there is some q = (N

0

;2, J
0

, A0
0

) 2 V [g] belonging to the set of
P
max

–conditions coded by (D⇤)g and such that q <P
max

p
0

. Let

j
0

: ((Hsat(NS))
V ;2, (NS)V , A

0

) ! (N
0

;2, J
0

, A0
0

)

such that p
0

, j
0

2 N
0

witness that q < p
0

.
Let

(S⇠ : ⇠ < (+)V ) 2 V [g]

be a partition of (+)V into stationary sets. Working inside V [g], we may then
choose a generic iteration

(Ni,�i,j : i  j  +),

of N
0

= (N
0

;2, J
0

, A0
0

) = q such that, writing N
(+

)

V = (N ;2, J, A0),

8S 2 (P((+)V ) \N) \ J 9⇠ < (+)V 9� < (+)V S⇠ \ � ⇢ S.

(Cf. e.g. [1, proof of Lemma 5] and also the proofs of Theorems 1.10 and 1.11.) In
particular,

J = (NS)V [g] \N.(3)
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Writing

j = �
0,(+

)

V (j
0

) : ((Hsat(NS))
V ;2, (NS)V , A

0

) ! �
0,(+

)

V (p
0

) = (M
(+

)

V ;2, I, A0),

we thus also have that

I = J \M
(+

)

V = (NS)V [g] \M
(+

)

V .

As V is (+)–iterable in V [g] by our hypothesis (a) and the proof of [13, Lemma
3.10], we may lift the generic iteration of ((Hsat(NS))

V ;2, (NS)V , A
0

) which gave rise
to j

0

to a generic iteration of (V ;2, (NS)V , A
0

). Let us write

⌘̂ : V ! M

for the induced iteration map, so that ⌘̂ � j.
Now let x 2 p[T ] \ V [g] code N

0

, and let (x, y) 2 [T ] \ V [g]. This gives

(x, ⌘̂” y) 2 [̂⌘(T )].(4)

ByD⇤–Bounded Martin’s Maximum⇤,++, the proof of Claim 2.10 will be finished
if we show that the natural ⌃

1

statement '(A
0

, Ḋ⇤, İNS!
1

) expressing the existence
of a P

max

–condition in G coded by a real in D⇤ is an honestly consistent statement,
in the sense of Definition 2.5. The proof that '(A

0

, Ḋ⇤, İNS!
1

) is honestly consistent
in the sense of Definition 2.5 is essentially as in the proofs of Theorems 1.10 and
1.11:

Let F : R ! R be a universally Baire function in V , ⌘ >  a cardinal, T and U a
pair of trees on !⇥ 2⌘ witnessing the ⌘+–universal Baireness of F (with F = p[T ]),
and set T ⇤ = ⌘̂(T ) and U⇤ = ⌘̂(U), so that p[T ] = p[T ⇤] and p[U ] = p[U⇤].

In V Col(!,2⌘) there is a p[T ⇤]–closed model A such that HM
!

2

✓ A, every set in
(P(!

1

) \NS!
1

)M is stationary in A, and such that A satisfies ZFC� together with
'(A

0

, [̂⌘(T )],NS!
1

) (the existence of A in Col(!, 2⌘) is witnessed by some rank–
initial segment of V [g]). By absoluteness, Col(!, ⌘̂(2⌘)) forces over M that there
is a p[̂⌘(T )]–closed model A such that HM

!
2

✓ A, every set in (P(!
1

) \ NS!
1

)M is
stationary in A, and such that A satisfies ZFC� together with '(A

0

, [̂⌘(T )],NS!
1

).
Finally, by elementarity of ⌘̂(T ) we get that V Col(!,2⌘) forces over V that there is a
p[T ]–closed model A such that HV

!
2

✓ A, every set in (P(!
1

)\NS!
1

)V is stationary
in A, and such that A satisfies ZFC� together with '(A

0

, D⇤,NS!
1

). ⇤ (Theorem
2.8)

We are now going to prove (A) =) (B) of Theorem 2.7. This will be arranged
by varying the argument for [13, Theorem 10.99], cf. also the proof of [13, Theorem
10.127].

We shall use the following lemma to produce A–iterable P
max

–conditions, where
A is a set of reals. (Cf. [13, Definition 4.3] on the definition of the concept of
“A–iterability.”) The proof of [13, Lemma 4.40] presents a di↵erent method for
producing A–iterable structures, but we thought that writing up the method for
proving Lemma 2.12 would be of independent interest.

13



Lemma 2.12 Suppose that M#

#

! exists and is fully iterable. Let A 2 P(R)\L(R).
There is then some x 2 R and some Q 2 M#

#

! (x) which has the �–c.c. and is of

size � in M#

#

! (x), where � is the least Woodin cardinal of M#

#

! (x), such that if

g 2 V is Q–generic over M#

#

! (x), then

M#

#

! (x)[g]

is an A–iterable P
max

–condition.

Proof. Let A be definable from x 2 R and (finitely many) R–indiscernibles inside
L(R). Let Q 2 M#

#

! (x) be a standard forcing iteration of length � to force both NS

to be saturated as well as MA!
1

, where � is the least Woodin cardinal of M#

#

! (x).

We claim that if g 2 V is Q–generic over M#

#

! (x), then M#

#

! (x)[g] is an A–iterable
P
max

–condition.
Let us write M = M#

#

! (x)[g]. We know from [13, Lemma 3.10] that M is
generically iterable and is hence a P

max

–condition. It thus remains to be seen that
M is A–iterable.

The set A\N is uniformly definable over any z–mouse N with infinitely many
Woodin cardinals and a top measure, where x is coded into z 2 H!

1

, in the following
way. Let y 2 A i↵ L(R) |= '(y, x, ⌘

0

, . . . , ⌘k�1

), where ⌘
0

< . . . < ⌘k are R–
indiscernibles. Let N 0 result from N by iterating the top measure of N and its
images k + 1 times, and let 

0

< . . . < k be the sequence of the critical points.
Then

y 2 A \N () ||�N 0

Col(!,<supn(�n))
|= Lk(R⇤) |= '(y, x,

0

, . . . ,k�1

),(5)

where �
0

< �
1

< . . . are the Woodin cardinals of N (and thus also of N 0) and R⇤

denotes the collection of all reals which are added by proper initial segments of the
forcing Col(!, < supn(�n)) (cf. [12, p. 1663]). In particular, A \N 2 N , and thus
A \M 2 M .

It remains to be seen that if

j : M ! N

is a generic iteration of M , then j(A\M) = A\N . Suppose not. Let ⇣
1

< ⇣
2

< . . .

be the Woodin cardinals of M (i.e., the Woodin cardinals of M#

#

! (x) above �+1).
Let

j : M |(�+M ) ! N

be a generic iteration of M |(�+M ) with j(A\M) 6= A\N , and let M⇤ be an iterate
of M via extenders with critical points and lengths between � and ⇣

1

such that j
is generic over M⇤ for the extender algebra at ⇣

1

. Using (5), M⇤[j] can see that
j : M |(�+M ) ! N is a generic iteration with j(A\M) 6= A\N , and by pulling back
the statement that there is such a generic iteration we thus get that in MCol(!,⇣

1

)

there is some generic iteration j : M |(�+M ) ! N with j(A \M) 6= A \N .
However, inside M , A \ M is ⇣+

1

–universally Baire, again using (5). Namely,
we may let T 2 M be a tree of height ! searching for y, M̄ , k, h such that
k : M̄ ! (M |supn(⇣n))# 2 M is elementary, h is Col(!, k�1(⇣

1

))–generic over M̄
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with y 2 M̄ [h], and y is in A\M̄ [h] as computed using the recipe (5) for N = M̄ [h].
If (y, M̄ , k, h) 2 [T ], then we write y 2 p[T ]. We also let U 2 M be defined in
exactly the same way, except for that “y is in A\ M̄ [h]” gets replaced by “y is not
in A \ M̄ [h].” If (y, M̄ , k, h) 2 [U ], then we write y 2 p[U ]. The trees T and U are
easily seen to witness that A \M is ⇣+

1

–universally Baire inside M .
Now let j : M |(�+M ) ! N be a generic iteration inside MCol(!,⇣

1

) with j(A \
M) 6= A\N . We have that A\M = p[T ]\M , and thus j(A\M) = p[j(T )]\N =
(p[j(T )] \ MCol(!,⇣

1

)) \ N . However, (p[j(T )] \ MCol(!,⇣
1

)) = (p[T ] \ MCol(!,⇣
1

))
by the fact that T , U witness that A \M is ⇣+

1

–universally Baire in M . Therefore
j(A \M) = p[T ] \N = A \N . Contradiction! ⇤ (Lemma 2.12)

We have to prove (A) =) (B) of Theorem 2.7.

We assume that M#

#

! exists and is fully iterable and also that (⇤) holds true.
Let us fix a set B of reals in L(R) and let also A 2 H!

2

. Let '(x, Ḃ, İNS!
1

) be a ⌃
1

formula in the language of set theory, augmented by predicates for B and for the
non–stationary ideal on !

1

. Suppose that '(A, Ḃ, İNS!
1

) is honestly consistent in

the sense of Definition 2.5. We aim to show that '(A, Ḃ, İNS!
1

) holds true in V .
Suppose not. We may assume without loss of generality that A ⇢ !

1

and in fact
that A is P

max

–generic over L(R) (cf. [13, Theorem 4.60]). Let Ȧ be the canonical
name for A. Now say that

p = (M,2, I, a) ||� ¬'(Ȧ, B̌, İNS!
1

),(6)

where p 2 GA = {q = (N,2, I 0, a0) 2 P
max

: a0 = A \ !N
1

}. We shall derive a
contradiction by finding some q <P

max

p with q ||� '(Ȧ, B̌, İNS!
1

).
By our hypothesis, the function F : R ! R with F (x) = (the canonical real code

for) M#

#

! (x), x 2 R, is universally Baire. Let A be an F–closed witness to the fact
that '(A, Ḃ, İNS!

1

) is honestly consistent.

Let M#

#

! (X) 2 A be such that X is transitive and (P(!
1

) \ A) [ {(NS!
1

)A} 2
X. Let � be the least Woodin cardinal of M#

#

! (X), and let g be Q–generic over

M#

#

! (X), where Q is, in M#

#

! (X), a standard forcing iteration of size � with the
�–c.c. forcing both that NS is precipitous and that MA!

1

holds. By Lemma 2.12,

inside V Col(!,2@1

) we have that

q = (M#

#

! (X)[g];2,NSM
#

#

! (X)[g], A)

is a B⇤–iterable P
max

condition with q <P
max

p, and

q |= '(A,B⇤,NS!
1

),

so that q ||� '(Ȧ, B̌, İNS!
1

).

The assertion that there is such a q is now absolute between V and V Col(!,2@1

).
We obtained a contradiction! ⇤ (Theorem 2.7)

It remains open whether (⇤) can be forced over models of choice containing
large cardinals or whether (⇤) indeed follows from a forcing axiom. In [13, Theorem
10.70], Woodin proves that (⇤) does not follow from MM++(2@0). In [7] and [8],

15



Paul Larson shows that (⇤) does not follow from MM+!, and he asks whether (⇤)
follows from MM++ (cf. [8, Question 7.2]). Woodin asks whether (⇤) can be forced
from large cardinals as [13, Question (18) a), p. 924], cf. also [9, p. 2158].

Theorem 2.7 yields an obvious scenario for showing that MM++ implies (⇤).
Basically, one would have to show that if a ⌃

1

statement ' with parameters as
in A–BMM⇤,++ is honestly consistent in the sense of Definition 2.5, then ' can
be forced by a stationary set preserving forcing. We don’t know how to do that,
though.
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