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Abstract. Starting from the existence of a weakly compact car-
dinal, we build a generic extension of the universe in which GCH
holds and all ℵ2-Aronszajn trees are special and hence there are no
ℵ2-Souslin trees. This result answers a longstanding open question
from the 1970’s.

1. introduction

Let κ be an uncountable regular cardinal. Let us recall that a κ-tree
is a tree T of height κ all of whose levels are smaller than κ, and that
a κ-tree is called a κ-Aronszajn tree if it has no κ-branches. Also, T is
called a κ-Souslin tree if it has no κ-branches and no antichains of size
κ. When κ = λ+ is a successor cardinal, a κ-Aronszajn tree is said to
be special if and only if it is a union of λ antichains.1 Let us make the
following definition:

Definition 1.1. (1) Souslin’s Hypothesis at κ, SHκ, is the state-
ment “there are no κ-Souslin trees”.

(2) The special Aronszajn tree property at κ = λ+, SATPκ, is the
statement “there exist κ-Aronszajn trees and all such trees are
special” (see [5]).

Aronszajn trees were introduced by Aronszajn (see [9]), who proved
the existence, in ZFC, of a special ℵ1-Aronszajn tree. Later, Specker
([17]) showed that 2<λ = λ implies the existence of special λ+-Aronszajn
trees for λ regular, and Jensen ([7]) produced special λ+-Aronszajn
trees for singular λ in L.

In [16], Solovay and Tennenbaum proved the consistency of Martin’s
Axiom + 2ℵ0 > ℵ1 and showed that this implies SHℵ1 . This was later
extended by Baumgartner, Malitz and Reinhardt [3], who showed that
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Martin’s Axiom + 2ℵ0 > ℵ1 implies SATPℵ1 . Later, Jensen (see [4] and
[13]) produced a model of GCH in which SATPℵ1 holds.

The situation at ℵ2 turned out to be more complicated. In [7], Jensen
proved that the existence of an ℵ2-Souslin tree follows from each of the
hypotheses CH + ♢(S2

1) and □ω1 + ♢(S2
0) (where, given m < n < ω,

Sn
m = {α < ℵn | cf(α) = ℵm}). The second result was improved by

Gregory in [6], where he proved that GCH together with the existence
of a non-reflecting stationary subset of S2

0 yields the existence of an
ℵ2-Souslin tree. In [10], Laver and Shelah produced, relative to the
existence of a weakly compact cardinal, a model of ZFC+CH in which
the special Aronszajn tree property at ℵ2 holds. But in their model
2ℵ1 > ℵ2, and the task of finding a model of ZFC+GCH+SATPℵ2 ,
or even of ZFC+GCH+SHℵ2 , remained a major open problem. The
earliest published mention of this problem seems to appear in [8] (see
also [10], [18], [15], [14], or [11]).

In this paper we solve the above problem by proving the following
theorem.

Theorem 1.2. Suppose κ is a weakly compact cardinal. Then there
exists a set-generic extension of the universe in which GCH holds, κ =
ℵ2, and the special Aronszajn tree property at ℵ2 (and hence Souslin’s
Hypothesis at ℵ2) holds.

Remark 1.3. (1) Our argument can be easily extended to deal
with the successor of any regular cardinal.

(2) By results of Shelah and Stanley ([15]) and of Rinot ([12]), our
large cardinal assumption is optimal. Specifically:
(a) It is proved in [15] that if ω2 is not weakly compact in L,

then either□ω1 holds or there is a non-special ℵ2-Aronszajn
tree; in particular, GCH+SATPℵ2 implies that ω2 is weakly
compact in L by one of Jensen’s results mentioned above.

(b) Rinot proved in [12] that if GCH holds, λ ≥ ω1 is a cardi-
nal, and □(λ+) holds, then there is a λ-closed λ+-Souslin
tree; on the other hand, Todorčević ([19]) proved that if
κ ≥ ω2 is a regular cardinal and □(κ) fails, then κ is weakly
compact in L.

The rest of the paper is devoted to the proof of Theorem 1.2. We
will next give an (inevitably) vague and incomplete description of the
forcing witnessing the conclusion of this theorem.

The construction of the forcing witnessing Theorem 1.2 combines a
natural iteration for specializing ℵ2-Aronszajn trees, due to Laver and
Shelah ([10]), with ideas from [2]. More specifically, we build a certain
countable support forcing iteration ⟨Qβ | β ≤ κ+⟩ with side conditions.
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The first step of the construction is essentially the Lévy collapse of
the weakly compact cardinal κ to become ω2. At subsequent stages,
we consider forcings for specializing ℵ2-Aronszajn trees by countable
approximations. Conditions in a given Qβ, for β > 0, will consist of a
working part fq, together with a certain side condition. The working
part fq will be a countable function with domain contained in β such
that for all α ∈ dom(fq),

• fq(α) is a condition in the Lévy collapse if α = 0, and
• if α > 0, fq(α) is a countable subset of κ× ω1.

Letting α = α0 + ν, where α0 is a multiple of ω1 and ν < ω1, any two
distinct members of fq(α), when α > 0, will be forced to be incompa-
rable nodes in a certain κ-Aronszajn tree T∼α0 on κ × ω1 chosen via a
given bookkeeping function Φ : X −→ H(κ+), where X denotes the
set of multiples of ω1 below κ+.
The side condition will be a countable directed graph τq whose ver-

tices are ordered pairs of the form (N, γ), where N is an elementary
submodel of H(κ+) such that |N | = |N∩κ| and <|N |N ⊆ N , and where
γ is an ordinal in the closure of N∩(β+1) in the order topology. Given
any such (N, γ), γ is to be seen as a marker for N in q, telling us up
to which stage is N ‘active’ as a model. We will tend to call such pairs
(N, γ) models with markers. Whenever ⟨(N0, γ0), (N1, γ1)⟩ is an edge
in τq, for a condition q, (N0,∈) and (N1,∈) are ∈-isomorphic via a
(unique) isomorphism ΨN0,N1 such that ΨN0,N1(ξ) ≤ ξ for every ordinal
ξ ∈ N0 and such that ΨN0,N1 is in fact an isomorphism between the
structures (N0,∈,Φα) and (N1,∈,ΦΨN0,N1

(α)) whenever α ∈ N0 ∩ γ0 is
such that ΨN0,N1(α) < γ1, for a certain sequence (Φα)α<κ+ of increas-
ingly expressive predicates contained in H(κ+).

In the above situation, N0 and N1 are to be seen as ‘twin models’,
relative to q, with respect to all stages α and ΨN0,N1(α) such that
α ∈ N0∩γ0 and ΨN0,N1(α) < γ1. This means that the natural restriction
of fq(α) to N0, i.e., fq(α) ∩ N0, is to be copied over, via ΨN0,N1 , into
the restriction of fq(ΨN0,N1(α)) to N1, i.e., we require that

ΨN0,N1(fq(α) ∩N0) = fq(α) ∩N0 ⊆ fq(ΨN0,N1(α)),

and similarly for the restriction of τq ↾ α+1 to N0 (with the restriction
τq ↾ α + 1 being defined naturally).

We can describe our copying procedure by saying that we are copying
into the past information coming from the future via the edges in τq.
Given an edge ⟨(N0, γ0), (N1, γ1)⟩ as above and some α ∈ N0 ∩ γ0 such
that ᾱ = ΨN0,N1(α) < γ1, the intersection of fq(ᾱ) with δN0 × ω1 may
certainly contain more information than the intersection of fq(α) with
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δN0×ω1. Thanks to the way we are setting up the copying procedure—
namely, only copying from the future into the past via edges as we have
described—it is straightforward to see that our construction is in fact
a forcing iteration, in the sense that Qα is a complete suborder of Qβ

for all α < β. This need not be true in general, in forcing constructions
of this sort, if we allow also to copy ‘from the past into the future’.2

For technical reasons, given an edge ⟨(N0, γ0), (N1, γ1)⟩ in τq and
a stage α ∈ N0 ∩ γ0, we would like to require Qα+1 ∩ N0 to be a
complete suborder of Qα+1; indeed, having this would be useful in the
proof that our construction has the κ-chain condition.3 This cannot
be accomplished, while defining Qα+1, on pain of circularity. However,
a certain approximation to the above situation can be meaningfully
stipulated, which we do,4 and this suffices for our purposes.
Our construction is σ-closed for all β ≤ κ+. In particular, forcing

with Qκ+ preserves ω1 and CH. The preservation of all higher cardinals
proceeds by showing that the construction has the κ-chain condition.
For this, we use the weak compactness of κ in an essential way. The
proof of the κ-c.c. of Qβ, for each β < κ+, is modelled after the corre-
sponding proof in [10]; in fact it is a natural adaptation, to the current
setting, of the proof in [10] of the κ-c.c. of the main forcing in that
paper. The fact that the length of our iteration is not greater than
κ+ seems to be needed in this proof. Finally, the copying, for a given
condition q, of all information coming from q via the edges occurring
in τq is crucially used in the proof that our forcing preserves 2ℵ1 = ℵ2

(s. the proof of Lemma 5.1).
Side conditions are often employed in forcing constructions with the

purpose of guaranteeing that certain cardinals are preserved. In the
present construction, on the other hand, they are used to ensure that
the relevant level of GCH5 is preserved. This use of side conditions
is taken from [2], where they are crucially used in the proof of CH-
preservation. It is worth observing that, while in the construction from
[2] a certain amount of structure is needed among the models occurring
in the side condition,6 no structure whatsoever (for the underlying set

2It turns out that, in our specific construction, and thanks to clause (7) in the
definition of condition, we could in fact have required to copy information in both
directions, i.e. that, in the above situation, full symmetry obtains, below δN0

×ω1,
between stages α and ΨN0,N1

(α). However, the current presentation, only deriving
full symmetry for a dense set of conditions, seems to be cleaner.
3We elaborate on this point at the end of Section 3.
4This is clause (7) in the definition of condition.
52ℵ1 = ℵ2.
6Using the terminology of [1], they need to come from a symmetric system.
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of models) is needed in the present construction. We should point
out that even if it preserves 2ℵ1 = ℵ2, our construction does add new
subsets of ω1 after collapsing κ to become ω2, although only ℵ2-many
of them (cf. the construction in [2], where CH is preserved but ℵ1-many
new reals are added).

The paper is organized as follows. In Section 2 we define the notions
of model with marker and edge, which we will be using throughout
the paper, and prove some of their basic properties. In Section 3 we
define our forcing construction and prove some if its basic properties.
In Section 4 we show that the forcing has the κ-chain condition. This
is the most elaborate proof in the paper.7 Finally, in Section 5 we
complete the proof of Theorem 1.2. The main argument in this section
is to show that our forcing preserves 2ℵ1 = ℵ2.

2. Models with markers and edges

In this section we set up the side condition part of our main forcing
construction and discuss some of its properties. As we will see, our side
condition forcing (i.e., the collection of our side conditions, with the
natural extension relation) is a trivial forcing notion in the sense that
any two conditions are compatible.

Let us fix, for the remainder of this paper, a weakly compact cardinal
κ, and let us assume, without loss of generality, that 2µ = µ+ for every
cardinal µ ≥ κ.8

Given functions f0, . . . , fn, for n < ω, we let

fn ◦ . . . ◦ f0
denote the function f with domain the set of x ∈ dom(f0) such that
for every i < n, (fi ◦ . . . ◦ f0)(x) ∈ dom(fi+1), and such that for every
x ∈ dom(f), f(x) = fn((fn−1 ◦ . . . ◦ f0)(x)). For a function f and a set
x we let f(x) denote the empty set whenever x /∈ dom(f).

Throughout the paper, if N is a set such that N ∩ κ is an ordinal,
we denote this ordinal by δN and call it the height of N . If X is a set,
we set

cl(X) = X ∪ {α ∈ Ord | α = sup(X ∩ α)}
If, in addition, γ is an ordinal, we let γX be the highest ordinal ξ ∈
cl(X) such that ξ ≤ γ.

7Cf. the proof in [10], where the hardest part is to prove that the forcing is κ-c.c.,
or the proof in [2], where the hardest part is to prove that the forcing is proper.
8In fact, if κ is weakly compact, then GCH at every cardinal µ ≥ κ can be easily
arranged by collapsing cardinals with conditions of size ≤ κ, which will preserve
the weak compactness of κ.
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Let X = {ω1 · α | α < κ+}.9 Given an ordinal α < κ+, there is a
unique representation α = α0 + ν, where α0 ∈ X and ν < ω1. We will
denote the above ordinal α0 by µ(α).

Let
Φ : X −→ H(κ+)

be such that for each x ∈ H(κ+), Φ−1(x) is a stationary subset of X .
This function Φ exists by 2κ = κ+. Also, let F : κ+ −→ H(κ+) be

a bijection which is definable over the structure ⟨H(κ+),∈,Φ⟩. (We
may for example let ⟨Wα | α < κ+⟩ be the <Φ-increasing enumeration
of {Φ−1(x) |, x ∈ H(κ+)}, where <Φ is defined by setting Φ−1(x) <Φ

Φ−1(y) iff min(Φ−1(x)) < min(Φ−1(y)), and then we may define F
so that F−1(x) = α if and only Φ−1(x) = Wα.) Let also Φ0 be the
satisfaction predicate for the structure ⟨H(κ+),∈,Φ⟩.

Definition 2.1 (Models with markers). An ordered pair (N, γ) is called
a model with marker if and only if:

(1) (N,∈,Φ0) ≺ (H(κ+),∈,Φ0).
10

(2) N ∩ κ ∈ κ, |N | = |N ∩ κ|, and <|N |N ⊆ N .
(3) γ ∈ cl(N) ∩ κ+.

We will often use, without mention, the fact that (N, γ) ∈ N ′ when-
ever (N, γ) and (N ′, γ′) are models with markers and N ∈ N ′.11

Notation 2.2. Given models N0 and N1 such that (N0,∈) ∼= (N1,∈),
we will denote the unique ∈-isomorphism Ψ : (N0,∈) → (N1,∈) by
ΨN0,N1.

Given any nonzero ordinal η < κ+, let eη be the F -least surjection
from κ onto η. Let e⃗ = ⟨eη | 0 < η < κ+⟩. We will say that a model
N ⊆ H(κ+) is closed under e⃗ if eη(ξ) ∈ N for every nonzero η ∈ N ∩κ+
and every ξ ∈ κ ∩N .

Lemma 2.3. Suppose N0 and N1 are models closed under e⃗ of the same
height. Then N0 ∩ N1 ∩ κ+ is an initial segment of both N0 ∩ κ+ and
N1 ∩ κ+. In particular, if (N i

0, γ
i
0) and (N i

1, γ
i
1) (for i ≤ n) are models

with markers such that (N i
0,∈,Φ0) ∼= (N i

1,∈,Φ0) for all i ≤ n, then

(ΨNn
0 ,Nn

1
◦ . . . ◦ΨN0

0 ,N
0
1
)(x) = x

for every x ∈ dom(ΨNn
0 ,Nn

1
◦ . . . ◦ΨN0

0 ,N
0
1
) ∩Nn

1 .

9Where, here and elsewhere, the dot in ω1 · α denotes ordinal multiplication.
10Given N ⊆ H(κ+) and predicates P0, . . . , Pn ⊆ H(κ+), we will tend to write
(N,∈, P0, . . . , Pn) as short-hand for (N,∈, P0 ∩N, . . . , Pn ∩N).
11Note that N ∈ N ′ implies γ ∈ N ′ as well. This is because, cl(N) ∩ κ+ ∈ N ′ and
cl(N) ∩ κ+ has size less than κ, so cl(N) ∩ κ+ ⊆ N ′.
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Proof. Let us first prove the first assertion. Given any nonzero η ∈
N0 ∩N1 ∩ κ+ and any α ∈ N0 ∩ η there is some ξ ∈ N0 ∩ κ such that
eη(ξ) = α. But since η and ξ are both members of N1, we also have
that α = eη(ξ) ∈ N1.

As to the second assertion, let us first consider the case in which
δN i

0
= δN i′

0
for all i, i′. By the choice of e⃗, each of the models N i

ϵ , for

i ≤ n and ϵ ∈ {0, 1}, is closed under e⃗.
Let x ∈ dom(ΨNn

0 ,Nn
1
◦ . . . ◦ΨN0

0 ,N
0
1
) ∩Nn

1 and α = F−1(x). We first
prove by induction on i ≤ n that

ot(N0
0 ∩ α) = ot(N i

1 ∩ (ΨN i
0,N

i
1
◦ . . . ◦ΨN0

0 ,N
0
1
)(α))

and

(ΨN i
0,N

i
1
◦ . . . ◦ΨN0

0 ,N
0
1
)(x) = F ((ΨN i

0,N
i
1
◦ . . . ◦ΨN0

0 ,N
0
1
)(α)).

For i = 0 this is true since ΨN0
0 ,N

0
1
is an isomorphism between the

structures (N0
0 ,∈,Φ) and (N0

1 ,∈,Φ). For i > 0, assuming the above
equalities hold for i−1, we have that (ΨN i−1

0 ,N i−1
1

◦. . .◦ΨN0
0 ,N

0
1
)(x) ∈ N i

0

and therefore

(ΨN i−1
0 ,N i−1

1
◦ . . . ◦ΨN0

0 ,N
0
1
)(α) ∈ N i

0

since

(ΨN i−1
0 ,N i−1

1
◦ . . . ◦ΨN0

0 ,N
0
1
)(x) = F ((ΨN i−1

0 ,N i−1
1

◦ . . . ◦ΨN0
0 ,N

0
1
)(α))

and F : κ+ −→ H(κ+) is a bijection. Then we have that

ot(N i
0 ∩ (ΨN i−1

0 ,N i−1
1

◦ . . . ◦ΨN0
0 ,N

0
1
)(α))

and
ot(N i

1 ∩ (ΨN0
i ,N

i
1
◦ΨN i−1

0 ,N i−1
1

◦ . . . ◦ΨN0
0 ,N

0
1
)(α))

are equal (since ΨN i
0,N

i
1
is an ∈-isomorphims between N i

0 and N i
1) and

ot(N i−1
1 ∩ (ΨN i−1

0 ,N i−1
1

◦ . . . ◦ΨN0
0 ,N

0
1
)(α))

and
ot(N i

0 ∩ (ΨN i−1
0 ,N i−1

1
◦ . . . ◦ΨN0

0 ,N
0
1
)(α))

are equal (by the first assertion as (ΨN i−1
0 ,N i−1

1
◦ . . . ◦ ΨN0

0 ,N
0
1
)(α) ∈

N i+1
1 ∩N i

0). Hence,

ot(N0
0 ∩ α) = ot(N i

1 ∩ (ΨN i
0,N

i
1
◦ . . . ◦ΨN0

0 ,N
0
1
)(α))

For the second conclusion, we note that

(ΨN i
0,N

i
1
◦ . . . ◦ΨN0

0 ,N
0
1
)(x) = (ΨN i

0,N
i
1
◦F ◦ΨN i−1

0 ,N i−1
1

◦ . . . ◦ΨN0
0 ,N

0
1
)(α),

which is equal to F (ΨN i
0,N

i
1
◦ . . .ΨN0

0 ,N
0
1
)(α)) since ΨN i

0N
i
1
is an isomor-

phism between (N i
0,∈,Φ) and (N i

1,∈,Φ).
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Finally, we note that ot(Nn
1 ∩ α) = ot(N0

0 ∩ α) by the first assertion
as α = F−1(x) ∈ N0

0 ∩Nn
1 . Hence,

ot(Nn
1 ∩ (ΨNn

0 ,Nn
1
◦ . . . ◦ΨN0

0 ,N
0
1
)(α)) = ot(Nn

1 ∩ α)

and therefore (ΨNn
0 ,Nn

1
◦ . . . ◦ΨN0

0 ,N
0
1
)(α) = α. Then also

(ΨNn
0 ,Nn

1
◦ . . . ◦ΨN0

0 ,N
0
1
)(x) = F (ΨNn

0 ,Nn
1
◦ . . . ◦ΨN0

0 ,N
0
1
)(α) = F (α) = x

Suppose now that δN i
0
̸= δN i′

0
for some i ̸= i′ and let i∗ be such

that δN i∗
0

= min{δN i
0
| i ≤ n}. Given any i and ϵ, we know that

(N i
ϵ ,∈,Φ0) ≺ (H(κ+),∈,Φ0) and that N i

ϵ is closed under sequences of
length less than |N i

ϵ |. Also, |N i∗∗
ϵ | = |δN i∗

0
| for every ϵ ∈ {0, 1} and

every i∗∗ such that δN i∗∗
0

= δN i∗
0
. But now it easily follows from the

above facts that there is a sequence (⟨N̄ i
0, N̄

i
1⟩)i≤n of pairs of models

with the following properties.

• For all i ≤ n, (N̄ i
0,∈,Φ) and (N̄ i

1,∈,Φ) are isomorphic elemen-
tary submodels of (H(κ+),∈,Φ) and δN̄ i

0
= δN i∗

0
.

• For every i ≤ n and every ϵ ∈ {0, 1}, N̄ i
ϵ = N i

ϵ or N̄ i
ϵ ∈ N i

ϵ .
• x ∈ dom(ΨN̄n

0 ,N̄n
1
◦ . . . ◦ΨN̄0

0 ,N̄
1
1
) ∩ N̄n

1

• (ΨNn
0 ,Nn

1
◦ . . . ◦ΨN0

0 ,N
0
1
)(x) = (ΨN̄n

0 ,N̄n
1
◦ . . . ◦ΨN̄0

0 ,N̄
1
1
)(x)

Indeed, we can define N̄ i∗+j
0 , N̄ i∗+j

1 , N̄ i∗−k
0 and N̄ i∗−k

1 , for j ≤ n − i∗

and k ≤ i∗, by recursion as follows.

• If δ
N i∗+j

0
= δN i∗

0
, then N̄ i∗+j

0 = N i∗+j
0 and N̄ i∗+j

1 = N i∗+j
1 , and if

δN i∗−k
0

= δN i∗
0
, then N̄ i∗−k

0 = N i∗−k
0 and N̄ i∗−k

1 = N i∗−k
1 .

• If δN i∗
0
< δ

N i∗+j
0

(in which case j > 0), then N̄ i∗+j
0 ∈ N i∗+j

0 is

such that
– (N i∗+j

0 ,∈,Φ) ≺ (H(κ+),∈,Φ),
– (N̄ i∗+j−1

1 ,∈,Φ) ∼= (N̄ i∗+j
0 ,∈,Φ), and

– N̄ i∗+j−1
1 ∩N i∗+j

0 ⊆ N̄ i∗+j
0 ,

and N̄ i∗+j
1 = Ψ

N i∗+j
0 ,N i∗+j

1
(N̄ i∗+j

0 ).

• If δN i∗
0
< δN i∗−k

0
(in which case k > 0), then N̄ i∗−k

1 ∈ N i∗−k
1 is

such that
– (N i∗−k

1 ,∈,Φ) ≺ (H(κ+),∈,Φ),
– (N̄ i∗−k+1

0 ,∈,Φ) ∼= (N̄ i∗−k
1 ,∈,Φ), and

– N̄ i∗−k+1
0 ∩N i∗−k

1 ⊆ N̄ i∗−k
1 ,

and N̄ i∗−k
0 = ΨN i∗−k

1 ,N i∗−k
0

(N̄ i∗−k
1 ).

But now we are done by the previous case. □

It will be convenient to use the following pieces of terminology: given
models with markers (N0, γ0), (N1, γ1), we will say that (N0, γ0) and
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(N1, γ1) are twin models (with markers) if and only if (N0,∈,Φ0) ∼=
(N1,∈,Φ0). If ΨN0,N1(α) ≤ α for every ordinal α ∈ N0, then we say
that N1 is a projection of N0.

Definition 2.4 (Edge). Suppose Φ⃗ = (Φα)α is a sequence of predicates
of H(κ+) of length less than κ+. An ordered pair

⟨(N0, γ0), (N1, γ1)⟩

of models with markers is called a Φ⃗-edge if and only if the following
are satisfied:

(1) (N0, γ0) and (N1, γ1) are twin models with markers;
(2) for every ϵ ∈ {0, 1} and every α ∈ Nϵ ∩ γϵ, (Nϵ,∈,Φα) ≺

(H(κ+),∈,Φα);
(3) N1 is a projection of N0;
(4) ΨN0,N1 is an isomorphism between the structures (N0,∈,Φα)

and (N1,∈,Φᾱ) for every α ∈ N0∩γ0 such that ᾱ := ΨN0,N1(α) <
γ1.

Moreover, if γ0 ≤ β and γ1 ≤ β, then we call ⟨(N0, γ0), (N1, γ1)⟩ a

Φ⃗-edge below β.

Definition 2.5 (Generalized edge). An ordered pair

e = ⟨(N0, γ0), (N1, γ1)⟩

of models with markers is called a Φ⃗-anti-edge if

e−1 := ⟨(N1, γ1), (N0, γ0)⟩

is a Φ⃗-edge. We say that an ordered pair e is a generalized Φ⃗-edge if
it is a Φ⃗-edge or a Φ⃗-anti-edge.

Convention 2.6. If τ is a set of generalized Φ⃗-edges, we say that a
generalized Φ⃗-edge e comes from τ in case e ∈ τ or e−1 ∈ τ . We also
set τ−1 = {e−1 : e ∈ τ}.

Given a generalized Φ⃗-edge e = ⟨(N0, γ0), (N1, γ1)⟩ and an ordinal α,

we let e ↾ α denote the generalized (Φ⃗ ↾ α)-edge

⟨(N0,min{α, γ0}N0), (N1,min{α, γ1}N1)⟩.12

Given a collection τ of Φ⃗-edges and given an ordinal α, we denote by
τ ↾ α the set {e ↾ α | e ∈ τ}. Note that τ ↾ α is a collection of

(Φ⃗ ↾ α)-edges below α.

12Recall that min{α, γϵ}Nϵ , for ϵ ∈ {0, 1}, is the highest ordinal ξ ∈ cl(Nϵ) such
that ξ ≤ min{α, γϵ}.
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Given a sequence Φ⃗ = (Φα)α of predicates of H(κ+), we say that for
each α, Φα codes ⟨Φβ | β < α⟩ in a uniform way in case there is a
formula φ(x, y) in the language for the structures (H(κ+),∈,Φα) such

that for all β < α less than the length of Φ⃗, and for each a ∈ H(κ+),
a ∈ Φβ if and only if (H(κ+),∈,Φα) |= φ(β, a).

Given models with markers (N, γ), (N0, γ0) and (N1, γ1), if N ∈ N0

and (N0,∈) ∼= (N1,∈), then we let πγ,N
N0,γ0,N1,γ1

denote the supremum of
the set of ordinals of the form ΨN0,N1(ξ), where

• ξ ∈ N ∩ (γ + 1),
• ξ < γ0, and
• ΨN0,N1(ξ) < γ1.

We let also πγ,N
e denote πγ,N

N0,γ0,N1,γ1
whenever e = ⟨(N0, γ0), (N1, γ1)⟩

is a Φ⃗-edge. Given generalized Φ⃗-edges e = ⟨(N0, γ0), (N1, γ1)⟩ and
e′ = ⟨(N ′

0, γ
′
0), (N

′
1, γ

′
1)⟩ such that e′ ∈ N0, we denote

⟨(ΨN0,N1(N
′
0), π

γ′
0,N

′
0

N0,γ0,N1,γ1
), (ΨN0,N1(N

′
1), π

γ′
1,N

′
1

N0,γ0,N1,γ1
)⟩

by Ψe(e
′). Note that if Φ⃗ is such that for each α, Φα codes ⟨Φβ | β < α⟩

in a uniform way, then Ψe(e
′) is a generalized Φ⃗-edge.

Definition 2.7 (Closedness under copying). Suppose Φ⃗ is such that for

each α, Φα codes ⟨Φβ | β < α⟩ in a uniform way. A set τ of Φ⃗-edges

is closed under copying in case for all Φ⃗-edges e = ⟨(N0, γ0), (N1, γ1)⟩
and e′ = ⟨(N ′

0, γ
′
0), (N

′
1, γ

′
1)⟩ in τ such that e′ ∈ N0 there are ordinals

γ∗0 ≥ π
γ′
0,N

′
0

e and γ∗1 ≥ π
γ′
1,N

′
1

e such that

⟨(ΨN0,N1(N
′
0), γ

∗
0), (ΨN0,N1(N

′
1), γ

∗
1)⟩ ∈ τ.

Given a sequence E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i < n) of generalized

Φ⃗-edges, we will tend to denote the expression

ΨNn−1
0 ,Nn−1

1
◦ . . . ◦ΨN0

0 ,N
0
1

by ΨE⃗ . If E⃗ is the empty sequence, we let ΨE⃗ be the identity function.

Definition 2.8 (Pure side conditions forcing). Suppose Φ⃗ = (Φα)α
is a sequence of predicates of H(κ+) such that for each α, Φα codes
⟨Φβ | β < α⟩ in a uniform way. Let β < κ+. Let Pe

Φ⃗,β
be the set of

all countable sets τ of Φ⃗-edges below β which are closed under copy-
ing and e⃗. Given conditions τ0 and τ1 in Pe

Φ⃗,β
, let τ1 ≤ τ0 if for ev-

ery ⟨(N0, γ0), (N1, γ1)⟩ ∈ τ0 there are γ′0 ≥ γ0 and γ′1 ≥ γ1 such that
⟨(N0, γ

′
0), (N1, γ

′
1)⟩ ∈ τ1.
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The next lemma shows that Pe
Φ⃗,β

is the trivial forcing notion.

Lemma 2.9. Given sets τ 0 and τ 1 of Φ⃗-edges, there exists a smallest
set τ = τ 0 ⊕ τ 1 of Φ⃗-edges which contains both τ0 and τ1 and is closed
under copying. Furthermore, if both τ 0 and τ 1 are from Pe

Φ⃗,β
, then so

is τ.

Proof. Let τ 0 ⊕ τ 1 be the natural amalgamation of τ 0 and τ 1 obtained
by taking copies of Φ⃗-edges as dictated by suitable functions ΨE⃗ , so

that τ 0 ⊕ τ 1 is closed under copying (where the Φ⃗-edges generated by
this copying procedure have minimal marker so that τ 0 ⊕ τ 1 is closed
under copying). To be more specific, τ 0⊕ τ 1 =

⋃
n<ω τn, where (τn)n is

the following sequence.

(1) τ0 = τ 0 ∪ τ 1
(2) For each n < ω, τn+1 = τn ∪ τ ′n, where τ ′n is the set of Φ⃗-edges

of the form Ψe(e
′), for Φ⃗-edges e = ⟨(N0, γ0), (N1, γ1)⟩ and e′ in

τn such that e′ ∈ N0.

Then τ = τ 0 ⊕ τ 1 is as required. □

Given τ 0 and τ 1, two sets of Φ⃗-edges, the construction in the proof of
Lemma 2.9 of τ 0 ⊕ τ 1 as

⋃
n<ω τn gives rise to a natural notion of rank

on the set of generalized Φ⃗-edges coming from τ 0 ⊕ τ 1. Specifically,
given n < ω, a generalized Φ⃗-edge e = ⟨(N0, γ0), (N1, γ1)⟩ coming from
τ 0 ⊕ τ 1 has (τ 0, τ 1)-rank n iff n is least such that e comes from τn.
Alternatively, we may define the (τ 0, τ 1)-rank of e as follows.

• e has (τ 0, τ 1)-rank 0 if e comes from τ 0 ∪ τ 1.
• For every n < ω, a generalized Φ⃗-edge e coming from τ 0 ⊕ τ 1

has (τ 0, τ 1)-rank n + 1 iff e does not have (τ 0, τ 1)-rank m for

any m ≤ n and there are Φ⃗-edges e0 = ⟨(N0, γ0), (N1, γ1)⟩ and
e1 coming from τ 0 ⊕ τ 1 and such that

– the maximum of the (τ 0, τ 1)-ranks of e0 and e1 is n,
– e1 ∈ N0, and
– e = Ψe0(e1).

Definition 2.10 (τ -thread). Given a set τ of Φ⃗-edges, a sequence E⃗ =

(⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i < n) of generalized Φ⃗-edges coming from τ , and

x ∈ N0
0 , we will call ⟨E⃗ , x⟩ a τ -thread in case x ∈ dom(ΨE⃗). In the

above situation, if x = (y, α), where y ∈ H(κ+) and α < κ+, we call

⟨E⃗ , x⟩ a correct τ -thread if and only if

(1) α < γ00 ,
(2) ΨE⃗(α) ∈ γn−1

1 , and
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(3) ΨE⃗ is a (partially defined) elementary embedding from the struc-
ture (N0

0 ,∈,Φα) into the structure (Nn−1
1 ,∈,ΦΨE⃗(α)

).

We will sometimes just say thread when τ is not relevant. It will be
useful to consider the following strengthening of the notion of correct
thread:

Definition 2.11. Given a set τ of Φ⃗-edges, a sequence

E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i < n)

of generalized Φ⃗-edges coming from τ , and x = (y, α) ∈ H(κ+) × κ+,

⟨E⃗ , x⟩ is a connected τ -thread in case

(1) ⟨E⃗ , x⟩ is a τ -thread,
(2) α < γ00 , and
(3) for each i < n,

(a) (ΨN0
i ,N

1
i
◦ . . . ◦ΨN0

0 ,N
0
1
)(α) < γi1, and

(b) (ΨN0
i ,N

1
i
◦ . . . ◦ΨN0

0 ,N
0
1
)(α) < γi+1

0 if i+ 1 < n.

Remark 2.12. Given a set τ of Φ⃗-edges, every connected τ -thread is
correct.

The following lemma can be easily proved by induction on the (τ 0, τ 1)-
rank of the members of τ 0 ⊕ τ 1.

Lemma 2.13. Suppose for each α, Φα codes ⟨Φβ | β < α⟩ in a uniform

way. Let τ 0 and τ 1 be sets of Φ⃗-edges, and let λ < κ be an ordinal such
that all members of τ 0 involve models of height less than λ. Suppose τ 1

is closed under copying. Then all members of τ 0 ⊕ τ 1 involving models
of height at least λ are in τ 1.

As we will see, the following lemma will enable us to ease our path
through the proof of Claim 4.7, in Section 4, in a significant way.

Lemma 2.14. Suppose for each α, Φα codes ⟨Φβ | β < α⟩ in a uniform

way. For all sets τ 0 and τ 1 of Φ⃗-edges, every set x, and every τ 0 ⊕ τ 1-
thread ⟨E⃗ , x⟩ there is a τ 0 ∪ τ 1-thread ⟨E⃗∗, x⟩ such that

ΨE⃗(x) = ΨE⃗∗(x)

Furthermore, if x = (y, α) ∈ H(κ+)× κ+ and ⟨E⃗ , x⟩ is connected, then
E⃗∗ may be chosen to be connected as well.

Proof. Let E⃗ = (ei | i ≤ n), where ei = ⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ for each i.

We aim to prove that there is a τ 0⊕τ 1-thread ⟨E⃗∗, x⟩ with the following
properties.
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(1) ΨE⃗(x) = ΨE⃗∗(x)

(2) If every ei has (τ
0, τ 1)-rank 0, then E⃗∗ = E⃗ .

(3) If some ei has positive (τ
0, τ 1)-rank, then the maximum (τ 0, τ 1)-

rank of the members of E⃗∗ is strictly less than the maximum
(τ 0, τ 1)-rank of the members of E⃗ .

(4) The following holds, where E⃗∗ = (e∗i | i ≤ n∗).
(a) e∗0 = e0 if e0 comes from τ 0 ∪ τ 1.
(b) If there are generalized Φ⃗-edges e = ⟨(N0, γ0), (N1, γ1)⟩ and

e′ coming from τ 0 ⊕ τ 1, both of rank less than the rank of
e0, such that e′ ∈ N0 and e0 = Ψe(e

′), then

e∗0 = ⟨(N1, γ1), (N0, γ0)⟩,

where ⟨(N0, γ0), (N1, γ1)⟩ is some generalized Φ⃗-edge as a-
bove.

(c) e∗n∗ = en if en comes from τ 0 ∪ τ 1.
(d) If there are generalized Φ⃗-edges e = ⟨(N0, γ0), (N1, γ1)⟩ and

e′ coming from τ 0 ⊕ τ 1, both of rank less than the rank of
en, such that e′ ∈ N0 and en = Ψe(e

′), then

e∗n∗ = ⟨(N0, γ0), (N1, γ1)⟩,

where ⟨(N0, γ0), (N1, γ1)⟩ is some generalized Φ⃗-edge as a-
bove.

(5) If x = (y, α) ∈ H(κ+) × κ+ and ⟨E⃗ , x⟩ is connected, then E⃗∗ is
connected.

The proof of (1)–(5) will be by induction on n. We may obviously
assume that there is some i < n such that ei does not come from
τ 0∪τ 1. Then there are generalized Φ⃗-edges e = ⟨(N0, γ0), (N1, γ1)⟩ and
e′ ∈ N0 coming from τ 0 ⊕ τ 1, both of rank less than ei, and such that
ei = Ψe(e

′).

By induction hypothesis there is a τ 0 ⊕ τ 1-thread ⟨E⃗0, x⟩, together
with a τ 0 ⊕ τ 1-thread of the form ⟨E⃗2,ΨE⃗↾i+1(x)⟩, such that

ΨE⃗0(x) = ΨE⃗↾i(x)

and

ΨE⃗2(ΨE⃗↾i+1(x)) = ΨE⃗↾[i+1,n)(ΨE⃗↾i+1(x)) = ΨE⃗(x),

and such that the relevant instances of (1)–(5) hold for ⟨E⃗0, x⟩ and

⟨E⃗2,ΨE⃗↾i+1(x)⟩. Also, by the choice of ei, the thread ⟨E⃗1,ΨE⃗↾i(x)⟩ sa-

tisfies the instances of (1) and (3)–(5) corresponding to ⟨(ei),ΨE⃗↾i(x)⟩,
where (ei) is the sequence whose only member is ei, and where E⃗1 =
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(e−1, e′, e). But now we may take E⃗∗ to be the concatenation of E⃗0, E⃗1,
and E⃗2.

Finally, it follows from clause (3) that after iterating the above con-

struction some finite number of times we obtain a τ 0∪τ 1-thread ⟨E⃗∗, x⟩
as desired. □

3. Definition of the forcing and its basic properties

We shall now define our sequence ⟨Qβ | β ≤ κ+⟩ of forcing notions
and our sequence ⟨Φβ | 0 < β < κ+⟩ of predicates.13 We recall that Φ0

has already been defined.
For each α ∈ X , assuming Qα has been defined and there is a Qα-

name T∼ ∈ H(κ+) for a κ-Arosnzajn tree, we let T∼α be such a Qα-
name. Further, if Φ(α) is a Qα-name for a κ-Aronszajn tree, then we
let T∼α = Φ(α). For simplicity of exposition we will assume that the
universe of T∼α is forced to be κ× ω1 and that for each ρ < κ, its ρ-th
level is {ρ} × ω1. We will often refer to members of κ× ω1 as nodes.

As we will see, each forcing notion Qβ in our construction will consist
of ordered pairs of the form q = (fq, τq), where fq is a function and τq is
a set of edges below β. Given a nonzero ordinal α < κ+ and an ordinal
δ < κ, we will write Qδ

α+1 to denote the suborder of Qα+1 consisting of
those conditions q such that δN0 < δ for every edge ⟨(N0, γ0), (N1, γ1)⟩
coming from τq such that at least one of γ0, γ1 is α + 1.14

Now suppose that β ≤ κ+ and that Qα and Φα have been defined
for all α < β. Given an ordered pair q = (fq, τq), where fq is a function
and τq is a set of edges, and given an ordinal α, we denote by q ↾ α the
ordered pair (fq ↾ α, τq ↾ α).

We are now ready to define Qβ and Φβ.
We start with the definition of Qβ. A condition in Qβ is an ordered

pair of the form q = (fq, τq) with the following properties.

(1) fq is a countable function such that

dom(fq) ⊆ β

and such that the following holds for every α ∈ dom(fq).
(a) If α = 0, then fq(α) is a condition in Col(ω1, <κ), the Lévy

collapse turning κ into ℵ2, i.e., fq(0) is a countable function

13The reader should keep in mind the overview of the construction we gave in the
introduction.
14We note that there is no requirement on the heights of the nodes occurring in
fq(α). Also, despite possible first impressions, there is no circularity in the definition
of Qδ

α+1 (s. Remark 3.3).
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with domain included in κ×ω1 such that (fq(0))(ρ, ξ) < ρ
for all (ρ, ξ) ∈ dom(fq(0)).

(b) If α > 0, then fq(α) ∈ [κ× ω1]
≤ℵ0 .

(2) τq is a countable set of (Φ⃗ ↾ β)-edges below β.
(3) q ↾ α ∈ Qα for all α < β.
(4) For every nonzero α < β such that T∼µ(α) is defined,15 if x0 ̸=

x1 are nodes in fq(α), then q ↾ µ(α) forces x0 and x1 to be
incomparable in T∼µ(α).

(5) τq is closed under copying.
(6) For every edge ⟨(N0, γ0), (N1, γ1)⟩ ∈ τq and every α ∈ N0 ∩ γ0

such that ᾱ := ΨN0,N1(α) < γ1, if α ̸= 0, α ∈ dom(fq), and
x ∈ fq(α) ∩N0, then
(a) ᾱ ∈ dom(fq), and
(b) x ∈ fq(ᾱ).

16

(7) Suppose α < β, e = ⟨(N0, α + 1), (N1, γ1)⟩ is a generalized

(Φ⃗ ↾ α + 1)-edge coming from τq ↾ α + 1, r ∈ QδN0
α+1 is such

that e ↾ α comes from τr, E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i < n) is a

sequence of generalized (Φ⃗ ↾ α+ 1)-edges coming from τr ∪ {e}
such that ⟨(N0

0 , γ
0
0), (N

0
1 , γ

0
1)⟩ = e and ⟨E⃗ , (∅, α)⟩ is a correct

thread. Let δ = min{δN i
0
| i < n} and ᾱ = ΨE⃗(α). Suppose

r ↾ µ(α) forces every two distinct nodes in fr(ᾱ)∩ (δ×ω1) to be

incomparable in T∼µ(α). Then there is an extension r∗ ∈ QδN0
α+1

of r such that
(a) fr(α) ∩ (δ × ω1) ⊆ fr∗(ᾱ) ∩ (δ × ω1), and
(b) r∗ ↾ µ(α) forces every two distinct nodes in

(fr(ᾱ) ∩ (δ × ω1)) ∪ fr(α)

to be incomparable in T∼µ(α).

The extension relation on Qβ is defined in the following way:
Given q1, q0 ∈ Qβ, q1 ≤Qβ

q0 (q1 is an extension of q0) if and only if
the following holds.

(1) dom(fq0) ⊆ dom(fq1)
(2) For every α ∈ dom(fq0), fq0(α) ⊆ fq1(α).
(3) For every ⟨(N0, γ0), (N1, γ1)⟩ ∈ τq0 there are γ

′
0 ≥ γ0 and γ

′
1 ≥ γ1

such that ⟨(N0, γ
′
0), (N1, γ

′
1)⟩ ∈ τq1 .

Finally, if β > 0, then Φβ is a subset of H(κ+) canonically coding

⟨Φα | α < β⟩, ⟨Qα | α ≤ β⟩ and ⟨⊩H(κ+)
Qα

| α ≤ β⟩, where for each

15We will see that in fact each T∼µ(α) is defined.
16Note that ΨN0,N1

(x) = x.
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α ≤ β, ⊩H(κ+)
Qα

denotes the forcing relation restricted to formulas with
Qα-names in H(κ+) as parameters.

We may, and will, assume that the definition of ⟨Φβ | 0 < β < κ+⟩
is uniform in β.

Remark 3.1. Having fixed the sequence Φ⃗ = ⟨Φβ | 0 < β < κ+⟩ of

predicates as above, by an edge we always mean a Φ⃗-edge, and similarly
for other concepts.

Remark 3.2. Given any α < κ+, there is a natural map

πα : Qα → Pe
Φ⃗↾α,α

,

defined by πα(q) = τq. However, πα is not necessarily a projection of
forcing notions, as given a condition q ∈ Qα there might exist τq ⊆ τ ∈
Pe
Φ⃗↾α,α

such that τq′ ̸≤Pe
Φ⃗↾α,α

τ for all q′ ≤ q.

Remark 3.3. Despite possible first impressions due to the presence
of clause (7), our definition of Qα+1-condition, for a given α < κ+, is
not circular. Rather, the definition of ‘q is a Qα+1-condition’ is to be
seen, because of that clause, as being by recursion on the supremum of
the set of heights of models N0 occurring in edges ⟨(N0, γ0), (N1, γ1)⟩
in τq. Indeed, given any q satisfying clauses (1)–(6), in order to verify
whether or not q satisfies also (7) we check whether for each generalized

(Φ⃗ ↾ α + 1)-edge e = ⟨(N0, α + 1), (N1, γ1)⟩ coming from τq ↾ α + 1 it
is the case that some condition holds depending only on ⟨Qβ | β ≤ α⟩,
e, and QδN0

α+1, which consists of conditions q′ with δN ′
0
< δN0 for every

⟨(N ′
0, γ

′
0), (N

′
1, γ

′
1)⟩ ∈ τq′ .

Before moving on to the next subsection, we will briefly address
the need for, and nature of, clause (7) in our definition of condition.
As already mentioned in the introduction, the proof that our forcing
satisfies the κ-chain condition is an adaptation, in our present context,
of the Laver-Shelah proof that their forcing in [10] has the κ-chain
condition. The only potential obstacles to making such an adaptation
work may come from our present requirements that a condition q be
closed under copying of all the relevant information, as dictated by the
presence of edges ⟨(N0, γ0), (N1, γ1)⟩ in its side condition τq, and where
this includes the information coming from the working part fq.
In the proof of the κ-c.c. of Qβ, given A ⊆ Qβ such that |A| = κ,

we need to find two distinct conditions in A which are compatible. As
we said, we would like to do that following the ideas in the κ-c.c. proof
from [10] as closely as possible. Now, due to technical reasons coming
from the present copying requirements, in order to do this we seem
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to need to work under the assumption that all conditions in A have
an additional property, namely that they are what we call adequate
conditions (s. Definition 3.16). One of the requirements for q to be
an adequate condition is that it be suitably closed under copying not
only via edges from τq, but also via the corresponding anti-edges. In
particular, if ⟨(N0, γ0), (N1, γ1)⟩ is an edge in τq, then not only are we to
copy the information from the working part sitting in N0 into N1 (into
the past) but also to copy the information sitting in N1 into N0 (into
the future); and similarly for the edges in N1 with markers at most α
for α ∈ dom(fq)∩N1∩γ1 such that fq(α)∩N1 ̸= ∅ and ΨN1,N0(α) < γ0.

Now, the main obstacle for proving that the set of adequate condi-
tions is dense—and this is the motivation behind clause (7)—is the fol-
lowing: take the situation in which there is an edge ⟨(N0, γ0), (N1, γ1)⟩ ∈
τq with α ∈ N0∩γ0, ᾱ := ΨN0,N1(α) < γ1, some x ∈ fq(ᾱ) of height less
than δN1 (= δN0), and some y ∈ fq(α) of height at least δN0 . If q

′ were
to be any adequate condition extending q, it would have to be the case
that x ∈ fq′(α). However, unless we have an extra clause preventing it,
it could for example be that y is forced to be above x in T∼µ(α), which
would make it impossible for such a q′ to exist.17

Our way around this difficulty is to incorporate, in our definition,
a clause which stipulates that the above operation can be carried out.
This is in essence what clause (7) says.18 Fortunately, the intended
content can indeed be expressed (cf. the previous footnote); our device
for doing so is to phrase this content by reference to a well-defined
suborder Qδ

α+1 of Qα+1—namely the set of conditions q ∈ Qα+1 all of
whose edges of form ⟨(N0, α + 1), (N1, γ1)⟩ are such that δN0 < δ (but
allowing all nodes in fq(α) to be of any height below κ). Hence, due
to the presence of this clause (7), the definition of q being a Qα+1-
condition is ultimately to be seen as being given by recursion on the
supremum of the collection of heights of models occurring in edges of
the form ⟨(N0, α + 1), (N1, γ1)⟩ (i.e., those edges not coming from the
restriction of q to α).19

17The problematic configuration can of course be described in slightly more general
terms.
18A more naive (and simpler-looking) approach would be to require that if
⟨(N0, γ0), (N1, γ1)⟩ is an edge from τq, then Qα+1 ∩ N0 is a complete suborder
of Qα+1. This would have the intended effect. However, such a condition cannot
be expressed without circularity.
19Let us reconsider for a second the situation described a few lines earlier. Suppose
q ∈ Qα+1, ⟨(N0, γ0), (N1, γ1)⟩ ∈ τq, and α and ᾱ are as in that description. Suppose
x ∈ fq(ᾱ) is of height less than δN1

and y is a node of height at least δN0
such that,

say, q ↾ µ(α) happens to force y to be above x in T∼µ(α). It is then of course
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3.1. Basic properties of ⟨Qβ | β ≤ κ+⟩. Our first lemma follows
immediately from the choice of the predicates Φα.

Lemma 3.4. For every nonzero α < κ+, Qα and ⊩H(κ+)
Qα

are definable
over the structure

(H(κ+),∈,Φα)

without parameters. Moreover, this definition is uniform in α.

Our next lemma follows from the fact that Q1 is essentially the Lévy
collapse turning κ into ω2.

Lemma 3.5. Q1 forces κ = ℵ2.

The following lemma is also an easy consequence of the definition of
condition.

Lemma 3.6. For every β ≤ κ+, Qα ⊆ Qβ for all α < β.

Lemma 3.7 follows easily from the definition of ⟨Qα | α ≤ κ+⟩.

Lemma 3.7. For all α < β ≤ κ+, q ∈ Qβ, and r ∈ Qα, if r ≤Qα q ↾ α,
then

(fr ∪ fq ↾ [α, β), τq ∪ τr)
is a common extension of q and r in Qβ.

Proof. Let p = (fr ∪ fq ↾ [α, β), τq ∪ τr). We show that p satisfies items
(1)–(7) of the definition of a Qβ-condition. It suffices to consider (5)
and (6), as all other clauses can be proved easily.

We first show that p satisfies clause (5). Thus let

e = ⟨(N0, γ0), (N1, γ1)⟩ ∈ τq ∪ τr
and

e′ = ⟨(N ′
0, γ

′
0), (N

′
1, γ

′
1)⟩ ∈ (τq ∪ τr) ∩N0.

We have to show that there are ordinals γ∗0 ≥ π
γ′
0,N

′
0

N0,γ0,N1,γ1
and γ∗1 ≥

π
γ′
1,N

′
1

N0,γ0,N1,γ1
such that

⟨(ΨN0,N1(N
′
0), γ

∗
0), (ΨN0,N1(N

′
1), γ

∗
1)⟩ ∈ τq ∪ τr.

We divide the proof into three cases:

(1) Both e and e′ belong to τq (resp. τr). Then the conclusion is
immediate as q (resp. r) is a condition in Qβ.

impossible to extend q to a condition q′ such that x ∈ fq′(α). However, we can
certainly pick α′ such that µ(α′) = µ(α) and such that q can be extended (trivially)
by making fq′(α

′) = {x}. This will ensure that the generic specializing function for
T∼µ(α) will be defined everywhere (cf. the proof of Lemma 5.3).
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(2) e ∈ τq and e′ ∈ τr. Then e ↾ α ∈ τq↾α, so as r ≤Qα q ↾ α,
we can find γ

′′
0 , γ

′′
1 ≤ α such that γ

′′
0 ≥ min{γ0, α}N0 , γ

′′
1 ≥

min{γ1, α}N1 and ⟨(N0, γ
′′
0 ), (N1, γ

′′
1 )⟩ ∈ τr. Hence, as r is a

condition, for some

γ∗0 ≥ π
γ′
0,N

′
0

N0,γ
′′
0 ,N1,γ

′′
1

and
γ∗1 ≥ π

γ′
1,N

′
1

N0,γ
′′
0 ,N1,γ

′′
1

we have

⟨(ΨN0,N1(N
′
0), γ

∗
0), (ΨN0,N1(N

′
1), γ

∗
1)⟩ ∈ τr.

As r ∈ Qα, e
′ ∈ τr, and γ

′
0, γ

′
1 ≤ α, and by the choice of γ′′0 , γ

′′
1 ,

one can easily show that

π
γ′
0,N

′
0

N0,γ
′′
0 ,N1,γ

′′
1

≥ π
γ′
0,N

′
0

N0,γ0,N1,γ1
,

and
π
γ′
1,N

′
1

N0,γ
′′
0 ,N1,γ

′′
1

≥ π
γ′
1,N

′
1

N0,γ0,N1,γ1
.

Thus γ∗0 ≥ π
γ′
0,N

′
0

N0,γ0,N1,γ1
and γ∗1 ≥ π

γ′
1,N

′
1

N0,γ0,N1,γ1
, from which the

result follows.
(3) e ∈ τr and e′ ∈ τq. Then e′ ↾ α ∈ τq↾α and so we can find

γ
′′
0 , γ

′′
1 ≤ α such that γ

′′
0 ≥ min{γ′0, α}N ′

0
, γ

′′
1 ≥ min{γ′1, α}N ′

1

and ⟨(N ′
0, γ

′′
0 ), (N

′
1, γ

′′
1 )⟩ ∈ τr. By the discussion after Definition

2.1, ⟨(N ′
0, γ

′′
0 ), (N

′
1, γ

′′
1 )⟩ ∈ N0. Hence, as r is a condition, we

can find

γ∗0 ≥ π
γ
′′
0 ,N ′

0
N0,γ0,N1,γ1

and

γ∗1 ≥ π
γ
′′
1 ,N ′

1
N0,γ0,N1,γ1

such that

⟨(ΨN0,N1(N
′
0), γ

∗
0), (ΨN0,N1(N

′
1), γ

∗
1)⟩ ∈ τr.

As r ∈ Qα, e ∈ τr, and γ0, γ1 ≤ α, and by the choice of γ
′′
0 , γ

′′
0 ,

one can again easily show that

π
γ
′′
0 ,N ′

0
N0,γ0,N1,γ1

≥ π
γ′
0,N

′
0

N0,γ0,N1,γ1

and

π
γ
′′
1 ,N ′

1
N0,γ0,N1,γ1

≥ π
γ′
1,N

′
1

N0,γ0,N1,γ1
,

from which we get that γ∗0 ≥ π
γ′
0,N

′
0

N0,γ0,N1,γ1
and γ∗1 ≥ π

γ′
1,N

′
1

N0,γ0,N1,γ1
,

and the result follows.
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To show that p satisfies clause (6), let e = ⟨(N0, γ0), (N1, γ1)⟩ ∈ τq ∪ τr,
η ∈ (dom(fr)∪dom(fq))∩N0∩γ0, η ̸= 0, and x ∈ (fr(η)∪ fq(η))∩N0.
We have to show that η̄ ∈ dom(fr) ∪ dom(fq) and x ∈ fr(η̄) ∪ fq(η̄),
where η̄ = ΨN0,N1(η).

If η < α, then η ∈ dom(fr) and x ∈ fr(η). As r ≤α q ↾ α, for
some γ′0, γ

′
1 we have ⟨(N0, γ

′
0), (N1, γ

′
1)⟩ ∈ τr (if e ∈ τr, we can take

γ′0 = γ0 and γ′1 = γ1, otherwise, we can take γ′0 ≥ min{γ0, α}N0 and
γ′1 ≥ min{γ1, α}N1). But then η̄ ∈ dom(fr) and x ∈ fr(η̄).
Next suppose that η ≥ α. In this case we must have e ∈ τq and

η ∈ dom(fq) \ dom(fr). But then η̄ ∈ dom(fq) and x ∈ fq(η̄). □

Throughout the paper, we write P⋖Q to denote that P is a complete
suborder of Q (i.e., P is a suborder of Q and maximal antichains in P
are also maximal antichains in Q).

The following corollary is a trivial consequence of Lemma 3.7.

Corollary 3.8. ⟨Qα | α ≤ κ+⟩ is a forcing iteration, in the sense that
Qα ⋖Qβ for all α < β ≤ κ+.

We say that a partial order P is σ-closed if every descending sequence
(pn)n<ω of P-conditions has a lower bound in P .

Remark 3.9. Suppose β ≤ κ+ and ⟨τn : n < ω⟩ is a ≤Pe
Φ⃗,β

-decreasing

sequence of conditions in Pe
Φ⃗,β

which are closed under copying. Then⋃
n<ω τn is also a condition in Pe

Φ⃗,β
and is closed under copying. The

reason that
⋃

n<ω τn is closed under copying is that if n < m and we
have

e = ⟨(N0, γ0), (N1, γ1)⟩ ∈ τm

and
e′ = ⟨(N ′

0, γ
′
0), (N

′
1, γ

′
1)⟩ ∈ τn ∩N0,

then for some γ′′0 , γ
′′
1 we have e′′ = ⟨(N ′

0, γ
′′
0 ), (N

′
1, γ

′′
1 )⟩ ∈ τm, and by the

discussion after Definition 2.1, e′′ ∈ N0, so as in the proof of Lemma

3.7, for some γ∗0 ≥ π
γ′
0,N

′
0

N0,γ0,N1,γ1
and γ∗1 ≥ π

γ′
1,N

′
1

N0,γ0,N1,γ1
we have

⟨(ΨN0,N1(N
′
0), γ

∗
0), (ΨN0,N1(N

′
1), γ

∗
1)⟩ ∈ τm.

Lemma 3.10. Qβ is σ-closed for every β ≤ κ+. In fact, every decreas-
ing ω-sequence of Qβ-conditions has a greatest lower bound in Qβ. In
particular, forcing with Qβ does not add new ω-sequences of ordinals,
and therefore this forcing preserves both ω1 and CH.

Proof. Given a decreasing sequence (qn)n<ω of Qβ-conditions, it is im-
mediate to check that q = (f,

⋃
n<ω τqn) is the greatest lower bound of

the set {qn | n < ω}, where dom(f) =
⋃

n<ω dom(fqn) and, for each
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n < ω and α ∈ dom(fqn), f(α) =
⋃
{fqm(α) | m ≥ n}. For this one

proves, by induction on α, that q ↾ α ∈ Qα for every α ≤ β. □

Remark 3.11. Lemma 3.10, or rather its proof, will be used, often
without mention, in several places in which we run some construction,
in ω steps, along which we build some decreasing sequence (qn)n<ω of
conditions. At the end of such a construction we will have that the
ordered pair q = (f,

⋃
n<ω τqn), where f is given as in the above proof,

is the greatest lower bound of (qn)n<ω.

Given α ∈ X , a node x = (ρ, ζ) in κ×ω1, and an ordinal ρ̄ ≤ ρ, if Qα

has the κ-c.c., we denote by Aα
x,ρ̄ the F -first maximal antichain of Qα

in H(κ+) consisting of conditions deciding, for some ordinal ζ̄ < ω1,
that (ρ̄, ζ̄) is T∼α-below x.20 If x0 = (ρ0, ζ0) and x1 = (ρ1, ζ1) are nodes,
ρ̄ ≤ ρ0, ρ1, r0 ∈ Aα

x0,ρ̄
, r1 ∈ Aα

x1,ρ̄
, and there are ordinals ζ̄0 ̸= ζ̄1 in

ω1 such that r0 forces that (ρ̄, ζ̄0) is T∼α-below x0 and r1 forces that
(ρ̄, ζ̄1) is T∼α-below x1, then we say that r0 and r1 force x0 and x1 to be
incomparable in T∼α.

21

The following lemma will be often used.

Lemma 3.12. Suppose q is a Qκ+-condition, α ∈ dom(fq), α ̸= 0, and

T∼µ(α) is defined. Suppose Qµ(α) has the κ-c.c. Suppose ⟨E⃗ , (ρ, α)⟩ is a
correct τq-thread, where ρ < κ, and x0 = (ρ0, ζ0) and x1 = (ρ1, ζ1) are
two nodes such that

• ρ0, ρ1 ≤ ρ, and
• there is some ρ̄ ≤ ρ0, ρ1 such that q ↾ µ(α) extends conditions

r0 ∈ A
µ(α)
x0,ρ̄ and r1 ∈ A

µ(α)
x1,ρ̄ forcing x0 and x1 to be incomparable

in T∼µ(α).

Let ᾱ = ΨE⃗(α). Then

(1) r0 and r1 are in dom(ΨE⃗), and
(2) ΨE⃗(r0) and ΨE⃗(r1) force x0 and x1 to be incomparable in T∼µ(ᾱ).

Proof. Let

E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i ≤ n)

Since ω1 ∪ ρ + 1 ⊆ dom(ΨE⃗) and ΨE⃗ is a partially defined elementary
embedding from (N0

0 ,∈,Φα) into (Nn
1 ,∈,Φᾱ) we have, by definability

of A
µ(α)
x0,ρ̄ and A

µ(α)
x1,ρ̄ over the structure (H(κ+),∈,Φα) by formulas φ0

20In Lemma 4.3 we will prove that each Qα has the κ-c.c. Hence, Aα
x,ρ̄ will be

defined for all x and ρ̄.
21This terminology is apt: since for each ρ < κ, {ρ} × ω1 is forced to be the ρ-th
level of T∼α, we have that every condition in Qα extending both of r0 and r1 must
force that x0 and x1 are incomparable nodes in T∼α.
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and φ1, respectively, with x0, x1 and ρ̄ as parameters, and definability

of A
µ(ᾱ)
x0,ρ̄ and A

µ(ᾱ)
x1,ρ̄ over (H(κ+),∈,Φᾱ), also by φ0 and φ1, respectively,

that

• Aµ(α)
x0,ρ̄ , A

µ(α)
x1,ρ̄ ∈ dom(ΨE⃗),

• Aµ(ᾱ)
x0,ρ̄ = ΨE⃗(A

µ(α)
x0,ρ̄ ), and

• Aµ(ᾱ)
x1,ρ̄ = ΨE⃗(A

µ(α)
x1,ρ̄ ).

Again by a definability argument, since |Aµ(α)
x0,ρ̄ |, |A

µ(α)
x1,ρ̄ | < κ, we also

have that A
µ(α)
x0,ρ̄ and A

µ(α)
x1,ρ̄ are both subsets of dom(ΨE⃗). Finally, we

have ζ̄0 ̸= ζ̄1 in ω1 such that

• r0 forces in Qµ(α) that (ρ̄, ζ̄0) is below x0 in T∼µ(α) and
• r1 forces in Qµ(α) that (ρ̄, ζ̄1) is below x1 in T∼µ(α).

But since ΨE⃗ is a partial elementary embedding from (N0
0 ,∈,Φα) into

(Nn
1 ,∈,Φᾱ), by Lemma 3.4 we have that

• ΨE⃗(r0) forces in Qµ(ᾱ) that (ρ̄, ζ̄0) is below x0 in T∼µ(ᾱ) and that
• ΨE⃗(r1) forces in Qµ(ᾱ) that (ρ̄, ζ̄1) is below x1 in T∼µ(ᾱ).

□

Given functions f and g, let us momentarily denote by f + g the
function with dom(f + g) = dom(f) ∪ dom(g) defined by letting

(f + g)(x) = f(x) ∪ g(x)
for all x ∈ dom(f) ∪ dom(g).22

Given Qκ+-conditions q0 and q1, let q0 ⊕ q1 denote the natural amal-
gamation of q0 and q1; to be more specific, q0 ⊕ q1 is the ordered
pair (f, τq0 ⊕ τq1), where f is the closure of fq0 + fq1 with respect
to relevant (restrictions of) functions of the form ΨN0,N1 , for edges
⟨(N0, γ0), (N1, γ1)⟩ in τq0 ⊕ τq1 , so that clause (6) in the definition of
condition holds for q0 ⊕ q1. Even more precisely, we define

q0 ⊕ q1 = ((fq0 + fq1) + f, τq0 ⊕ τq1),

where f is the function with domain X—for X being the collection of
all ordinals of the form ΨE⃗(α), for a connected τq0⊕τq1-thread ⟨E⃗ , (ρ, α)⟩
such that E⃗ consists of edges, and such that (ρ, ζ) ∈ fq0(α)∪ fq1(α) for
some ζ < ω1—and such that for every ᾱ ∈ X, f(ᾱ) is the collection of

all nodes (ρ, ζ), for connected τq0 ⊕ τq1-threads ⟨E⃗ , (ρ, α)⟩ such that

(1) E⃗ consists of edges,
(2) (ρ, ζ) ∈ fq0(α) ∪ fq1(α), and
(3) ΨE⃗(α) = ᾱ.

22Where, we recall, if h is a function and x /∈ dom(h), we are setting h(x) to be ∅.
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Lemma 3.13 holds by the construction of q0 ⊕ q1.

Lemma 3.13. Let q0 and q1 be Qκ+-conditions and let q = q0 ⊕ q1.
Then the following holds.

(1) τq is closed under copying.
(2) For every edge ⟨(N0, γ0), (N1, γ1)⟩ ∈ τq and every α ∈ N0 ∩ γ0

such that ᾱ := ΨN0,N1(α) < γ1, if α ̸= 0, α ∈ dom(fq), and
x ∈ fq(α) ∩N0, then
(a) ᾱ ∈ dom(fq), and
(b) x ∈ fq(ᾱ).

The following lemma is a trivial consequence of Lemmas 2.13 and
2.14.

Lemma 3.14. For every two Qκ+-conditions q0 and q1, if q0 ⊕ q1 =
(f, τ), then for every α ∈ dom(f) and every x = (ρ, ζ) ∈ f(α) such that
x /∈ fq0(α) ∪ fq1(α) there is some α∗ ∈ dom(fq0) ∪ dom(fq1) such that

x ∈ fq0(α
∗) ∪ fq1(α

∗) and some connected τq0 ∪ τq1-thread ⟨E⃗ , (ρ, α∗)⟩
such that ΨE⃗(α

∗) = α. Furthermore, if λ < κ is such that all edges in

τq0 involve models of height less than λ, then all members of E⃗ involving
models of height at least λ are edges in τq1.

Extending our notation f + g for functions f , g, if F is a set of
functions, we denote by

⊕
F the function g with domain⋃
{dom(f) | f ∈ F}

given by

g(x) =
⋃

{f(x) | x ∈ dom(f)}.
The following lemma will be used in the proof of Lemma 4.1.

Lemma 3.15. Let β ≤ κ+, and suppose q0, q1 ∈ Qβ are such that for
every α < β, if

(q0 ↾ α)⊕ (q1 ↾ α) ∈ Qα,

then

(q0 ↾ α + 1)⊕ (q1 ↾ α + 1) ∈ Qα+1.

Then q0 ⊕ q1 ∈ Qβ.

Proof. The proof is by induction on β. We only need to argue for the
conclusion in the case that β is a nonzero limit ordinal. In that case
the conclusion follows easily from the induction hypothesis and the fact
that for every α < β,

fq0⊕q1 ↾ α =
⊕

{f(q0↾α′)⊕(q1↾α′) ↾ α | α ≤ α′ < β}.
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To see this equality it suffices to note that for every ᾱ ∈ dom(fq0⊕q1),
any given (ρ, ζ) in

fq0⊕q1(ᾱ) \ (fq0(ᾱ) ∪ fq1(ᾱ))
has arrived there, thanks to Lemma 3.14, by virtue of some connected
τq0↾α′ ∪ τq1↾α′-thread ⟨E⃗ , (ρ, α∗)⟩ for some high enough α′ < β.

If q0 ⊕ q1 were not a Qβ-condition, there would be some α < β such
that some finite piece of information contained in fq0⊕q1 ↾ α fails to
satisfy clause (4), (6) or (7) in the definition of Qα-condition. But that
piece of information would occur in f(q0↾α′)⊕(q1↾α′) ↾ α for a high enough
α′ < β above α. Hence, by taking α′ high enough we may guarantee
that the fact that the piece of information violates some clause in the
definition of Qα-condition entails that

(f(q0↾α′)⊕(q1↾α′) ↾ α, τ(q0↾α′)⊕(q1↾α′) ↾ α)

is not a Qα-condition. But that contradicts (q0 ↾ α′)⊕ (q1 ↾ α′) ∈ Qα′ ,
which we know is true by induction hypothesis. □

We will now introduce the notion of adequate condition, which we
already alluded to at the beginning of this section.

Definition 3.16. Given β < κ+ and q ∈ Qβ, we will say that q is
adequate in case (1) and (2) below hold.

(1) For every α ∈ dom(fq) such that Qµ(α) has the κ-c.c. and T∼µ(α)

is defined and for all distinct x0 = (ρ0, ζ0), x1 = (ρ1, ζ1) ∈ fq(α)

there is some ρ̄ ≤ ρ0, ρ1, together with conditions r0 ∈ A
µ(α)
x0,ρ̄

and r1 ∈ A
µ(α)
x1,ρ̄ weaker than q ↾ µ(α) and such that r0 and r1

force x0 and x1 to be incomparable in T∼µ(α).

(2) The following holds for every correct τq-thread ⟨E⃗ , (ρ, ᾱ)⟩, where
α = ΨE⃗(ᾱ), ρ < κ, ζ < ω1, and x = (ρ, ζ) ∈ fq(ᾱ).
(a) α ∈ dom(fq) and x ∈ fq(α).

(b) For every ⟨(N0, γ0), (N1, γ1)⟩ ∈ τq∩dom(E⃗) with γ0, γ1 ≤ ᾱ
there are γ′0 ≥ ΨE⃗(γ0) and γ

′
1 ≥ ΨE⃗(γ1) such that

⟨(ΨE⃗(N0), γ
′
0), (ΨE⃗(N1), γ

′
1)⟩ ∈ τq

We call a condition weakly adequate if it satisfies clause (1) from
Definition 3.16.

Lemma 3.17. The set of weakly adequate conditions is dense in Qβ

for each β ≤ κ+.

Proof. For each condition q ∈ Qβ let ⟨(αq
n, x

q
0,n, x

q
1,n) : n < ω⟩ be the

F -least enumeration of all triples (α, x0, x1) such that α ∈ dom(fq),
α ̸= 0, is such that Qµ(α) has the κ-c.c. and T∼µ(α) is defined, and
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x0 = (ρ0, ζ0), x1 = (ρ1, ζ1) ∈ fqi(α) are distinct. Let also φ : ω×ω → ω
be a bijection such that φ(m,n) ≥ m for all m,n < ω.
By induction on i < ω we define a decreasing sequence ⟨qi : i < ω⟩

of Qβ-conditions as follows. To start, set q0 = q. Now suppose that
i < ω and that qi is defined. Let m, n be such that φ(m,n) = i and set
(α, x0, x1) = (αqm

n , xqm0,n, x
qm
1,n). Let qi+1 be an extension of qi such that

there are ρ̄ ≤ ρ0, ρ1, together with conditions r0 ∈ A
µ(α)
x0,ρ̄ and r1 ∈ A

µ(α)
x1,ρ̄

weaker than qi+1 ↾ µ(α) and such that r0 and r1 force x0 and x1 to be
incomparable in T∼µ(α). Then the greatest lower bound of {qi | i < ω}
is weakly adequate. □

In fact, the set of adequate conditions is dense in Qβ for each β ≤ κ+,
as shown in Lemma 3.19. To show this, we need the following lemma.

Lemma 3.18. Let α < κ+, q ∈ Qα+1, e = ⟨(N0, α + 1), (N1, γ1)⟩ a

generalized edge coming from τq, and E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i ≤ n)

a sequence of generalized edges coming from τq with ⟨(N0
0 , γ

0
0), (N

0
1 , γ

0
1)⟩ =

e and such that ⟨E⃗ , (∅, α)⟩ is a correct thread. Let ᾱ be such that
ΨE⃗(α) = ᾱ. Let also δ = min{δN i

0
| i ≤ n}. Suppose that

(1) q ↾ α is adequate, and that
(2) q ↾ µ(α) forces every two distinct nodes in fq(ᾱ) ∩ (δ × ω1) to

be incomparable in T∼µ(α).

Then there is an extension q∗ ∈ Qα+1 of q such that fq(ᾱ)∩ (δ×ω1) ⊆
fq∗(α).

Proof. We may obviously assume ᾱ ̸= α as otherwise there is nothing
to prove. Let r = (fq, (τq \ τ) ∪ (τq ↾ α) ∪ (τ ↾ α)), where

τ = {⟨(N ′
0, γ

′
0), (N

′
1, γ

′
1)⟩ ∈ τq | max{γ′0, γ′1} = α + 1, δN ′

0
≥ δN0}.

Then r ∈ QδN0
α+1 and e ↾ α comes from τr. To see the latter claim, note

that e clearly comes from τ , and hence e ↾ α comes from τ ↾ α ⊆ τr.
Also note that r ↾ µ(α) = q ↾ µ(α), hence by clause (2), r ↾ µ(α) forces
every two distinct nodes in fq(ᾱ)∩(δ×ω1) to be incomparable in T∼µ(α).
Set

E⃗∗ = ⟨e⟩⌢(⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ ↾ α | 0 < i ≤ n).

Then (E⃗∗, (∅, α)) is a correct thread (since ᾱ < α). Since clearly all

members of E⃗∗ come from τr ∪ {e}, by clause (7) of the definition of

Qα+1-condition for q there is an extension r∗ ∈ QδN0
α+1 of r such that

fr∗(ᾱ) ⊇ fr(α) ∩ (δ × ω1) = fq(α) ∩ (δ × ω1)

and such that r∗ ↾ µ(α) forces every two distinct nodes in

(fq(ᾱ) ∩ (δ × ω1)) ∪ fq(α)
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to be incomparable in T∼µ(α). Let

q∗ = (fr∗ ↾ α ∪ {(α, fq(α) ∪ (fq(ᾱ) ∩ (δ × ω1)))}, τq ∪ τr∗ ↾ α).

It suffices to show that q∗ is a Qα+1-condition, as then it is an extension
of q in Qα+1 as desired.

To see that q∗ ∈ Qα+1, we only need to show that q∗ satisfies clause
(6) of the definition of Qα+1-condition, as all other clauses can be
checked easily. Thus let e′ = ⟨(N ′

0, α + 1), (N ′
1, γ

′
1)⟩ ∈ τq ∪ τr∗ ↾ α

be such that α′ := ΨN ′
0,N

′
1
(α) < γ′1 and let us note that in fact e′ ∈ τq.

We have to show that(
fq(α) ∪ (fq(ᾱ)

)
∩ (δN0 × ω1) ∩N ′

0 ⊆ fq∗(α
′).

We may assume that α′ < α. Since e′ ∈ τq, we have that fq(α) ∩N ′
0 ⊆

fq(α
′) ⊆ fq∗(α

′). To show that fq(ᾱ) ∩ (δN0 × ω1) ∩ N ′
0 ⊆ fq∗(α

′), let
x = (ρ, ζ) ∈ fq(ᾱ) ∩ (δN0 × ω1) with ρ < δN ′

0
. Let

E⃗−1 = (⟨(Nn−i
1 , γn−i

1 ), (Nn−i
0 , γn−i

0 )⟩ | i ≤ n⟩

and let us consider the correct τq ↾ α-thread ⟨F⃗ , (ρ, ᾱ)⟩, where

F⃗ = (E⃗−1 ↾ α)⌢⟨e′ ↾ α⟩.

Then ΨF⃗(ᾱ) = α′, and since q ↾ α is adequate, we have x ∈ fq∗(α
′).

Thus, the conclusion follows. □

Lemma 3.19. For every β ≤ κ+, the set of adequate Qβ-conditions is
dense in Qβ.

Proof. Let q ∈ Qβ. We will find an adequate Qβ-condition q
∗ stronger

than q. We prove this by induction on β.
First, suppose that β is a limit ordinal of countable cofinality and let

(βi)i<ω be an increasing sequence of ordinals cofinal in β. We define,
by induction on i < ω, two sequences (qi)i<ω and (ri)i<ω of conditions
such that q0 = q and such that for all i < ω,

(1) qi ∈ Qβ,
(2) ri is an adequate Qβi

-condition,
(3) ri ≤Qβi

qi ↾ βi, and
(4) qi+1 = (fri ∪ fqi ↾ [βi, β), τri ∪ τqi).23

The construction can be carried out using the induction hypothesis.
Let q∗ be the greatest lower bound of the sequence (qi)i<ω, which

exists by Lemma 3.10. Then q∗ is an adequate Qβ-condition extending
q. The point is that every instance of adequacy depends on ordinals

23Note that by Lemma 3.7 (and Lemma 3.6), each qi+1 is indeed a Qβ-condition.
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α, ᾱ < β and is in fact verified at some high enough stage i of the
construction.

If β is a limit ordinal of uncountable cofinality, then we fix some
β̄ < β such that dom(fq) ⊆ β̄, find an adequate extension q′ of q ↾ β̄
in Qβ̄ (which exists by the induction hypothesis), and note that q∗ =
(fq′ , τq′ ∪ τq) is an extension of q in Qβ by Lemma 3.7. But then we are
done since q∗ is adequate by the choice of q′.
Finally, suppose that β = α+ 1 is a successor ordinal. By induction

hypothesis together with Lemma 3.7, we may assume that q ↾ α is
adequate. We may also assume that there is some generalized edge
coming from τq of the form ⟨(N0, β), (N1, γ1)⟩, as otherwise we are
done. We build q∗ as the greatest lower bound of a suitably constructed
descending sequence (qn)n<ω of conditions extending q0 = q and such
that qn is weakly adequate, and qn ↾ α is adequate for each n. For every
n, and assuming qn has been found, we construct qn+1 in the following
way.

Let us pick some correct τqn-thread ⟨E⃗ , (ρ, ᾱ)⟩. Let ρ < κ, ζ < ω1,
and suppose x = (ρ, ζ) ∈ fqn(ᾱ). Let δ = min{δN i

0
: i ≤ m}, where

E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ : i ≤ m). Let α = ΨE⃗(ᾱ). By the adequacy

of qn ↾ α and using Lemma 3.12, we have that qn ↾ µ(α) forces any two
distinct nodes in fqn(ᾱ)∩ (δ×ω1) to be incomparable in T∼µ(α). This is
true since for any two distinct nodes x, y in fqn(ᾱ)∩ (δ × ω1), by weak
adequacy of qn, some condition r ∈ Qµ(ᾱ) weaker than qn ↾ µ(ᾱ) and

belonging to the final model of E⃗ forces x and y to be incomparable in
Tµ(ᾱ). By adequacy of qn ↾ µ(ᾱ),ΨE⃗(r) is also weaker than qn ↾ µ(ᾱ).
And by Lemma 3.12, ΨE⃗(r) is a condition in Qµ(α) forcing x and y,
which of course are fixed by ΨE⃗ , to be incomparable in Tµ(α).
By Lemma 3.18 we may find an extension q0n+1 ∈ Qβ of qn such that

fqn(ᾱ) ∩ (δ × ω1) ⊆ fq0n+1
(α) ∩ (δ × ω1).

24

Let then q1n+1 = (fq0n+1
, τq1n+1

), where τq1n+1
is the union of τq0n+1

and

the set of edges of the form

ΨE⃗(⟨(N
′
0, γ

′
0), (N

′
1, γ

′
1)⟩)

with ⟨(N ′
0, γ

′
0), (N

′
1, γ

′
1)⟩ ∈ τqn ∩ N0

0 and γ′0, γ
′
1 ≤ ᾱ. We note that

ΨE⃗(⟨(N ′
0, γ

′
0), (N

′
1, γ

′
1)⟩) is obtained from some already present edge

⟨ΨE⃗(N
′
0, γ̃

′
0),ΨE⃗(N

′
1, γ̃

′
1)⟩ in qn by, at most, increasing some of the mark-

ers γ̃′ϵ to α, and that doing so does not force us to add working parts
that were not already present in q0n+1.

24In fact, by the proof of Lemma 3.18 it suffices for this to simply add to fqn(α) all
nodes in fqn(ᾱ) ∩ (δ × ω1).
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Let now qn+1 be an extension of q1n+1, obtained by first extending
q1n+1 ↾ α to an adequate condition using the induction hypothesis and
then applying clause (7) in the definition of condition, such that

fq1n+1
(α) ∩ (δ × ω1) ⊆ fqn+1(ᾱ).

By further extending qn+1 using Lemma 3.17 and the induction hypoth-
esis (and Lemma 3.7), we may assume in addition that qn+1 is weakly
adequate and qn+1 ↾ α is adequate.

Using some suitable book-keeping, we can make sure that (qn)n<ω

is built in such a way that every relevant ⟨E⃗ , (ρ, ᾱ)⟩ for which there is
some x = (ρ, ζ) ∈ fqn(ᾱ), occurring at any stage m in the construction,
is taken care of at infinitely many stages n > m. Let q∗ be the greatest
lower bound of {qn | n < ω}. We then have that q∗ is an adequate
condition extending q. □

Given a Qκ+-condition q and a model N , we denote by q ↾ N the
ordered pair (f, τq∩N), where f is the function with domain dom(fq)∩
N such that f(x) = fq(x) ∩N for every x ∈ dom(f).

It will be necessary, in the proof of Lemma 5.1, to adjoin a certain
edge to some given condition. This will be accomplished by means of
the following lemma.

Lemma 3.20. Suppose for every β < κ+, Qβ has the κ-c.c. Let α < κ+

and let

e = ⟨(N0, α+ 1), (N1, γ1)⟩
be a generalized edge. Suppose (N0,∈,Φα+1) ≺ (H(κ+),∈,Φα+1). Sup-
pose Qξ ∩N0 is a complete suborder of Qξ for every ξ ∈ (α + 2) ∩N0.

Let r ∈ QδN0
α+1 and suppose e ↾ α comes from τr. Let

E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i < n)

be a sequence of generalized edges coming from τr ∪ {e} such that

⟨(N0
0 , γ

0
0), (N

1
0 , γ

1
0)⟩ = e and ⟨E⃗ , (∅, α)⟩ is a correct thread. Let δ =

min{δN i
0
| i < n} and ᾱ = ΨE⃗(α). Suppose ᾱ < α and suppose r ↾ µ(α)

forces every two distinct nodes in fr(ᾱ) ∩ (δ × ω1) to be incomparable
in T∼µ(α).

Then there is an extension r∗ ∈ QδN0
α+1 of r such that

(1) fr(α) ∩ (δ × ω1) ⊆ fr∗(ᾱ) and
(2) r∗ ↾ µ(α) forces every two distinct nodes in

(fr(ᾱ) ∩ (δ × ω1)) ∪ fr(α)

to be incomparable in T∼µ(α).
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Proof. The proof is by induction on α. To start with, since Qα+1 ∩
N0 ⋖ Qα+1, r ↾ N0 may be extended to a condition q0 ∈ Qα+1 ∩ N0

forcing that every condition in ĠQα+1∩N0 is compatible with r.

Claim 3.21. We may extend q0 to a condition q1 ∈ Qα+1 ∩ N0 for
which there is a generalized edge

e′ = ⟨(N ′
0, α), (N

′
1, γ

′
1)⟩ ∈ τq1

such that Qξ∩N ′
0 is a complete suborder of Qξ for every ξ ∈ (α+1)∩N ′

0,

together with some r′ ∈ Q
δN′

0
α+1 with e′ ↾ α coming from τr′, and together

with a sequence

E⃗ ′ = (⟨(N ′i
0 , γ

′i
0 ), (N

′i
1 , γ

′i
1 )⟩ | i < n)

of generalized edges coming from τr′ ∪ {e′} such that

⟨(N ′0
0 , γ

′0
0 ), (N

′1
0 , γ

′1
0 )⟩ = e′

and such that ⟨E⃗ ′, (∅, α)⟩ is a correct thread and such that, letting δ′ =
min{δN ′i

0
| i < n} and ᾱ′ = ΨE⃗ ′(α), we have that ρ < δ′ for every

(ρ, ν) ∈ fq0(α) with ρ < δ, ᾱ′ < α, and that r′ ↾ µ(α) forces every
two distinct nodes in fr′(ᾱ

′) ∩ (δ′ × ω1) to be incomparable in T∼µ(α).
Moreover, q0 ∈ N ′

0, q0 ↾ N ′
1 = q0 ↾ N ′

0 ∩ N ′
1, and fq1(ᾱ

′) ∩ (δ′ × ω1) =
fq1(α) ∩ (δ′ × ω1).

Proof. In order to find q1, we first find e′, E⃗ ′ and r′ in N0 as in the
statement. The existence of such objects is witnessed by e ↾ α, E⃗ and r,
respectively, and can be expressed by a sentence over (H(κ+),∈,Φα+1)
with parameters in N0.
We can now find a suitable condition q−1 in Qα+1 ∩N0 extending q0

and such that e′ ∈ τq−1 . Indeed, q
−
1 is obtained by adding e′ to τq0 and

copying the relevant information coming from q0 into N
′
1 via ΨN ′

0,N
′
1
so

as to make clauses (5) and (6) in the definition of condition hold for
q−1 ; in other words, q−1 = q0 ⊕ (∅, {e′}).

The result of copying any piece of information carried by q0 inN
′
0 into

N ′
1 will not interfere with any piece of information previously carried

by q0 in N ′
1 as that information is also in N ′

0 and therefore fixed by
ΨN ′

0,N
′
1
. Also, clause (7) in the definition of condition is ensured for e′

at all ordinals ξ + 1 ∈ N ′
0 ∩ α by the induction hypothesis applied to

all ξ ∈ (N ′
0 ∪N ′

1) ∩ α. It then easily follows that q−1 is a condition.
But now we may find q1 as desired by simply copying the relevant in-

formation coming from q0 at stage α via ΨN ′
0,N

′
1
, which again is possible

since q0 ↾ N ′
1 = q0 ↾ N ′

0 ∩N ′
1. □
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Let us fix q1, e
′, E⃗ ′ and r′ as given by the claim. By the choice of

q0 we may find a common extension r∗0 ∈ Qα of q1 ↾ α and r ↾ α,
which we may assume is adequate by Lemma 3.19. By adequacy of r∗0
it follows that fr∗0 (ᾱ

′) ∩ (δ′ × ω1) = fr∗0 (ᾱ) ∩ (δ′ × ω1). Let q2 ∈ N0

be the amalgamation, as given by Lemma 3.7, of r∗0 ↾ N0 and q1. In
order to finish the proof it suffices to argue that (f, τq2) is a condition
in Qα+1 ∩ N0, where f is the function such that f ↾ α = fq2 ↾ α and
f(α) = fq0(α) ∪ (fr∗0 (ᾱ) ∩ (δ × ω1)), since then we can take r∗ to be

any condition in QδN0
α+1 extending both (f, τq2) and r, which exists by

the choice of q0.
(f, τq2) is of course in N0. By our hypothesis, the only way (f, τq2)

could fail to be a condition in Qα+1 is that there are distinct x ∈ fq0(α)
and y ∈ fr∗0 (ᾱ)∩ (δ′×ω1) such that q2 ↾ µ(α) does not force x and y to
be incomparable nodes in T∼µ(α). We can then extend q2 ↾ µ(α) to some
r′ ∈ Qµ(α) ∩N0 forcing x and y to be T∼µ(α)-comparable. By the κ-c.c.
of Qµ(α) we may of course assume that r′ extends some r̄ ∈ Qµ(α) ∩N ′

0

forcing x and y to be T∼µ(α)-comparable. Once again by the choice
of q0, let q ∈ Qα be a common extension of r′ and r ↾ µ(α) which,
thanks to Lemma 3.19, we may assume is adequate. But now ΨE⃗ ′(r̄)
is a condition weaker than q ↾ µ(ᾱ′) (by clauses (5) and (6) in the
definition of condition applied to q) and forcing x and y to be T∼µ(ᾱ′)-
comparable, which of course is a contradiction since x, y ∈ fq(ᾱ

′). □

4. The chain condition

This section is devoted to proving Lemma 4.1.

Lemma 4.1. For each β ≤ κ+, Qβ has the κ-chain condition.

As we will see, the weak compactness of κ is used crucially in order
to prove Lemma 4.1. Let F be the weak compactness filter on κ, i.e.,
the filter on κ generated by the sets

{λ < κ | (Vλ,∈, B ∩ Vλ) |= ψ},

where B ⊆ Vκ and where ψ is a Π1
1 sentence for the structure (Vκ,∈, B)

such that (Vκ,∈, B) |= ψ. F is a proper normal filter on κ. Let also S
be the collection of F -positive subsets of κ, i.e.,

S = {X ⊆ κ | X ∩ C ̸= ∅ for all C ∈ F}

We will call a model Q suitable if Q is an elementary submodel of
cardinality κ of some high enough H(θ), closed under <κ-sequences,
and such that ⟨Qα | α < κ+⟩ ∈ Q. Given a suitable model Q, a
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bijection φ : κ→ Q, and an ordinal λ < κ, we will denote φ“λ by Mφ
λ .

It is easily seen that

{λ < κ |Mφ
λ ≺ Q, Mφ

λ ∩ κ = λ and <λMφ
λ ⊆Mφ

λ } ∈ F .

Definition 4.2 (strong chain condition). Given β ≤ κ+, we will say
that Qβ has the strong κ-chain condition if for every X ∈ S, every
suitable model Q such that β,X ∈ Q, every bijection φ : κ → Q, and
every two sequences (q0λ | λ ∈ X) ∈ Q and (q1λ | λ ∈ X) ∈ Q of adequate
Qβ-conditions, if

• Mφ
λ ∩ κ = λ and

• q0λ ↾Mφ
λ = q1λ ↾Mφ

λ for every λ ∈ X,

then there is some Y ∈ S, Y ⊆ X, together with sequences

(r0λ | λ ∈ Y )

and
(r1λ | λ ∈ Y )

of adequate Qβ-conditions with the following properties.

(1) r0λ ≤Qβ
q0λ and r1λ ≤Qβ

q1λ for every λ ∈ Y .
(2) For all λ0 < λ1 in Y , r0λ0

⊕ r1λ1
is a common extension of r0λ0

and r1λ1
.

The following lemma is an immediate consequence of Lemma 3.19.

Lemma 4.3. For every β ≤ κ+, if Qβ has the strong κ-chain condition,
then Qβ has the κ-chain condition.

Following [5], given β ≤ κ+, a suitable model Q such that β ∈ Q, a
bijection φ : κ → Q, λ < κ, and a Qβ-condition q ∈ Q, let us say that
q is λ-compatible with respect to φ and β if, letting Q∗

β = Qβ ∩ Q, we
have that

• Q∗
β ∩M

φ
λ ⋖Q∗

β,
• q ↾Mφ

λ ∈ Q∗
β, and

• q ↾ Mφ
λ forces in Q∗

β ∩ Mφ
λ that q is in the quotient forcing

Q∗
β/ĠQ∗

β∩M
φ
λ
; equivalently, for every r ∈ Q∗

β ∩M
φ
λ , if r ≤Q∗

β∩M
φ
λ

q ↾Mφ
λ , then r is compatible with q.25

Adopting the approach from [10], rather than proving Lemma 4.1
we will prove the following more informative lemma.

Lemma 4.4. The following holds for every β < κ+.

(1)β Qβ has the strong κ-chain condition.

25In [10], this situation is denoted by ∗βλ(q0, q0 ↾ Mφ
λ ).



32 D. ASPERÓ AND M. GOLSHANI

(2)β Suppose D ∈ F , Q is a suitable model, β, D ∈ Q, φ : κ → Q
is a bijection, and (q0λ | λ ∈ D) ∈ Q and (q1λ | λ ∈ D) ∈ Q
are sequences of Qβ-conditions. Then there is some D′ ∈ F ,
D′ ⊆ D, such that for every λ ∈ D′ and for all q0

′

λ ≤Qβ
q0λ and

q1
′

λ ≤Qβ
q1λ, if q

0′

λ ↾ Mφ
λ ∈ Qβ and q0

′

λ ↾ Mφ
λ = q1

′

λ ↾ Mφ
λ , then

there are conditions r0λ ≤Qβ
q0

′

λ and r1λ ≤Qβ
q1

′

λ such that
(a) r0λ ↾Mφ

λ = r1λ ↾Mφ
λ and

(b) r0λ and r1λ are both λ-compatible with respect to φ and β.

Corollary 4.5. Qκ+ has the κ-c.c.

Proof. Suppose qi, for i < κ, are conditions in Qκ+ . By Lemma 3.19,
we may assume that each qi, for i < κ, is adequate. We may then
fix β < κ+ such that qi ∈ Qβ for all i < κ. But by Lemma 4.4 (1)β
together with Lemma 4.3 there are i ̸= i′ in κ such that qi and qi′ are
compatible in Qβ and hence in Qκ+ . □

The rest of the section is devoted to proving the above lemma.

Proof. (of Lemma 4.4) The proof is by induction on β. Let β < κ+

and suppose (1)α and (2)α hold for all α < β. We will show that (1)β
and (2)β hold as well.

There is nothing to prove for β = 0, and the case β = 1 is trivial,
using the inaccessibility of κ and the fact that Q1 is essentially the
Lévy collapse turning κ into ℵ2.

Let us proceed to the case when β > 1. We start with the proof of
(1)β.

Let X ∈ S be given, together with a suitable model Q such that
β,X ∈ Q, a bijection φ : κ→ Q, and sequences

σ⃗0 = (q0λ | λ ∈ X) ∈ Q

and
σ⃗1 = (q1λ | λ ∈ X) ∈ Q

of adequate Qβ-conditions such that

Mφ
λ ∩ κ = λ

and
q0λ ↾Mφ

λ = q1λ ↾Mφ
λ

for every λ ∈ X. We need to prove that there is some Y ∈ S, Y ⊆ X,
together with sequences

(r0λ | λ ∈ Y )

and
(r1λ | λ ∈ Y )
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of Qβ-conditions such that the following holds.

(1) r0λ ≤Qβ
q0λ and r1λ ≤Qβ

q1λ for every λ ∈ Y .
(2) For all λ0 < λ1 in Y , r0λ0

⊕r1λ1
is a common extension of r0λ0

and
r1λ1

.

We note that β + 1 ⊆ Q. In what follows, we will write Mλ instead of
Mφ

λ .
Let Q∗

α = Qα ∩Q for every α ∈ β + 1. By the induction hypothesis,
Qα has the κ-c.c. for every α ∈ β. Hence, since <κQ ⊆ Q, we have
that Q∗

α ⋖ Qα for every such α; in particular, we have that for every
α ∈ X ∩ β, Q∗

α forces over V that T∼α does not have κ-branches.
Given

• conditions q0, q1 in Qβ,
• nonzero stages α ∈ dom(fq0) and α

′ ∈ dom(fq1),
26

• nodes x = (ρ0, ζ0) and y = (ρ1, ζ1) such that x ∈ fq0(α) and
y ∈ fq1(α

′),27 and
• λ < κ,

we will say that x and y are separated below λ at stages µ(α) and µ(α′)
by q0 and q1 (via x̄, ȳ) if there are ρ̄ < λ and ζ ̸= ζ ′ in ω1 such that
x̄ = (ρ̄, ζ) and ȳ = (ρ̄, ζ ′), and such that

(1) q0 ↾ µ(α) extends a condition in A
µ(α)
x,ρ̄ forcing x̄ to be below x

in T∼µ(α) and

(2) q1 ↾ µ(α′) extends a condition in A
µ(α)
y,ρ̄ forcing ȳ to be below y

in T∼µ(α′).

Definition 4.6. Given Y ∈ S such that Y ⊆ X and such thatMλ ≺ Q,
Mλ ∩ κ = λ, and <λMλ ⊆ Mλ for all λ ∈ Y , and given two sequences
σ⃗∗
0 = (r0λ | λ ∈ Y ), σ⃗∗

1 = (r1λ | λ ∈ Y ) of adequate Q∗
β-conditions, we

say that σ⃗∗
0, σ⃗

∗
1 is a separating pair for σ⃗0 and σ⃗1 if the following holds.

(1) For every λ ∈ Y , r0λ ≤Qβ
q0λ, r

1
λ ≤Qβ

q1λ, and dom(fr0λ) =

dom(fr1λ).

(2) For every λ ∈ Y , every α ∈ dom(fr0λ) ∩ Mλ, every nonzero

α′ ∈ dom(fr1λ) such that α′ ≤ α, and for all

x ∈ fr0λ(α) \ (λ× ω1)

and

y ∈ fr1λ(α
′) \ (λ× ω1),

26Note that, by induction hypothesis, both Qµ(α) and Qµ(α′) have the κ-c.c. and
hence T∼µ(α) and T∼µ(α′) are both defined.
27α and α′ may or may not be equal and the same applies to x and y.
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x and y are separated below λ at stages µ(α) and µ(α′) by r0λ
and r1λ via some pair χ0(x, y, α, α

′, λ), χ1(x, y, α, α
′, λ) of nodes.

(3) The following holds for all λ0 < λ1 in Y .
(a) r0λ0

↾Mλ0 = r1λ1
↾Mλ1.

(b) r0λ0
∈Mλ1.

(c) Let Nλϵ and Ξλϵ, for ϵ ∈ {0, 1}, be defined as follows.
• Nλϵ is the union of the sets of the form N0 ∪ N1,
where ⟨(N0, γ0), (N1, γ1)⟩ ∈ τr0λϵ

∪ τr1λϵ and δN0 < λϵ.

• Ξλϵ is the collection of ordinals of the form ΨE⃗(ᾱ),

where ⟨E⃗ , (ρ, ᾱ)⟩ is a connected τr1λϵ
-thread such that

(ρ, ᾱ) ∈ N ∩ (κ × κ+) for some model N of height
less than λϵ coming from some edge in τr1λϵ

.

Then
(i) Nλ0 ∩Mλ0 = Nλ1 ∩Mλ1 and
(ii) Ξλ0 ∩Mλ0 = Ξλ1 ∩Mλ1.

(4) For all λ0 < λ1 in Y , all ordinals α ∈ dom(fr0λ0
) ∩ Mλ0 and

α′ ∈ dom(fr1λ1
) such that 0 < α′ ≤ α, and all nodes

x ∈ fr0λ0
(α) \ (λ0 × ω1)

and

y′ ∈ fr1λ1
(α′) \ (λ1 × ω1)

there are
• a node x′ ∈ fr0λ1

(α) \ (λ1 × ω1),

• a stage α∗ ∈ dom(fr1λ0
) such that α∗ ≤ α, and

• a node y ∈ fr1λ0
(α∗) \ (λ0 × ω1)

such that

χ0(x, y, α, α
∗, λ0) = χ0(x

′, y′, α, α′, λ1)

and

χ1(x, y, α, α
∗, λ0) = χ1(x

′, y′, α, α′, λ1)

Let us now prove the following.

Claim 4.7. Let Y ∈ S be such that Mλ ∩ κ = λ for all λ ∈ Y , and
suppose σ⃗∗

0 = (r0λ | λ ∈ Y ), σ⃗∗
1 = (r1λ | λ ∈ Y ) is a separating pair

for σ⃗0 and σ⃗1. Then for all λ0 < λ < λ1 in Y , r0λ0
⊕ r1λ1

is a common
extension of r0λ0

and r1λ1
in Qβ.

Proof. Suppose, towards a contradiction, that there are λ0 < λ < λ1
in Y such that r0λ0

⊕ r1λ1
is not a common extension of r0λ0

and r1λ1
. It
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then follows that r0λ0
⊕ r1λ1

is not a condition. Hence, by Lemma 3.15,
there is an ordinal α < β such that

q := (r0λ0
↾ α)⊕ (r1λ1

↾ α)

is a condition yet

q+ := (r0λ0
↾ α + 1)⊕ (r1λ1

↾ α + 1)

is not. Assuming that we are in this situation, we will derive a contra-
diction by proving that q+ is a condition after all.

To start with, note that α > 0. We will need the following subclaim.

Subclaim 4.8. Suppose

(1) β1 ≤ β0 are ordinals in Mλ,

(2) E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i ≤ n) is a sequence of generalized

edges coming from τr1λ1
such that ⟨E⃗ , (∅, β0)⟩ is a τr1λ1 -thread,

(3) β1 = ΨE⃗(β0), and
(4) δN i

0
≥ λ1 for all i ≤ n.

Then β1 = β0.

Proof. By correctness of (N0
0 ,∈,Φ0) within (H(κ+),∈,Φ0), we may pick

some model M ∈ N0
0 closed under e⃗ such that β0 ∈ M , δM = λ, and

|M | = λ (since Mλ is such a a model). Given that β1 ≤ β0 are both
in Mλ, δMλ

= λ, and β0 ∈ M , by the first part of Lemma 2.3 we then
have that β1 ∈M ⊆ N0

0 . But that means that

(ΨNn
0 ,Nn

1
◦ . . . ◦ΨN0

0 ,N
0
1
)(β0) = β1

is in fact β0 since β1 ∈ N0
0 ∩Nn

1 implies, by the second part of Lemma
2.3, that

β0 = (ΨNn
1 ,Nn

0
◦ . . . ◦ΨN0

1 ,N
0
0
)(β1) = β1.

□

We will also be using the following subclaim.

Subclaim 4.9. Suppose α∗ ∈ dom(fr0λ0
) ∪ dom(fr1λ1

), x = (ρ, ζ) ∈
fr0λ0

(α∗) ∪ fr1λ1
(α∗), ⟨E⃗∗, (ρ, α∗)⟩ is a connected τr0λ0

∪ τr1λ1
-thread, and

all members ⟨(N0, γ0), (N1, γ1)⟩ of E⃗∗ such that δN0 ≥ λ1 are edges from
τ 1λ1

. Then at least one of the following holds, where ᾱ = ΨE⃗∗(α
∗).

(1) ᾱ ∈ dom(fr0λ0
) and x ∈ fr0λ0

(ᾱ).

(2) ᾱ ∈ dom(fr1λ1
) and x ∈ fr1λ1

(ᾱ).

(3) There is some α∗∗ ∈ dom(fr0λ0
) such that x ∈ fr0λ0

(α∗∗) and

some connected τr1λ1
-thread ⟨E⃗ , (ρ, α∗∗)⟩ such that



36 D. ASPERÓ AND M. GOLSHANI

• ΨE⃗(α
∗∗) = ᾱ and

• all members of E⃗ are edges ⟨(N0, γ0), (N1, γ1)⟩ such that
δN0 ≥ λ1.

Proof. We prove this by induction on |E⃗∗|, which we may obviously
assume is nonzero. Let

E⃗∗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1) | i ≤ m)

and
e = ⟨(Nm

0 , γ
m
0 ), (Nm

1 , γ
m
1 )⟩.

By induction hypothesis, one of (1)–(3) holds for ⟨E⃗∗ ↾ m, (ρ, α∗)⟩.28
Let α† = ΨE⃗∗↾m(α

∗).

Suppose (1) holds for ⟨E⃗∗ ↾ m, (ρ, α∗)⟩. We have two cases. If e ∈
τr0λ0

, then (1) holds trivially for ⟨E⃗∗, (ρ, α∗)⟩ by adequacy of r0λ0
. The

other case is that e ∈ τr1λ1
. If δNm

0
≥ λ1, then obviously (3) holds

for ⟨E⃗∗, (ρ, α∗)⟩ as witnessed by α† and the thread ⟨(e), (ρ, α†)⟩. We
may thus assume that δNm

0
< λ1. We know that α† ∈ Nλ1 ∩Mλ1 by

clause (3)(b) in Definition 4.6 for the pair r0λ1
, r1λ1

. It follows that

α† ∈ Nλ0 ∩Mλ0 by (3)(c), and hence α† ∈ dom(fr1λ1
) and x ∈ fr1λ1

(α†)

by (3)(a). But then ᾱ ∈ dom(fr1λ1
) and x ∈ fr1λ1

(ᾱ) by adequacy of r1λ1

and so (2) holds for ⟨E⃗∗, (ρ, α∗)⟩.
Next suppose (2) holds for ⟨E⃗∗ ↾ m, (ρ, α∗)⟩. Suppose e ∈ τr0λ0

.

Since e ∈Mλ1 by clause (3)(b) in Definition 4.6, it follows from (3)(a)
that α† ∈ dom(fr0λ0

) and x ∈ fr0λ0
(α†). But then, by adequacy of r0λ0

,

ᾱ ∈ dom(r0λ0
) and x ∈ fr0λ0

(ᾱ). Hence (1) holds for ⟨E⃗∗, (ρ, α∗)⟩. If

e ∈ τr1λ1
, then (2) holds trivially for ⟨E⃗∗, (ρ, α∗)⟩, again by adequacy of

r1λ1
.

Finally, suppose (3) holds for ⟨E⃗∗ ↾ m, (ρ, α∗)⟩, as witnessed by α∗∗ ∈
dom(fr0λ0

) together with a connected τr1λ1
-thread ⟨E⃗ , (ρ, α∗∗)⟩. Suppose

e ∈ τr0λ0
. Then, since all models occurring in the edges in E⃗ are of

height at least λ1 and since, once again by clause (3)(b) in Definition
4.6, r0λ0

∈ Mλ, we have by Subclaim 4.8 that α† = α∗∗. But then
ᾱ ∈ dom(fr0λ0

) and x ∈ fr0λ0
(ᾱ) by adequacy of r0λ0

, and so (1) holds

for ⟨E⃗∗, (ρ, α∗)⟩. Finally, suppose e ∈ r1λ1
. If δNm

0
≥ λ1, then (3)

28Note that ⟨E⃗∗ ↾ m, (ρ, α∗)⟩ is also a connected thread, so we may indeed apply
the induction hypothesis to it. This is in contrast with the fact that it does not

follow that ⟨E⃗∗ ↾ m, (ρ, α∗)⟩ is a correct thread if we just assume that E⃗∗ is correct.
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holds trivially for ⟨E⃗∗, (ρ, α∗)⟩ as witnessed by ⟨E⃗⌢⟨e⟩, (ρ, α∗∗)⟩. In the
other case, by clauses (3)(c)(ii), (3)(b) and (3)(a) in Definition 4.6 for
the pair r0λ1

, r1λ1
, we have that α∗∗ ∈ Ξλ1 ∩ Mλ1 = Ξλ0 ∩ Mλ0 , and

therefore α∗∗ ∈ dom(fr1λ1
) and x ∈ fr1λ1

(α∗∗) again by (3)(a). But then

ᾱ ∈ dom(fr1λ1
) and x ∈ fr1λ1

(ᾱ) by adequacy of r1λ1
. Thus we have that

(2) holds for ⟨E⃗∗, (ρ, α∗)⟩, which finishes the proof of the subclaim. □

Remember that

q+ = (r0λ0
↾ α + 1)⊕ (r1λ1

↾ α + 1)

and that we are aiming to prove that q+ ∈ Qα+1. We also know that

q = (r0λ0
↾ α)⊕ (r1λ1

↾ α)

is a condition in Qα. One way q+ could fail to be a condition is that
there are ϵ, ϵ′ ∈ {0, 1}, together with α0 ∈ dom(frϵλϵ ), x0 = (ρ0, ζ0) ∈
frϵλϵ (α0), α1 ∈ dom(frϵ′λϵ′

), x1 = (ρ1, ζ1) ∈ frϵ′λϵ′
(α1), α1, α0 ≤ α, and

a nonzero ordinal ᾱ such that there are connected τr0λ0⊕r1λ1
-threads

⟨E⃗∗
0 , (ρ0, α0)⟩ and ⟨E⃗∗

1 , (ρ1, α1)⟩, respectively, such that

• ᾱ = ΨE⃗∗
0
(α0) = ΨE⃗∗

1
(α1),

• both E⃗∗
0 and E⃗∗

1 consist of edges in τr0λ0⊕r1λ1
, and such that

• q ↾ µ(ᾱ) does not force x0 and x1 to be incomparable in T∼µ(ᾱ).

By Lemma 3.14, we may replace ⟨E⃗∗
0 , (ρ0, α0)⟩ and ⟨E⃗∗

1 , (ρ1, α1)⟩ by

connected τr0λ0∪r
1
λ1
-threads ⟨E⃗ ′

0, (ρ0, α0)⟩ and ⟨E⃗ ′
1, (ρ1, α1)⟩ all of whose

members involving models of height at least λ1 are edges in τr1λ1
.29

By Subclaim 4.9, applied to α0, x0 and the connected τr0λ0∪r
1
λ1
-thread

⟨E⃗ ′
0, (ρ0, α0)⟩, at least one of the following holds.

(1)0 ᾱ ∈ dom(fr0λ0
) and x0 ∈ fr0λ0

(ᾱ).

(2)0 ᾱ ∈ dom(fr1λ1
) and x0 ∈ fr1λ1

(ᾱ).

(3)0 There is some α∗∗
0 ∈ dom(fr0λ0

) such that x0 ∈ fr0λ0
(α∗∗

0 ) and

some connected τr1λ1
-thread ⟨E⃗ ′′

0 , (ρ0, α
∗∗
0 )⟩ such that

• ΨE⃗ ′′
0
(α∗∗

0 ) = ᾱ and

• all members of E⃗ ′′
0 are edges ⟨(N0, γ0), (N1, γ1)⟩ such that

δN0 ≥ λ1.

Similarly, and by applying Subclaim 4.9 to α1, x1 and the connected
τr0λ0∪r

1
λ1
-thread ⟨E⃗ ′

1, (ρ1, α1)⟩, at least one of the following holds.

29E⃗ ′
0 and E⃗ ′

1 may of course involve anti-edges.
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(1)1 ᾱ ∈ dom(fr0λ0
) and x1 ∈ fr0λ0

(ᾱ).

(2)1 ᾱ ∈ dom(fr1λ1
) and x1 ∈ fr1λ1

(ᾱ).

(3)1 There is some α∗∗
1 ∈ dom(fr0λ0

) such that x1 ∈ fr0λ0
(α∗∗

1 ) and

some connected τr1λ1
-thread ⟨E⃗ ′′

1 , (ρ1, α
∗∗
1 )⟩ such that

• ΨE⃗ ′′
1
(α∗∗

1 ) = ᾱ and

• all members of E⃗ ′′
1 are edges ⟨(N0, γ0), (N1, γ1)⟩ such that

δN0 ≥ λ1.

After changing some of the above objects if necessary, we essentially
reduce to one of the following situations.

(1) ᾱ ∈ dom(fr0λ0
) and x0, x1 ∈ fr0λ0

(ᾱ).

(2) ᾱ ∈ dom(fr1λ1
) and x0, x1 ∈ fr1λ1

(ᾱ).

(3) ᾱ ∈ dom(fr0λ0
) ∩ dom(fr1λ1

), x0 ∈ fr0λ0
(ᾱ), and x1 ∈ fr1λ1

(ᾱ).

(4) α0 ∈ dom(fr0λ0
), x0 ∈ fr0λ0

(α0), and there is a connected τr1λ1
-

thread ⟨E⃗0, (ρ0, α0)⟩ such that
• ΨE⃗0(α0) = ᾱ and

• all members of E⃗0 are edges involving models of height at
least λ1,

and such that one of the following holds.
(a) ᾱ ∈ dom(fr0λ0

) and x1 ∈ fr0λ0
(ᾱ).

(b) ᾱ ∈ dom(fr1λ1
) and x1 ∈ fr1λ1

(ᾱ).

(c) α1 ∈ dom(fr0λ0
), x1 ∈ fr0λ0

(α1), and there is a connected

τr1λ1
-thread ⟨E⃗1, (ρ1, α1)⟩ such that

• ΨE⃗1(α1) = ᾱ and

• all members of E⃗1 are edges involving models of height
at least λ1.

We may clearly rule out (1) and (2) since q ↾ µ(ᾱ) extends both of
r0λ0

↾ µ(ᾱ) and r1λ1
↾ µ(ᾱ). Let us assume that (4) holds.30 We will first

consider the subcase when (a) holds. By Subclaim 4.8 applied to the

fact that the height of all models occurring in E⃗0 is at least λ1 and the
fact that both ᾱ and α0 are in Mλ, we get that ᾱ = α0. But then we
get a contradiction as in case (1).

Let us now consider the subcase when (b) holds. By adequacy of r1λ1

it follows that α0 ∈ dom(fr1λ1
). If ρ1 < λ1, then by adequacy of r1λ1

we

get that x1 ∈ f 1
λ1
(α0) and then x1 ∈ fr0λ0

(α0) by clauses (3)(a)-(b) in

30We are considering this case before the case that (3) holds since the proof in the
latter case will be a simpler variant of an argument we are about to see.
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Definition 4.6 for r0λ0
and r1λ1

. But then r0λ0
↾ µ(α0) extends conditions

r0 ∈ A
µ(α0)
x0,ρ̄ and r1 ∈ A

µ(α0)
x1,ρ̄ , for some ρ̄ ≤ min{ρ0, ρ1}, forcing x0

and x1 to be incomparable in T∼µ(α0) and, by Lemma 3.12, ΨE⃗0(r0)
and ΨE⃗0(r1) are conditions weaker than q ↾ µ(ᾱ) and forcing x0 and
x1 to be incomparable in T∼µ(ᾱ). We may thus assume that ρ1 ≥ λ1.
Suppose ρ0 < λ0. Then x0 ∈ fr1λ1

(α0) by clause (3)(a) in Definition

4.6, and hence x0 ∈ fr1λ1
(ᾱ) by adequacy of r1λ1

. We again reach a

contradiction as in case (2). Hence we may assume λ0 ≤ ρ0. The rest
of the argument, in this case, is now essentially as in the corresponding
proof in [10]. Since ᾱ ≤ α0 due to the fact that all members of E⃗0 are
edges, by an appropriate instance of clause (4) in Definition 4.6 we may
pick

• a node x′0 = (ρ′, ζ ′0) ∈ fr0λ1
(α0) \ (λ1 × ω1),

• a stage α∗ ∈ dom(fr1λ0
) such that α∗ ≤ α0, and

• a node x∗1 = (ρ∗1, ζ
∗
1 ) ∈ fr1λ0

(α∗) \ (λ0 × ω1)

such that

χ0(x0, x
∗
1, α0, α

∗, λ0) = χ0(x
′
0, x1, α0, ᾱ, λ1)

and

χ1(x0, x
∗
1, α0, α

∗, λ0) = χ1(x
′
0, x1, α0, ᾱ, λ1)

(where χ0 and χ1 are the projections in Definition 4.6). Let ρ̄ be such
that

χ0(x0, x
∗
1, α0, α

∗, λ0) = (ρ̄, ζ̄0)

and

χ1(x
′
0, x1, α0, ᾱ, λ1) = (ρ̄, ζ̄1)

for some ζ̄0 ̸= ζ̄1 in ω1. We have that q ↾ µ(α0) extends a condition r0 ∈
A

µ(α0)
x0,ρ̄ forcing χ0(x0, x

∗
1, α0, α

∗, λ0) to be below x0 in T∼µ(α0) (because
this is true about r0λ0

↾ µ(α0)). Also, r1λ1
↾ µ(ᾱ) extends a condition

r1 ∈ A
µ(ᾱ)
x1,ρ̄ forcing that χ1(x

′
0, x1, α0, ᾱ, λ1) is below x1 in T∼µ(ᾱ), and

therefore so does q ↾ µ(ᾱ). We also have that q ↾ µ(ᾱ) extends ΨE⃗0(r0),
and by Lemma 3.12 ΨE⃗0(r0) forces χ0(x0, x

∗
1, α0, α

∗, λ0) to be below x0
in T∼µ(ᾱ). But now we get a contradiction since ζ̄0 ̸= ζ̄1 and hence
q ↾ µ(ᾱ) forces x0 and x1 to be incomparable in T∼µ(ᾱ).
It remains to consider the subcase that (c) holds. Since all models

occurring in members of E⃗0 or of E⃗1 are of height at least λ1 and both
α0 and α1 are inMλ, by Subclaim 4.8 we get that α0 = α1. But now we
get a contradiction by the same argument we have already encountered
using Lemma 3.12.
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We finally handle the case when (3) holds. In this case we may
assume that both ρ0 ≥ λ0 and ρ1 ≥ λ1 hold, as otherwise we get, by
an application of clause (3)(a) in Definition 4.6, that at least one of
x0, x1 is in fr0λ0

(ᾱ)∩fr1λ1 (ᾱ), which immediately yields a contradiction.

But now, since ρ0 ≥ λ0 and ρ1 ≥ λ1, we obtain a contradiction by a
separation argument using clause (4) in Definition 4.6—with both α
and α′, in that definition, being ᾱ—like the one we have already seen.

We will now prove that clause (7) in the definition of Qα+1-condition
holds for q+. This will conclude the proof that q+ is a condition (the
verification of all remaining clauses in the definition of Qα+1-condition
is immediate), and will therefore complete the proof of the claim.

Suppose ᾱ < α + 1 and e = ⟨(N0, ᾱ + 1), (N1, γ1)⟩ is a generalized
edge coming from τq+ ↾ ᾱ+ 1. We must show that the following holds.

Let r ∈ QδN0
ᾱ+1 be such that e ↾ ᾱ comes from τr, and suppose

E⃗ = (⟨(N i
0, γ

i
0), (N

i
1, γ

i
1)⟩ | i < n)

is a sequence of generalized edges coming from τr ∪ {e} such that

⟨(N0
0 , γ

0
0), (N

0
1 , γ

0
1)⟩ = e and ⟨E⃗ , (∅, ᾱ)⟩ is a correct thread. Let δ =

min{δN i
0
| i < n} and α′ = ΨE⃗(ᾱ). Suppose r ↾ µ(ᾱ) forces every two

distinct nodes in fr(α
′) ∩ (δ × ω1) to be incomparable in T∼µ(ᾱ). Then

there is an extension r∗ ∈ QδN0
ᾱ+1 of r such that

(1) fr∗(ᾱ) ∩ (δ × ω1) ⊆ fr∗(α
′) ∩ (δ × ω1), and

(2) r∗ ↾ µ(ᾱ) forces every two distinct nodes in

(fr(α
′) ∩ (δ × ω1)) ∪ fr(ᾱ)

to be incomparable in T∼µ(ᾱ).

We may assume that e does not come from either τr0λ0
or τr1λ1

, as

otherwise we would be done since both r0λ0
and r1λ1

are conditions. The
crucial point is now that, thanks to Lemma 3.4, the above is a fact
about e that can be expressed over (H(κ+),∈,Φᾱ+1) with e as parame-
ter. Letting now α† = max{ᾱ+1, γ1}, e = ΨE⃗(e

∗) for some generalized
edge e∗ coming from (τr0λ0

↾ α∗ + 1) ∪ (τr1λ1
↾ α∗ + 1), for some α∗, and

some appropriate connected τr0λ0
∪ τr1λ1

-thread ⟨E⃗ , (e∗, α∗)⟩ such that

ΨE⃗(α
∗) = α†. The corresponding fact holds in (H(κ+),∈,Φα∗) about

e∗ since both r0λ0
↾ α∗ + 1 and r1λ1

↾ α∗ + 1 are Qα∗+1-conditions. But
then the desired fact holds about e in (H(κ+),∈,Φᾱ+1) by correctness

of E⃗ , using the fact that ΨE⃗−1(ᾱ + 1) ≤ α∗. This concludes the proof
of Claim 4.7. □

The following technical fact appears essentially in [10].
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Claim 4.10. Suppose Z ∈ S, (p0λ | λ ∈ Z) ∈ Q and (p1λ | λ ∈ Z) ∈ Q
are sequences of conditions in Q∗

β, and suppose that for every λ ∈ Z,

• p0λ ↾Mλ and p1λ ↾Mλ are compatible conditions in Q∗
β ∩Mλ,

• p0λ and p1λ are λ-compatible with respect to φ and α for all α < β,
• αλ ∈ dom(fp0λ) ∩Mλ,

• α′
λ ∈ dom(fp1λ) is a nonzero ordinal such that α′

λ ≤ αλ, and

• xλ = (ρ0λ, ζ
0
λ) and yλ = (ρ1λ, ζ

1
λ) are nodes of level at least λ such

that xλ ∈ fp0λ(αλ) and yλ ∈ fp1λ(α
′
λ).

Then there is D ∈ F , together with two sequences (p2λ | λ ∈ Z ∩ D),
(p3λ | λ ∈ Z ∩D) of conditions in Q∗

β such that

(1) for each λ ∈ Z ∩D, p2λ ≤ p0λ and p3λ ≤ p1λ,
(2) for each λ ∈ Z ∩ D, p2λ ↾ Mλ and p3λ ↾ Mλ are compatible in

Q∗
β ∩Mλ, and

(3) for each λ ∈ Z ∩D, xλ and yλ are separated below λ at stages
µ(αλ) and µ(α

′
λ) by p

2
λ ↾ µ(αλ) and p

3
λ ↾ µ(α′

λ).

Proof. Let B ⊆ Vκ code φ, (Q∗
α)α∈(β+1)∩Q, the collection of maximal

antichains of Q∗
α, for α ∈ β ∩ Q, and (T∼α)α∈X∩β∩Q. By a reflection

argument with an appropriate Π1
1 sentence over the structure (Vκ,∈, B),

together with the fact that Q∗
α has the κ-c.c. for every α ∈ β∩Q, there

is a set D ∈ F consisting of inaccessible cardinals λ < κ for which Mλ

is a model such that Mλ ∩ κ = λ, Mλ is closed under <λ-sequences,
and such that for every α ∈Mλ ∩ β,

(1) Q∗
µ(α) ∩Mλ forces, over V , that T∼µ(α) ∩Mλ has no λ-branches,

(2) Q∗
α ∩Mλ has the λ-c.c., and

(3) Q∗
α ∩Mλ ⋖Q∗

α

Fix λ ∈ Z ∩D. Thanks to Lemma 3.7, it suffices to show that there
are extensions p2λ and p3λ of p0λ ↾ αλ and p1λ ↾ α′

λ, respectively, such that
p2λ ↾ Mλ and p3λ ↾ Mλ are compatible in Q∗

αλ
∩Mλ, and such that xλ

and yλ are separated below λ at stages µ(αλ) and µ(α
′
λ) by p

2
λ ↾ µ(αλ)

and p3λ ↾ µ(α′
λ). By (3) we may view Q∗

αλ
as a two-step forcing iteration

(Q∗
αλ

∩Mλ) ∗ S∼. By λ-compatibility we may then identify p0λ ↾ αλ and
p1λ ↾ αλ with, respectively, ⟨r0, s∼

0⟩ and ⟨r1, s∼
1⟩, both in (Q∗

αλ
∩Mλ)∗ S∼.

Note that r0 and r1 are compatible in Q∗
αλ

∩ Mλ. Working in an
(Q∗

αλ
∩Mλ)-generic extension V [G] of V containing r0 and r1, we note

that there have to be

• extensions ⟨r00, s∼
00⟩ and ⟨r01, s∼

01⟩ of ⟨r0, s∼
0⟩ and

• an extension ⟨r3, s∼
3⟩ of ⟨r1, s∼

1⟩
such that r00, r01 and r3 are all in G, together with some ρ̄ < λ for
which there is a pair ζ00 ̸= ζ01 of ordinals in ω1 and there is ζ3 ∈ ω1
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such that, identifying T∼µ(αλ) and T∼µ(α′
λ)

with (Q∗
αλ

∩Mλ) ∗ S∼-names,31

we have the following.

• ⟨r00, s∼
00⟩ extends a condition in A

µ(αλ)
xλ,ρ̄ forcing that (ρ̄, ζ00) is

below xλ in T∼µ(αλ).

• ⟨r01, s∼
01⟩ extends a condition in A

µ(αλ)
xλ,ρ̄ forcing that (ρ̄, ζ01) is

below xλ in T∼µ(αλ).

• ⟨r3, s∼
3⟩ extends a condition in A

µ(α′
λ)

yλ,ρ̄ forcing that (ρ̄, ζ3) is be-
low yλ in T∼µ(α′

λ)
.

Indeed, any condition ⟨r, s∼⟩ in (Q∗
αλ

∩Mλ) ∗ S∼ such that r ∈ G can
be extended, for any ρ̄ < λ, to a condition ⟨r+, s∼

+⟩ such that

• ⟨r+, s∼
+⟩ is stronger than some condition in A

µ(αλ)
xλ,ρ̄ deciding

some node (ρ̄, ζ) to be below xλ in T∼µ(αλ), and
• r+ ∈ G,

and similarly with yλ and T∼µ(α′
λ)

in place of xλ and T∼µ(αλ). Hence, if
the above were to fail, then the following would hold.

• For every ρ̄ < λ there is exactly one ζ < ω1 for which there is
some condition ⟨r, s∼⟩ in (Q∗

αλ
∩Mλ) ∗ S∼ stronger than ⟨r0, s∼

0⟩
with r ∈ G, and such that ⟨r, s∼⟩ extends a condition in A

µ(αλ)
xλ,ρ̄

forcing that (ρ̄, ζ) is below xλ in T∼µ(αλ).

It would then follow that T∼µ(αλ) has a λ-branch in V [G], which con-
tradicts (1).

Let ζ3 < ω1 be such that some condition ⟨r3, s∼
3⟩ extending ⟨r1, s∼

1⟩
is such that

• ⟨r3, s∼
3⟩ ↾ µ(α′

λ) extends a condition in A
µ(α′

λ)
yλ,ρ̄ forcing (ρ̄, ζ3) to

be below yλ in T∼µ(α′
λ)
, and

• r3 ∈ G

But now, given conditions ⟨r0i, s∼
0i⟩ as above (for i ∈ {0, 1}) there

must be i ∈ {0, 1} such that ζ0i ̸= ζ3. We may then set p2λ = ⟨r0i, s∼
0i⟩

and p3λ = ⟨r3, s∼
3⟩. □

By Claim 4.7, in order to conclude the proof of the current instance
of (1)β, it suffices to prove the following.

Claim 4.11. There is a separating pair for σ⃗0 and σ⃗1.

Proof. This follows from first applying Claim 4.10 and (2)α, for α < β,
countably many times, using the normality of F , and then running a
pressing-down argument again using the normality of F .

31T∼µ(α′
λ)

is of course a Q∗
αλ

-name since Q∗
α′

λ
⊆ Q∗

αλ
, so this identification makes

sense.
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To be more specific, we start by building sequences

σ⃗0,n = (q0λ,n | λ ∈ X ∩Dn)

and
σ⃗1,n = (q1λ,n | λ ∈ X ∩Dn),

for a ⊆-decreasing sequence (Dn)n<ω of sets in F , such that σ⃗0,0 = σ⃗0
and σ⃗1,0 = σ⃗1, and such that for every n < ω, σ⃗0,n+1 and σ⃗1,n+1 are
obtained from σ⃗0,n and σ⃗1,n in the following way.

We first let
σ⃗0,n,+ = (q0λ,n,+ | λ ∈ X ∩Dn)

and
σ⃗1,n,+ = (q1λ,n,+ | λ ∈ X ∩Dn)

be sequences of Q∗
β-conditions such that for every λ ∈ X ∩Dn,

• q0λ,n,+ ≤Qβ
q0λ,n and q0λ,n,+ ≤Qβ

q1λ,n,

• q0n,+ ↾Mλ and q1n,+ ↾Mλ are compatible conditions in Q∗
β ∩Mλ,

and
• q0λ,n,+ and q1λ,n,+ are both λ-compatible with respect to φ and α
for every α < β.

Recall that eβ : κ −→ β is a surjection. Let also D−1 = κ. We may
take Dn to be the diagonal intersection ∆ξ<κD

n
ξ , where for each α < κ,

Dn
ξ witnesses (2)eβ(ξ) for σ⃗0,n, σ⃗1,n, φ, and Dn−1, i.e., D

n
ξ ∈ F is such

that Dn
ξ ⊆ Dn−1 and such that for every λ ∈ Dn

ξ and for all q0
′

λ ≤Qeβ(ξ)

q0λ,n and q1
′

λ ≤Qeβ(ξ)
q1λ,n, if q

0′

λ ↾ Mλ ∈ Qeβ(ξ) and q
0′

λ ↾ Mφ
λ = q1

′

λ ↾ Mλ,

then there are conditions r0λ ≤Qeβ(ξ)
q0

′

λ and r1λ ≤Qeβ(ξ)
q1

′

λ such that

(1) r0λ ↾Mλ = r1λ ↾Mλ and
(2) r0λ and r1λ are both λ-compatible with respect to φ and eβ(ξ).

Given λ ∈ X ∩Dn, we need to construct q0λ,n,+ and q1λ,n,+. For this,
let W ϵ

λ,n be, for each ϵ ∈ {0, 1}, the set of ordinals α ∈ Mλ ∩ β such
that

• α ∈ dom(fqϵλ,n) or

• there is a connected τqϵλ,n-thread ⟨E⃗ , α⟩ with ΨE⃗(α) ∈ dom(fqϵλ,n)

and such that E⃗ consists of edges.

We of course have that |W ϵ
λ,n| ≤ ℵ0. We may assume that both W 0

λ,n

andW 0
λ,n are nonempty (the proof in the case when at least one ofW 0

λ,n

and W 0
λ,n is empty is an easier variation of the proof in the other case).

Let ϵ ∈ {0, 1} be such that sup(W ϵ
λ,n) = max{sup(W 0

λ,n), sup(W
1
λ,n)}.

We will assume that sup(W ϵ
λ,n) has countable cofinality (the proof when

W ϵ
λ,n is empty or has a maximum is an easier variant of the proof in the
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case that cf(sup(W ϵ
λ,n)) = ω). Let (βm)m<ω be a strictly increasing se-

quence of ordinals in Mλ converging to sup(W ϵ
λ,n). We construct q0λ,n,+

and q0λ,n,+ as the greatest lower bound of (q0λ,n,m)m<ω and (q1λ,n,m)m<ω,

respectively, where q0λ,n,0 = q0λ,n and q1λ,n,0 = q1λ,n and where, for each

m < ω, q0λ,n,m+1 = r0λ,n,m ⊕ q0λ,n,m and q1λ,n,m+1 = r1λ,n,m ⊕ q1λ,n,m, where

r0λ,n,m, r
1
λ,n,m ∈ Qβm are conditions extending q0λ,n,m and q1λ,n,m, respec-

tively, and such that

(1) r0λ,n,m ↾Mλ = r1λ,n,m ↾Mλ and

(2) r0λ,n,m and r1λ,n,m are both λ-compatible with respect to φ and
βm.

We may assume each r0λ,n,m and r1λ,n,m to be in Q, so that q0λ,n,+ and

q1λ,n,+ are both in Q∗
β.

Now we find Dn+1 and σ⃗0,n+1, σ⃗1,n+1 by an application of Claim 4.10
to σ⃗0,n,+ and σ⃗1,n,+ with an appropriate sequence αλ,n, α

′
λ,n, xλ,n, yλ,n

(for λ ∈ X ∩ Dn). By extending q0λ,n+1 and q1λ,n+1 if necessary for

λ ∈ X ∩Dn+1 we may assume that for every such λ, q0λ,n+1 and q1λ,n+1

are both adequate conditions, and dom(fq0λ,n+1
) = dom(fq1λ,n+1

) .

Let r0λ and r1λ be the greatest lower bound of, respectively, (q0λ,n)n<ω

and (q1λ,n)n<ω, for λ ∈ X ∩
⋂

nDn.

By construction we have that for all λ ∈ X ∩
⋂

nDn, r
0
λ and r1λ

are both adequate conditions, and dom(fr0λ) = dom(fr1λ) . Also, by a
standard book-keeping argument we can ensure that all relevant objects
αλ,n, α

′
λ,n, xλ,n, yλ,n (for n < ω and λ ∈ X ∩Dn) have been chosen in

such a way that in the end

(r0λ | λ ∈ X ∩
⋂
n

Dn)

and
(r1λ | λ ∈ X ∩

⋂
n

Dn)

satisfy clause (2) in Definition 4.6 as well. Finally, by a standard
pressing-down argument using the normality of F , we may find Y ∈ S,
Y ⊆ X ∩

⋂
nDn, such that σ⃗∗

0 = (r0λ | λ ∈ Y ) and σ⃗∗
1 = (r1λ | λ ∈ Y )

satisfy clauses (3) and (4) in Definition 4.6. □

We are left with proving (2)β. This is established with an argument
similar to the one in the corresponding proof from [10]. SupposeD ∈ F ,
Q is a suitable model such that β,D ∈ Q, φ : κ→ Q is a bijection, and
(q0λ | λ ∈ D) ∈ Q and (q1λ | λ ∈ D) ∈ Q are sequences of Qβ-conditions.
By shrinking D if necessary we may assume that Mλ ∩ κ = λ for each
λ ∈ D. It suffices to show that there is some D′ ∈ F , D′ ⊆ D, with
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the property that for every λ ∈ D′, if q0
′

λ ≤β q
0
λ and q1

′

λ ≤β q
1
λ are such

that q0
′

λ ↾ Mλ ∈ Qβ and q0
′

λ ↾ Mλ = q1
′

λ ↾ Mλ, then there is a condition
rλ ≤Qβ

q0
′

λ ↾ Mλ such that every condition in Qβ ∩Mλ extending rλ is

compatible with both q0
′

λ and q1
′

λ .
The case when β is a limit ordinal follows from the induction hypo-

thesis, using the normality of F (cf. the proof in [10]). Specifically,
we fix an increasing sequence (βi)i<cf(β) of ordinals in Q converging to
β. If cf(β) = κ, we take each βi to be sup(Mλ ∩ β) for some λ ∈ D.
For each i < cf(β) we fix some Di ∈ F , Di ⊆ D, witnessing (2)βi

for
(q0λ ↾ βi | λ ∈ D) and (q1λ ↾ βi | λ ∈ D). We make sure that (Di)i<cf(β)

is ⊆-decreasing. If cf(β) < κ, then D′ =
⋂

i<cf(β)Di will witness (2)β
for (q0λ | λ ∈ D) and (q1λ | λ ∈ D), and if cf(β) = κ, D′ = ∆i<κDi will
witness (2)β for these objects. This can be easily shown, using the fact
that each Mλ is closed under ω-sequences in the case when cf(β) = ω.
To see this, suppose λ ∈ D′, q0

′

λ ≤Qβ
q0λ, q

1′

λ ≤Qβ
q1λ, q

0′

λ ↾ Mλ ∈ Qβ,

and q0
′

λ ↾ Mλ = q1
′

λ ↾ Mλ. Suppose first that cf(β) > ω. In this case,
we pick any i ∈ cf(β) ∩Mλ such that βi is

• above (dom(fq0′λ
) ∪ dom(fq1′λ

)) ∩ sup(Mλ ∩ β) and
• above every ordinal α ∈Mλ ∩ β such that ΨE⃗(α) ∈ dom(fq0′λ

)∪
dom(fq1′λ

), for some connected τq0′λ
∪ τq1′λ -thread ⟨E⃗ , α⟩ such that

E⃗ consists of edges,32

and find a condition r ∈Mλ ∩Qβi
with the property that every condi-

tion in Qβi
∩Mλ is compatible with both q0

′

λ ↾ βi and q1
′

λ ↾ βi. Let rλ
be any condition in Qβ ∩Mλ extending r and q0

′

λ ↾Mλ. It then follows
that every condition in Qβ ∩Mλ extending rλ is compatible with both
q0

′

λ and q1
′

λ .
Now suppose β has countable cofinality. Since β ∈Mλ, we may build

sequences (q0,iλ | i < ω), (q1,iλ | i < ω) and (riλ | i < ω) such that for
each i,

(1) q0,iλ and q1,iλ are conditions in Qβi
extending q0

′

λ ↾ βi and q1
′

λ ↾ βi,
respectively,

(2) riλ ∈ Qβi
∩Mλ,

(3) every condition in Qβi
∩ Mλ extending riλ is compatible with

both q0,iλ and q1,iλ ,

(4) q0,i+1
λ ↾ βi extends q

0,i
λ and riλ,

(5) q1,i+1
λ ↾ βi extends q

1,i
λ and riλ, and

(6) ri+1
λ ↾ βi extends riλ.

32Cf. the proof of Claim 4.11.
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Let rλ ∈ Qβ be the greatest lower bound of {riλ | i < ω}, and note that
rλ ∈Mλ since Mλ is closed under sequences of length ω. But now it is
straightforward to verify that every condition in Qβ ∩Mλ extending rλ
is compatible with q0

′

λ and q1
′

λ .
It remains to consider the case that β is a successor ordinal, β =

β0 + 1. Assuming the desired conclusion fails, there is some X ∈ S,
X ⊆ D, together with sequences (q0

′

λ | λ ∈ X) and (q0
′

λ | λ ∈ X) of
conditions in Qβ such that for every λ ∈ X,

• q0′λ extends q0λ and q1
′

λ extends q1λ,
• q0′λ ↾Mλ ∈ Qβ,
• q0′λ ↾Mλ = q1

′

λ ↾Mλ, and
• for every condition r in Qβ ∩Mλ extending q0

′

λ ↾ Mλ there is
a condition in Qβ ∩Mλ extending r and incompatible with at
least one of q0

′

λ , q
1′

λ .

Thanks to the induction hypothesis applied to β0 and to the fact
that (1)β holds we may assume, after shrinking X to some Y ∈ S
and extending the corresponding conditions if necessary, that for each
λ ∈ Y ,

• q0′λ ↾ β0 and q1
′

λ ↾ β0 are both λ-compatible with respect to φ
and β0, and

• q0′λ ⊕ q1
′

λ∗ is a condition for each λ∗ ∈ Y , λ∗ > λ.

By our assumption above we may then assume, after shrinking Y
if necessary, that for each λ ∈ Y there is a maximal antichain Aλ of
Qβ ∩Mλ below q0λ ↾ Mλ consisting of conditions r such that at least
one of the following statements holds.

θr,0,λ: r is incompatible with q0
′

λ .
θr,1,λ: r is incompatible with q1

′

λ .

By the definition of F coupled with an appropriate Π1
1-reflection

argument, we may further assume that each Aλ is in fact a maximal
antichain of Qβ below q0

′

λ ↾ Mλ and that it has cardinality less than λ
(cf. the proof of Claim 4.10). Hence, after shrinking Y one more time
using the normality of F , we may assume, for all λ < λ∗ in Y , that

• Aλ = Aλ∗ and that
• for every r ∈ Aλ, θr,0,λ holds if and only if θr,0,λ∗ does, and θr,1,λ
holds if and only if θr,1,λ∗ does.

Let us now fix any λ < λ∗ in Y . Since Aλ is a maximal antichain of
Qβ below q0

′

λ ↾Mλ, we may find some r ∈ Aλ compatible with q0
′

λ ⊕q1′λ∗ .
We have that θr,0,λ cannot hold since q0

′

λ ⊕ q1
′

λ∗ extends q0
′

λ . Therefore
θr,1,λ holds, and hence also θr,1,λ∗ does. But that is also a contradiction
since q0

′

λ ⊕ q1
′

λ∗ extends q1
′

λ∗ .
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This contradiction concludes the proof of (2)β, and hence the proof
of the lemma. □

It may be worthwhile observing that, as opposed to what is usually
the case in forcing constructions incorporating models as side condi-
tions, our use of side conditions does not interfere with the κ-chain
condition. The underlying reason is of course the fact that our pure
side condition forcing is trivial (Lemma 2.9).

5. Completing the proof of Theorem 1.2

In this final section we conclude the proof of Theorem 1.2. By Lemma
3.10, Qκ+ does not add new ω-sequences of ordinals and hence it pre-
serves CH. We will start this section by proving that Qκ+ also preserves
2ℵ1 = ℵ2. Of course, the reason we have incorporated edges in our con-
struction is precisely to make this proof work.

Lemma 5.1. ⊩Qκ+
2ℵ1 = κ

Proof. Suppose, towards a contradiction, that there is a condition q ∈
Qκ+ and a sequence ( r∼i)i<κ+ of Qκ+-names for subsets of ω1 such that

q ⊩Qκ+
r∼i ̸= r∼i′ for all i < i′ < κ+

By Lemma 4.1 we may assume, for each i, that r∼i ∈ H(κ+) and r∼i is
a Qβi

-name for some βi < κ+.
Let θ be a large enough regular cardinal. For each i < κ+ let N∗

i ⪯
H(θ) be such that

(1) |N∗
i | = |N∗

i ∩ κ|,
(2) N∗

i is closed under sequences of length less than |N∗
i |,

(3) q, r∼i, βi, (Φα)α<κ+ , (Qα)α<κ+ ∈ N∗
i , and

(4) Qα ∩N∗
i ⋖Qα for every α ∈ κ+ ∩N∗

i .

N∗
i can be found by a Π1

1-reflection argument, using the weak compact-
ness of κ and the κ-chain condition of each Qα, as in the proof of Claim
4.10. Let Ni = N∗

i ∩H(κ+) for each i.
Let now P be the satisfaction predicate for the structure

⟨H(κ+),∈, Φ⃗⟩,

where Φ⃗ ⊆ H(κ+) codes (Φα)α<κ+ in some canonical way, and letM be
an elementary submodel of H(θ) containing q, r∼i, (βi)i<κ+ , (Qα)α≤κ+ ,
(N∗

i )i<κ+ and P , and such that |M | = κ and <κM ⊆M .
Let i0 ∈ κ+ \M . By a standard reflection argument we may find

i1 ∈ κ+ ∩M for which there exists an isomorphism

Ψ : (Ni0 ,∈, P, r∼i0 , βi0 , q)
∼= (Ni1 ,∈, P, r∼i1 , βi1 , q),
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such that Ψ(ξ) ≤ ξ for every ordinal ξ ∈ Ni0 . Indeed, the existence of
such an i1 follows from the correctness of M in H(θ) about an appro-
priate statement with parameters (Ni)i<κ+ , q, P , (βi)i<κ+ , ( r∼i)i<κ+ ,
Ni0 ∩M , and the isomorphism type of the structure

(Ni0 ,∈, P, r∼i0 , βi0 , q),

all of which are in M .
Let q̄ = (fq, τq̄), where

τq̄ = τq ∪ {⟨(Ni0 , βi0 + 1), (Ni1 , βi1 + 1)⟩}.

It follows, using Lemma 3.20, that q̄ ∈ Qκ+ . We now show that
q̄ ⊩Qκ+

r∼i0 = r∼i1 .
Suppose not, and we will derive a contradiction. Thus we can find

ν < ω1 and q′ ≤κ+ q̄ such that

q′ ⊩Qκ+
“ν ∈ r∼i0 ⇐⇒ ν /∈ r∼i1”.

Let us assume, for concreteness, that q′ ⊩Qκ+
“ν ∈ r∼i0 and ν /∈ r∼i1”

(the proof in the case that q′ ⊩Qκ+
“ν ∈ r∼i1 and ν /∈ r∼i0” is exactly

the same). By correctness of N∗
i0

we have that this model contains
a maximal antichain A of conditions in Qβi0

deciding the statement
“ν ∈ r∼i0”. By Lemma 4.1 we know that |A| < κ and hence, since
N∗

i0
∩ κ ∈ κ, A ⊆ N∗

i0
∩ H(κ+) = Ni0 (cf. the proof of Lemma 3.12).

Hence, we may find a common extension q′′ of q′ and some r ∈ Ni0 ∩A
such that r ⊩Qκ+

“ν ∈ r∼i0”.
Also, note that, since Ψ is an isomorphism between the structures

(Ni0 ,∈, P, r∼i0 , βi0 , q) and (Ni1 ,∈, P, r∼i1 , βi1 , q), and by the choice of P ,
we have that

Ψ(r) ⊩Qβi1
“ν ∈ Ψ( r∼i0) = r∼i1 ”

But then, by clauses (5) and (6) in the definition of condition, we have
that q′′ ≤ Ψ(r). We thus obtain that q′′ ⊩Qκ+

“ν ∈ r∼i1”, which is
impossible as q′ ⊩Qκ+

“ν /∈ r∼i1” and q′′ ≤ q′.

We get a contradiction and the lemma follows.33 □

Corollary 5.2. Qκ+ forces GCH.

Lemma 5.3, which completes the proof of Theorem 1.2, follows im-
mediately from earlier lemmas, together with a standard density argu-
ment.

Lemma 5.3. Qκ+ forces SATPℵ2.

33Note the resemblance of this proof with the proof of Lemma 3.12.
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Proof. Let G be Qκ+-generic over V . Since CH holds in V [G], there
are ℵ2-Aronszajn trees there. Hence, it suffices to prove that, in V [G],
every ℵ2-Aronszajn tree is special.

Let T ∈ V [G] be an ℵ2-Aronszajn tree. Note that ℵ2 = κ in V [G] by
Lemmas 3.5 and 4.1. We need to prove that T is special in V [G]. Let us
go down to V and let us note there that, by the κ-chain condition ofQκ+

together with the choice of Φ, we may find some nonzero α ∈ X such
that Φ(α) is a Qα-name for an ℵ2-Aronszajn tree such that Φ(α)G = T .
We then have that T∼α = Φ(α).

For every ν < ω1, let Aν =
⋃
{fq(α+ ν) | q ∈ G}. By the definition

of the forcing, we have that Aν is an antichain of T . Also, given any
condition q ∈ Qκ+ and any node x ∈ κ×ω1 such that x /∈ fq(α+ν) for
any ν < ω1, it is easy to see that we may extend q to a condition q∗ such
that x ∈ fq∗(α+ ν) for some ν < ω1; indeed, it suffices for this to pick
any ν < ω1 such that α′+ ν /∈ dom(fq) for any α

′ ∈ X , which of course
is possible since dom(fq) is countable, extend fq to a function f such
that α+ ν ∈ dom(f) and f(α+ ν) = {x}, and close under the relevant
(restrictions of) functions ΨN0,N1 for edges ⟨(N0, γ0), (N1, γ1)⟩ ∈ τq.

34

The above density argument shows that every node in T is in some Aν .
It follows that T is special in V [G], which concludes the proof. □
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