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ABSTRACT. Starting from the existence of a weakly compact car-
dinal, we build a generic extension of the universe in which GCH
holds and all Ry-Aronszajn trees are special and hence there are no
No-Souslin trees. This result answers a well-known open question
from the 1970’s.

1. INTRODUCTION

Let x be an uncountable regular cardinal. Let us recall that a x-tree
is a tree T' of height « all of whose levels are smaller than x, and that
a k-tree is called a k-Aronszajn tree if it has no k-branches. Also, T is
called a k-Souslin tree if it has no xk-branches and no antichains of size
k. When k = A" is a successor cardinal, a k-Aronszajn tree is said to
be special if and only if it is a union of A antichainsH Let us make the
following definition:

Definition 1.1. (1) Souslin’s Hypothesis at k, SH,, is the state-
ment “there are no k-Souslin trees”.
(2) The special Aronszajn tree property at k = A*, SATP,, is the
statement “there exist k-Aronszajn trees and all such trees are
special” (see [A]).

Aronszajn trees were introduced by Aronszajn (see [9]), who proved
the existence, in ZFC, of a special N;-Aronszajn tree. Later, Specker
([T7]) showed that 2<* = X implies the existence of special A*-Aronszajn
trees for A\ regular, and Jensen ([7]) produced special A*-Aronszajn
trees for singular A\ in L.

In [16], Solovay and Tennenbaum proved the consistency of Martin’s
Axiom + 2% > N; and showed that this implies SHy,. This was later
extended by Baumgartner, Malitz and Reinhardt [3], who showed that
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Martin’s Axiom + 2% > X implies SATPy,. Later, Jensen (see [4] and
[13]) produced a model of GCH in which SATPy, holds.

The situation at Xy turned out to be more complicated. In [7], Jensen
proved that the existence of an Ny-Souslin tree follows from each of the
hypotheses CH + (S7) and O, + $(S2) (where, given m < n < w,
Sio={a <R, | cf(a) = N,,}). The second result was improved by
Gregory in [6], where he proved that GCH together with the existence
of a non-reflecting stationary subset of S3 yields the existence of an
No-Souslin tree. In [10], Laver and Shelah produced, relative to the
existence of a weakly compact cardinal, a model of ZFC + CH in which
the special Aronszajn tree property at Ny holds. But in their model
2% > N, and the task of finding a model of ZFC+GCH+SATPy,,
or even of ZFC+GCH+SHy,, remained a major open problem. The
earliest published mention of this problem seems to appear in [8] (see
also [10], [18], [15], [14], or [IT]).

In this paper we solve the above problem by proving the following
theorem.

Theorem 1.2. Suppose k is a weakly compact cardinal. Then there
exists a set-generic extension of the universe in which GCH holds, k =

Ny, and the special Aronszajn tree property at Ry (and hence Souslin’s
Hypothesis at Ry) holds.

Remark 1.3. (1) Our argument can be easily extended to deal
with the successor of any regular cardinal.
(2) By results of Shelah and Stanley ([15]) and of Rinot ([12]), our
large cardinal assumption is optimal. Specifically:

(a) It is proved in [I5] that if wy is not weakly compact in L,
then either [J,,, holds or there is a non-special Ry-Aronszajn
tree; in particular, GCH+SATPy, implies that w, is weakly
compact in L by one of Jensen’s results mentioned above.

(b) Rinot proved in [12] that if GCH holds, A > w; is a cardi-
nal, and (A1) holds, then there is a A-closed A™-Souslin
tree; on the other hand, Todorcevi¢ ([19]) proved that if
K > ws is a regular cardinal and O(k) fails, then x is weakly
compact in L.

The rest of the paper is devoted to the proof of Theorem [I.2, We
will next give an (inevitably) vague and incomplete description of the
forcing witnessing the conclusion of this theorem.

The construction of the forcing witnessing Theorem combines a
natural iteration for specializing No-Aronszajn trees, due to Laver and
Shelah ([10]), with ideas from [2]. More specifically, we build a certain
countable support forcing iteration (Qg | f < k™) with side conditions.
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The first step of the construction is essentially the Lévy collapse of
the weakly compact cardinal x to become w,. At subsequent stages,
we consider forcings for specializing No-Aronszajn trees by countable
approximations. Conditions in a given Qg, for S > 0, will consist of a
working part f,, together with a certain side condition. The working
part f, will be a countable function with domain contained in 3 such
that for all & € dom(f,),

o f,(a) is a condition in the Lévy collapse if a = 0, and
o if a > 0, f,() is a countable subset of K X w;.

Letting o = a9 + v, where « is a multiple of w; and v < wy, any two
distinct members of f,(a), when o > 0, will be forced to be incompa-
rable nodes in a certain x-Aronszajn tree T, On K X wy chosen via a
given bookkeeping function ® : X — H(x™), where X denotes the
set of multiples of w; below ™.

The side condition will be a countable directed graph 7, whose ver-
tices are ordered pairs of the form (V,v), where N is an elementary
submodel of H (k") such that |[N| = |[NN«| and <ININ C N, and where
7 is an ordinal in the closure of NN (#+1) in the order topology. Given
any such (N,7), v is to be seen as a marker for N in g, telling us up
to which stage is N ‘active’ as a model. We will tend to call such pairs
(N,~) models with markers. Whenever ((Ny, 7o), (N1,71)) is an edge
in 7,, for a condition ¢, (Ny,€) and (IVq, €) are €-isomorphic via a
(unique) isomorphism Wy, n, such that Wy, n, () < € for every ordinal
§ € Ny and such that ¥y, n, is in fact an isomorphism between the
structures (Np, €, ®,) and (Ny, €, Py, v, (a)) Whenever o € Ny Ny is
such that Uy, n, (@) < 71, for a certain sequence (®,)q<x+ of increas-
ingly expressive predicates contained in H(x").

In the above situation, Ny and N; are to be seen as ‘twin models’,
relative to ¢, with respect to all stages o and Wy, n,(a) such that
a € NoMry and W, v, (o) < 1. This means that the natural restriction
of f,(a) to Ny, ie., fy(a) N Ny, is to be copied over, via WUy, n,, into
the restriction of f,(Un, v, (a)) to Ny, i.e., we require that

Wng, v (fola) N Np) = fo(a) N No C fu(Wng, v (),

and similarly for the restriction of 7, [ a+1 to Ny (with the restriction
7, | a+ 1 being defined naturally).

We can describe our copying procedure by saying that we are copying
into the past information coming from the future via the edges in 7,.
Given an edge ((Ng, 7o), (N1,71)) as above and some a € Ny N~ such
that & = ¥y, v, () < 71, the intersection of f,(&) with dx, X wy may
certainly contain more information than the intersection of f,(a) with
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dn, X wy. Thanks to the way we are setting up the copying procedure—
namely, only copying from the future into the past via edges as we have
described—it is straightforward to see that our construction is in fact
a forcing iteration, in the sense that Q, is a complete suborder of Qg
for all &« < 8. This need not be true in general, in forcing constructions
of this sort, if we allow also to copy ‘from the past into the future’ﬂ

For technical reasons, given an edge ((No,70), (N1,71)) in 7, and
a stage o € Ny N 7, we would like to require Q.1 N Ny to be a
complete suborder of Q,.1; indeed, having this would be useful in the
proof that our construction has the k-chain condition.ﬁ This cannot
be accomplished, while defining Q. 1, on pain of circularity. However,
a certain approximation to the above situation can be meaningfully
stipulated, which we doﬁ and this suffices for our purposes.

Our construction is o-closed for all 5 < x*. In particular, forcing
with Q.+ preserves w; and CH. The preservation of all higher cardinals
proceeds by showing that the construction has the k-chain condition.
For this, we use the weak compactness of x in an essential way. The
proof of the x-c.c. of Qpg, for each 8 < k™, is modelled after the corre-
sponding proof in [10]; in fact it is a natural adaptation, to the current
setting, of the proof in [I0] of the k-c.c. of the main forcing in that
paper. The fact that the length of our iteration is not greater than
kT seems to be needed in this proof. Finally, the copying, for a given
condition ¢, of all information coming from ¢ via the edges occurring
in 7, is crucially used in the proof that our forcing preserves 2% = Ry
(s. the proof of Lemma [5.1]).

Side conditions are often employed in forcing constructions with the
purpose of guaranteeing that certain cardinals are preserved. In the
present construction, on the other hand, they are used to ensure that
the relevant level of GCHH is preserved. This use of side conditions
is taken from [2], where they are crucially used in the proof of CH-
preservation. It is worth observing that, while in the construction from
[2] a certain amount of structure is needed among the models occurring
in the side conditionﬂ no structure whatsoever (for the underlying set

It turns out that, in our specific construction, and thanks to clause (7) in the
definition of condition, we could in fact have required to copy information in both
directions, i.e. that, in the above situation, full symmetry obtains, below dy, x w1,
between stages o and ¥y, n, (). However, the current presentation, only deriving
full symmetry for a dense set of conditions, seems to be cleaner.

3We elaborate on this point at the end of Section

4This is clause (7) in the definition of condition.

oM = Ry,

6Using the terminology of [1], they need to come from a symmetric system.
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of models) is needed in the present construction. We should point
out that even if it preserves 28 = Ny, our construction does add new
subsets of wy after collapsing x to become wsy, although only Ny-many
of them (cf. the construction in [2], where CH is preserved but X;-many
new reals are added).

The paper is organized as follows. In Section [2| we define the notions
of model with marker and edge, which we will be using throughout
the paper, and prove some of their basic properties. In Section [3| we
define our forcing construction and prove some if its basic properties.
In Section [ we show that the forcing has the k-chain condition. This
is the most elaborate proof in the paperﬂ Finally, in Section |5 we
complete the proof of Theorem [I.2] The main argument in this section
is to show that our forcing preserves 2% = N,.

2. MODELS WITH MARKERS AND EDGES

In this section we set up the side condition part of our main forcing
construction and discuss some of its properties. As we will see, our side
condition forcing (i.e., the collection of our side conditions, with the
natural extension relation) is a trivial forcing notion in the sense that
any two conditions are compatible.

Let us fix, for the remainder of this paper, a weakly compact cardinal
K, and let us assume, without loss of generality, that 2# = u™ for every
cardinal p > m.ﬂ

Given functions fy,..., fn, for n < w, we let

Jno...ofo

denote the function f with domain the set of x € dom(fy) such that
for every i < mn, (fio...0 fo)(z) € dom(f;11), and such that for every
x € dom(f), f(z) = fu((fue10...0 fo)(x)). For a function f and a set
x we let f(z) denote the empty set whenever x ¢ dom(f).

Throughout the paper, if NV is a set such that N N« is an ordinal,
we denote this ordinal by dy and call it the height of N. If X is a set,
we set

c(X)=XU{a€Ord | a=sup(XNa)}

If, in addition, « is an ordinal, we let yx be the highest ordinal ¢ €
cl(X) such that & <.

Cf. the proof in [10], where the hardest part is to prove that the forcing is s-c.c.,
or the proof in [2], where the hardest part is to prove that the forcing is proper.
8In fact, if « is weakly compact, then GCH at every cardinal 4 > k can be easily
arranged by collapsing cardinals with conditions of size < x, which will preserve
the weak compactness of k.
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Let X = {w; -a | a < kT}] Given an ordinal o < k*, there is a
unique representation o = ag + v, where oy € X and v < w;. We will
denote the above ordinal ag by p(«).

Let

d: X — H(kT)
be such that for each z € H(k"), ®~!(z) is a stationary subset of X.

This function ® exists by 2% = k. Also, let F': k7 — H(k™) be
a bijection which is definable over the structure (H(x™),€,®). (We
may for example let (W, | & < k7) be the <g-increasing enumeration
of {®7(z) |,x € H(kT)}, where <g is defined by setting ®'(z) <q
O~ !(y) iff min(®~!(x)) < min(®"!(y)), and then we may define F'
so that F'71(z) = « if and only ®~!(x) = W,.) Let also ®; be the
satisfaction predicate for the structure (H(x"), €, ®).

Definition 2.1 (Models with markers). An ordered pair (N,~) is called
a model with marker if and only if:

(1) (N’ c, CI)O) < (H(/{Jr)a €, CI)O)' H

(2) NNk €k, [IN|=|NNk|, and <ININ C N.

(3) y €cl(N)NkT.

We will often use, without mention, the fact that (IV,v) € N’ when-
ever (N,7) and (N’,7') are models with markers and N € N’'[1]

Notation 2.2. Given models Ny and Ny such that (Ny, €) = (Ny, €),
we will denote the unique €-isomorphism ¥ : (Ng,€) — (N1, €) by
\IJNOJ\h'

Given any nonzero ordinal n < k™, let e, be the F-least surjection
from x onto 7. Let €= (e, | 0 < n < k*). We will say that a model
N C H(k") is closed under €if e, () € N for every nonzeron € NNk*t
and every £ € kN N.

Lemma 2.3. Suppose Ny and Ny are models closed under € of the same

height. Then Ny N Ny N kT is an initial segment of both No N kT and

NNkt In particular, if (N}, ) and (N7,~}) (for i < n) are models

with markers such that (N§, €, ®o) = (N}, €, Pg) for all i < n, then
(\IJNS,N{L 0...0 \I/N(())’N{))(:L‘) =X

for every x € dom(Wyp yno...0 \IIN(()),N{)) NN

9Where, here and elsewhere, the dot in w; - a denotes ordinal multiplication.

OGiven N € H(kT) and predicates Py, ..., P, C H(x"), we will tend to write

(N,€, Py, ..., P,) as short-hand for (N,€, PN N,...,P,NN).

UNote that N € N’ implies v € N’ as well. This is because, cI(N) N &t € N’ and
cl(N) N k™ has size less than x, so cl(N) Nkt C N'.
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Proof. Let us first prove the first assertion. Given any nonzero n €
NoN Ny Nk and any a € Ny N7 there is some £ € Ny N k such that
e,(§) = a. But since n and £ are both members of Ny, we also have
that a = e,(£) € N;.

As to the second assertion, let us first consider the case in which
6N8 = 6N8' for all i, i'. By the choice of €, each of the models N!, for

i <n and e € {0,1}, is closed under €.
Let 2 € dom(Wnp np o... 0 Wyo o) N NT and v = F~ (). We first
prove by induction on 7 < n that

ot(Ng Na) = ot(N; N (Wi ni 0.0 Wno yo)(a))
and
(Ungnio-..0oWyono)(@) = F((Uy;nio-.. 0 Wnono)(a)).

For ¢ = 0 this is true since Wyo yo is an isomorphism between the
structures (NJ, €, ®) and (N?, €,®). For i > 0, assuming the above
equalities hold for i —1, we have that (W i-1 yi-10...0Wyo yo)(x) € Ny
and therefore

(Wit yi-10... 0 Wy yo)(a) € N
since
(W i1 yimr 0.0 Wpo o) (2) = F((¥ i1 i1 0.0 Wyo yo)(ar))
and F : k¥ — H(k™) is a bijection. Then we have that
ot(Ng N (Wit yi-1 0.0 Wpo yo)(a))

and .
Ot(le N (‘IIN?,N{' o) ‘I/NSA’N{‘A 0...0 \I]N&N?)(O‘))

are equal (since Wy v is an €-isomorphims between Ng and Nj) and
Ot (NI 1 (W i1 i1 0. 0 Up o)(a)

and '
Ot(Né N (\I’NéA’Nliﬂ 0...0 \I’N(()),N?)(Oé»

are equal (by the first assertion as (\IJN(%fl,Nli—l o...0oWyono)(a) €
N N NY). Hence,
ot (Ng Na) = ot (N} N (Ui ni © ... 0 Wiyo o) ()
For the second conclusion, we note that
<\IJN67NiL o0...0 \IlNg,NiJ)(:L') - <\IJN6,N{ O F @) \IJN(':L'fl,Nlifl O0...0 \IJN(()),N?)(CV),

which is equal to F(W i yi o... Wyo yo)(a)) since Wy, y; is an isomor-
phism between (N¢, €, ®) and (N7, €, D).
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Finally, we note that ot(N' Na) = ot(NJ N «) by the first assertion

as a = F~1(x) € N) N Nj. Hence,
ot (N7 N (Wnp np © .. 0 Wo yo) () = ot (N} N )

and therefore (Wnp np 0 ... 0 Wpyo yo)(a) = . Then also

Suppose now that dy; # 5N8-/ for some i # ¢’ and let ¢* be such
that oy = min{dy; | ¢ < n}. Given any ¢ and €, we know that
(Ni, €, @) < (H(kT),€,®Pp) and that N! is closed under sequences of
length less than |N?|. Also, |[N'"| = |0+ | for every e € {0,1} and
every ¢** such that dyz~ = oyi-. But now it easily follows from the

above facts that there is a sequence ((N{, Ni));<, of pairs of models
with the following properties.
e For all i < n, (N§, €,®) and (Ni, €, ®) are isomorphic elemen-
tary submodels of (H(x"), €,®) and dy; = Oy
e For every i < n and every € € {0,1}, N/ = N! or N} € N_.
LRHARS dom(\IfNSL,N{l 0...0 \IIN87N11) N N7
e (Unpapo...o ‘I’Ng,N{))(I) = (‘I’Ng,N{L ©...0 ‘I’Ng,Nll)(JC)
Indeed, we can define ]\_fé*ﬂ, Nf*ﬂ, Né*_k and NV 7% for j < n —i*
and k£ < i*, by recursion as follows.
o If 5Né*+j = 5N8'*, then Né*+j = Né*+j and Nf“rj = Nli*+j, and if
Sy = Oy, then Nj' = = Ni'™~* and Nj = = N},
o If Sy < 6Né~*+j (in which case j > 0), then N} ¥ e N;'* is
such that
— (Ny 7,€,@) < (H(x"), €, ),
= (V] 7 €, @) = (N . €, @), and
— N{*ﬂ—l N Né*ﬂ C NS*+j7
L .y
and Ny 7 = \IINS*+J',N{‘*+]'(NO 7). B |
o If by < (5N8-*_k (in which case k > 0), then Ni % € Ni 7" is
such that
= (N} 7%, €,0) < (H(r7), €,9),
— (Z\fé*_kﬂ, €,9) = (]\G*_k, €,®), and
_ Né*fk‘*i’l N N{,*fk C le*fk’
it —k it —k
and NO = \I/N{*—k’Né*—k(Nl )
But now we are done by the previous case. U

It will be convenient to use the following pieces of terminology: given
models with markers (Ny,70), (N1,71), we will say that (Ng,70) and
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Y

(N1,7) are twin models (with markers) if and only if (Ny, €, Py) =
(N1, €, D). If Uy, n, () < a for every ordinal a € Ny, then we say
that Ny is a projection of Nj.

Definition 2.4 (Edge). Suppose d = (Po)a is a sequence of predicates
of H(k™) of length less than k*. An ordered pair

((No,70), (N1,7))

of models with markers is called a Cf;—edge if and only if the following
are satisfied:
(1) (No,70) and (N1,7v1) are twin models with markers;
(2) for every e € {0,1} and every o € Nc N7, (N, €,P,) <
(H</€+)7 €, ®q);
(3) Ny is a projection of Noy;
(4) W, N, is an isomorphism between the structures (Np, €, P,)
and (Ny, €, D) for every a € NoMryo such that a == WYy, n, (o) <
Y1
Moreover, if vo < (8 and vy < B, then we call {(Ny,%), (N1,7)) a
5—edge below f3.

Definition 2.5 (Generalized edge). An ordered pair
e = ((No,70), (N1, 1))

of models with markers is called a é—anti—edge if

el = (N1, 7), (No, 7))

s a <f>-edge. We say that an ordered pair e is a generalized 5—edge if
it 15 a P-edge or a P-anti-edge.

Convention 2.6. If 7 is a set of generalized 5-edges, we say that a
generalized ®-edge e comes from 7 in case e € 7 or et € 7. We also
set T !={et:eeT}

Given a generalized ®-edge e = ((No,70), (N1,7)) and an ordinal «,
we let e | a denote the generalized (¢ | «)-edge

<(N07 min{av 70}N0)7 (Nh min{av ’71}N1>>H

Given a collection 7 of 5—edges and given an ordinal o, we denote by
7 | a the set {e | a | e € 7}. Note that 7 [ « is a collection of

(® | o)-edges below a.

12Recall that min{a,~.}n,, for € € {0,1}, is the highest ordinal & € cl(N,) such
that & < min{a,v.}.
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Given a sequence ® = (®,), of predicates of H(k), we say that for
each o, @, codes (Pg | f < «) in a uniform way in case there is a
formula ¢(z,y) in the language for the structures (H(x"), €, ®,) such

that for all 8 < « less than the length of @, and for each a € H(k™),
a € ®g if and only if (H(k"), €,P,) = ¢(8,a).

Given models with markers (N, ), (Ng,7) and (N1, 71), if N € Ny
and (Ny, €) = (Ny, €), then we let ﬂ%g%]\,ml denote the supremum of
the set of ordinals of the form Wy, n,(§), where

e e NN(y+1),

o £ <, and

i ‘I!No,]\h (5) <M-
We lef also 0V denote ﬂjv\;é\walﬂl whenever e = ((No,v0), (N1,7))
is a ®-edge. Given generalized ®-edges e = ((No, %), (N1, 7)) and
e = ((N},7), (N1,74)) such that €' € Ny, we denote

/,N/ /7N/
<(\IJN0,N1 (N(S)’ W?\?O,yg,Nl,w% (\IJNOJ\E (N{)a 7T7\71077;7N1771)>

by ¥, (¢'). Note that if & is such that for each o, ®, codes (®5 | 5 < )
in a uniform way, then W.(¢') is a generalized P-edge.

Definition 2.7 (Closedness under copying). Suppose & is such that for
each a, O, codes (P | f < a) in a uniform way. A set T of P-edges

is closed under copying in case for all ®-edges e = ((No, %), (N1, 7))
and € = ((N§, %), (N1,71)) in T such that ¢’ € Ny there are ordinals

v > Wzé’Né and vy > ng’N{ such that
<(\IJN0,N1 (N(l))v ’73)7 (\IINOJ\G (N{)7 ’7;)) S

Given a sequence € = (((N&,~8), (Ni,4)) | i < n) of generalized
P-edges, we will tend to denote the expression

\I/Nélfl’Nlnfl O0...0 \IJNS,N?
by Vg If & is the empty sequence, we let Wz be the identity function.

Definition 2.8 (Pure side conditions forcing). Suppose ® = (¥4 )a
is a sequence of predicates of H(k™) such that for each a, ®, codes
(D5 | B < a) in a uniform way. Let f < k*. Let PS5 be the set of

all countable sets T of é—edges below B which are closed under copy-
ing and €. Given conditions 1y and T, in P%B’ let 1 < 19 if for ev-

ery (No,%), (N1,m)) € 7o there are v > o and 7, > 71 such that
<(N077(/]>’ (N1771)> €.
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The next lemma shows that P% p is the trivial forcing notion.

Lof 5-edges, there exists a smallest

of (f—edges which contains both 79 and T, and s closed
L are from P5 5. then so

Lemma 2.9. Given sets 7° and T
set T=1"P 7!
under copying. Furthermore, if both 7° and T
18 T.

Proof. Let 7% @ 7! be the natural amalgamation of 7 and 7! obtained
by taking copies of Cﬁ—edges as dictated by suitable functions Wz, so
that 70 @ 71 is closed under copying (where the é-edges generated by
this copying procedure have minimal marker so that 70 @ 71 is closed
under copying). To be more specific, 7° & 7! = |J___ 7,, where (7,),, is
the following sequence.
(1) io=7ur!
(2) For each n < w, 7,1 = 7, U7, where 7/, is the set of ®-edges
of the form W, (¢'), for ®-edges e = ((No, 7o), (N1,71)) and ¢ in
T, such that ¢ € Nj.
Then 7 = 7% @ 7! is as required. O

n<w

Given 7% and 7!, two sets of 5—edges, the construction in the proof of

0 1 . . .
Lemma of " @ 7' as |, ., T gives rise to a natural notion of rank
1

-

on the set of generalized ®-edges coming from 7° @ 7. Specifically,
given n < w, a generalized 5—edge e = ((No,70), (N1,7)) coming from
™ @ 7! has (7% 71)-rank n iff n is least such that e comes from 7,,.
Alternatively, we may define the (79, 71)-rank of e as follows.

e ¢ has (7%, 7!)-rank 0 if e comes from 70U 71.

e For every n < w, a generalized 5—edge e coming from 7° @ 7!
has (79, 71)-rank n + 1 iff e does not have (79, 7!)-rank m for
any m < n and there are <f>—edges eo = ((No, %), (N1,7)) and
e; coming from 7° @ 7! and such that

— the maximum of the (77, 7!)-ranks of ey and e; is n,
— e1 € Ny, and
—e=U, (e1).

Definition 2.10 (7-thread). Given a set T of ®-edges, a sequence € =
(((N&,~8), (NP 48)) | i < n) of generalized ®-edges coming from T, and
z € NO, we will call (€, %) a 7-thread in case © € dom(VUg). In the
above situation, if v = (y,«), where y € H(kT) and o < kT, we call
<g, x) a correct T-thread if and only if

(1) a <1y,

(2) Ug(a) €977, and
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(3) Wgis a (partially defined) elementary embedding from the struc-
ture (N9, €, ®,) into the structure (N ', €, Py ()

We will sometimes just say thread when 7 is not relevant. It will be
useful to consider the following strengthening of the notion of correct
thread:

Definition 2.11. Given a set T of (i;—edges, a sequence
€= (((Ng,7), Vi, M) i <n)
of generalized ®-edges coming from T, and & = (y,a) € H(KT) x KT,
(€, x) is a connected T-thread in case
(1) (€, ) is a T-thread,
(2) a <Ay, and
(3) for each i < n, .
(a) (Wyonto...0Wnono)(ar) <7, and
(b) (Wyon10...0Wyono)(a) <5 ifi+1<n,

Remark 2.12. Given a set 7 of 5—edges, every connected 7-thread is
correct.

The following lemma can be easily proved by induction on the (7%, 71)-
rank of the members of 70 @ 71.

Lemma 2.13. Suppose for each o, ®,, codes (s | f < «) in a uniform

way. Let 7° and ' be sets of CE—@dges, and let A < k be an ordinal such
that all members of T° involve models of height less than . Suppose T
is closed under copying. Then all members of 7° @ 71 involving models
of height at least \ are in T'.

As we will see, the following lemma will enable us to ease our path
through the proof of Claim [4.7], in Section [4, in a significant way.

Lemma 2.14. Suppose for each o, ®,, codes (s | [ < «) in a uniform

way. For all sets ° and 7' of Cﬁ—edges, every set x, and every 70 @ 7!-
thread (€, z) there is a 70 U T'-thread (€., x) such that

\Dg(I) = \I/g** ($)
Furthermore, if x = (y,a) € H(k") x k7 and (€, z) is connected, then
&, may be chosen to be connected as well.

Proof. Let £ = (e; | i < n), where ¢; = ((N&,~i), (Ni,~1)) for each i.
We aim to prove that there is a 7°@®7!-thread (&,, z) with the following
properties.
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(1) Vg(z) = Vg (2)

(2) If every e; has (7°,7%)-rank 0, then &, = €.

(3) If some e; has positive (7%, 71)-rank, then the maximum (79, 71)-
rank of the members of 5* is strictly less than the maximum
(7%, 71)-rank of the members of £.

(4) The following holds, where &, = (e} | i < n*).

(a) el = eq if g comes from 70U 71
(b) If there are generalized ®-edges e = ((No, 7o), (N1,71)) and
¢/ coming from 7° @ 7!, both of rank less than the rank of

ep, such that ¢’ € Ny and ey = V. (¢'), then
68 = <(N1571)7 (N(]?’YO»?

where ((No, 7o), (N1,71)) is some generalized ®-edge as a-
bove.

(c) ef. = e, if e, comes from 79 U 1.

(d) If there are generalized ®-edges e = ((No, 7o), (N1,71)) and
¢/ coming from 7° @ 7!, both of rank less than the rank of
en, such that ¢’ € Ny and e, = V.(¢'), then

ene = ((No,70), (N1, 7)),

where ((Ny, 7o), (N1,71)) is some generalized ®-edge as a-
bove. . -
(5) f 2 = (y,a) € H(k™) x k™ and (&, x) is connected, then &, is
connected.

The proof of (1)—(5) will be by induction on n. We may obviously
assume that there is some i < n such that e; does not come from
70U7T!. Then there are generalized ®-edges e = ((No,Y0), (N1, 71)) and
e/ € Ny coming from 7° @ 71, both of rank less than e;, and such that
e; = W (€).

By induction hypothesis there is a 70 @ 7'-thread (&, z), together
with a 70 @ 7l-thread of the form (&, U grir1()), such that

\1150 (z) = \Ijém(x)

and

\ijg(qjiriﬂ(x)) = Vg ENli+1, n)(\I’ z+1( x)) = qu(x)7

and such that the relevant instances of (1)~(5) hold for (&, z) a

<€27

tisfies the instances of (1) and (3)—(5) corresponding to ((e )

g1ir1(2)). Also, by the choice of e;, the thread (51, ( )) sa
anil )>

where (e;) is the sequence whose only member is ¢;, and Where & =
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(e71,¢/,e). But now we may take £. to be the concatenation of &, &,
and &;.
Finally, it follows from clause (3) that after iterating the above con-

struction some finite number of times we obtain a 7°U7!-thread (5;, x)
as desired. 0

3. DEFINITION OF THE FORCING AND ITS BASIC PROPERTIES

We shall now define our sequence (Qs | 8 < k™) of forcing notions
and our sequence (P53 |0 < 8 < k™) of predicatesﬂ We recall that @
has already been defined.

For each a € X, assuming Q, has been defined and there is a Q-
name T € H(x") for a s-Arosnzajn tree, we let T, be such a Q-
name. Further, if ®(«a) is a Q,-name for a k-Aronszajn tree, then we
let T, = ®(a). For simplicity of exposition we will assume that the
universe of 7', is forced to be x X w; and that for each p < &, its p-th
level is {p} x wy. We will often refer to members of k X w; as nodes.

As we will see, each forcing notion Qg in our construction will consist
of ordered pairs of the form ¢ = (f,, 7,), where f, is a function and 7, is
a set of edges below 5. Given a nonzero ordinal & < k™ and an ordinal
§ < Kk, we will write Q7 41 to denote the suborder of Qq4; consisting of
those conditions ¢ such that dy, < d for every edge ((No, 7o), (N1,71))
coming from 7, such that at least one of 7y, 71 is a + 1,

Now suppose that 8 < k™ and that Q, and ®, have been defined
for all a < . Given an ordered pair g = (f,, 7,), where f, is a function
and 7, is a set of edges, and given an ordinal c, we denote by ¢ [ « the
ordered pair (f, [ a,7, | @).

We are now ready to define Qg and ®g.

We start with the definition of Qg. A condition in Qg is an ordered
pair of the form ¢ = (f,, 7,) with the following properties.

(1) f, is a countable function such that

dom(fq) cpg

and such that the following holds for every o € dom(f,).
(a) If « = 0, then f,(«) is a condition in Col(w;, <k), the Lévy
collapse turning  into Ny, i.e., f,(0) is a countable function

13The reader should keep in mind the overview of the construction we gave in the
introduction.

We note that there is no requirement on the heights of the nodes occurring in
fq(@). Also, despite possible first impressions, there is no circularity in the definition
of Q% (s. Remark [3.3).
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with domain included in x x wy such that (f,(0))(p,&) < p

for all (p, &) € dom(f,(0)).
(b) If @ > 0, then f,(a) € [k X wy]=N0,

(2) 7, is a countable set of (® | 8)-edges below f.

(3) ¢ | a€Q, for all o« < §.

(4) For every nonzero a < 3 such that Ty is deﬁnedﬁ if zy #
xq1 are nodes in fy(a), then ¢ [ pu(a) forces zp and x; to be
incomparable in T,

(5) 7, is closed under copying.

(6) For every edge ((No,70), (N1,71)) € 7, and every a € Ny N o
such that @ = Yy, n, (@) < 7, if @ # 0, a € dom(f,), and
x € f,(a) N Ny, then

(a) & € dom(f,), and
(b) = € f,(@)

(7) Suppose o < B, e = ((No, o + 1), (N1,71)) is a generalized
(® | o+ 1)-edge coming from 7, | a+1, r € Qiﬁ’l is such
that e | & comes from 7,, € = ((Ni, i), (Ni,~i)) | i <n) is a
sequence of generalized (4_5 I @+ 1)-edges coming from 7, U {e}
such that ((N2,79), (N2, 49)) = e and (£, (0,a)) is a correct
thread. Let 6 = min{dy; | i < n} and & = ¥g(a). Suppose
r | p(a) forces every two distinct nodes in f,.(&) N (0 X wy) to be

No
a+1

incomparable in T',4). Then there is an extension 7* € Q
of r such that
(a) fr(a) N (0 xwi) C fre(@) N (6 X wy), and

(b) r* | u(a) forces every two distinct nodes in

(fr(o_é) N (5 X wl)) U fr(a>

to be incomparable in T,

The extension relation on Qg is defined in the following way:
Given q1,q0 € Qs, 1 <g, o (1 is an extension of o) if and only if
the following holds.

(1) dom(fy,) € dom(fy,)

(2) For every o € dom(fy,), fo(c) € fo, ().
(3) For every ((No,70), (N1,m)) € 7y, there are 4 > vo and 7] > 7

such that ((No,), (N1,7)) € g,
Finally, if 8 > 0, then ®g is a subset of H(k™) canonically coding
(P, | @ < B), (Qq | @ < ) and <|l—giﬁ+)| a < ), where for each

15We will see that in fact each T

T i(a) is defined.
6Note that Wy, v, (z) = .
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a<pf, H—gc(fﬂ denotes the forcing relation restricted to formulas with
Qq-names in H(k1) as parameters.

We may, and will, assume that the definition of (®5 | 0 < 8 < k™)
is uniform in 5.

Remark 3.1. Having fixed the sequence ® = (®5 ] 0 < B8 < k) of

predicates as above, by an edge we always mean a $-edge, and similarly
for other concepts.

Remark 3.2. Given any o < k%, there is a natural map

WQ:QQ%P(%[

a,a’

defined by m,(q) = 7,. However, 7, is not necessarily a projection of
forcing notions, as given a condition ¢ € Q, there might exist 7, C 7 €
]P’%ma such that 7, f]p%r 7 for all ¢’ <gq.

)

Remark 3.3. Despite possible first impressions due to the presence
of clause (7), our definition of Q4 ;-condition, for a given o < k™, is
not circular. Rather, the definition of ‘q is a Q,,1-condition’ is to be
seen, because of that clause, as being by recursion on the supremum of
the set of heights of models Ny occurring in edges ((No, o), (N1,71))
in 7,. Indeed, given any ¢ satisfying clauses (1)—(6), in order to verify
whether or not ¢ satisfies also (7) we check whether for each generalized
(@ | a+1)-edge e = ((No, e + 1), (N1, 7)) coming from 7, | o + 1 it
is the case that some condition holds depending only on (Qg | 5 < a),

e, and Qij_vfl, which consists of conditions ¢’ with § Ny < On, for every
<<N67 76)7 (Nllﬂ 71)> S TQ"

Before moving on to the next subsection, we will briefly address
the need for, and nature of, clause (7) in our definition of condition.
As already mentioned in the introduction, the proof that our forcing
satisfies the k-chain condition is an adaptation, in our present context,
of the Laver-Shelah proof that their forcing in [I0] has the r-chain
condition. The only potential obstacles to making such an adaptation
work may come from our present requirements that a condition ¢ be
closed under copying of all the relevant information, as dictated by the
presence of edges ((No, 7). (N1,71)) in its side condition 7,, and where
this includes the information coming from the working part f,.

In the proof of the k-c.c. of Qg, given A C Qg such that |A| = &,
we need to find two distinct conditions in A which are compatible. As
we said, we would like to do that following the ideas in the k-c.c. proof
from [I0] as closely as possible. Now, due to technical reasons coming
from the present copying requirements, in order to do this we seem
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to need to work under the assumption that all conditions in A have
an additional property, namely that they are what we call adequate
conditions (s. Definition . One of the requirements for ¢ to be
an adequate condition is that it be suitably closed under copying not
only via edges from 7,, but also via the corresponding anti-edges. In
particular, if ((No,70), (N1,71)) is an edge in 7,, then not only are we to
copy the information from the working part sitting in Ny into N; (into
the past) but also to copy the information sitting in N into Ny (into
the future); and similarly for the edges in N7 with markers at most «
for a € dom(f,) NNy N1 such that f,(a)N Ny # 0 and W, N, (@) < 0.

Now, the main obstacle for proving that the set of adequate condi-
tions is dense—and this is the motivation behind clause (7)—is the fol-
lowing: take the situation in which there is an edge ((No, v0), (N1,71)) €
7, with v € NoNyg, @ 1= Y, v, (@) < 71, some z € f,(a) of height less
than oy, (= dn,), and some y € f,(«) of height at least dy,. If ¢’ were
to be any adequate condition extending ¢, it would have to be the case
that x € f,(a). However, unless we have an extra clause preventing it,
it could for example be that y is forced to be above z in T4, which
would make it impossible for such a ¢’ to existﬂ

Our way around this difficulty is to incorporate, in our definition,
a clause which stipulates that the above operation can be carried out.
This is in essence what clause (7) says.ﬁ Fortunately, the intended
content can indeed be expressed (cf. the previous footnote); our device
for doing so is to phrase this content by reference to a well-defined
suborder Q° 41 of Qqy1—mnamely the set of conditions ¢ € Qq41 all of
whose edges of form ((Ny,« + 1), (Ny,71)) are such that dn, < 0 (but
allowing all nodes in f,(«) to be of any height below x). Hence, due
to the presence of this clause (7), the definition of ¢ being a Q4 1-
condition is ultimately to be seen as being given by recursion on the
supremum of the collection of heights of models occurring in edges of
the form ((Ny, o+ 1), (Ny,71)) (i-e., those edges not coming from the
restriction of ¢ to «)

"The problematic configuration can of course be described in slightly more general
terms.

18A more naive (and simpler-looking) approach would be to require that if
((No, ), (N1,71)) is an edge from 7, then Qu4+1 N Ny is a complete suborder
of Qu+1. This would have the intended effect. However, such a condition cannot
be expressed without circularity.

197 et us reconsider for a second the situation described a few lines earlier. Suppose
q € Qa+1, {(No, %), (N1,m)) € 74, and a and & are as in that description. Suppose
x € fy(@) is of height less than dn, and y is a node of height at least d, such that,
say, ¢ | p(a) happens to force y to be above x in T,(4). It is then of course
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3.1. Basic properties of (Qs | f < x*). Our first lemma follows
immediately from the choice of the predicates ®,.

Lemma 3.4. For every nonzero a < k%, Q, and H—gi'#) are definable

over the structure
(H(k"), €, @q)
without parameters. Moreover, this definition is uniform in .

Our next lemma follows from the fact that Q; is essentially the Lévy
collapse turning x into ws.

Lemma 3.5. Q; forces k = Ns.

The following lemma is also an easy consequence of the definition of
condition.

Lemma 3.6. For every < kt, Qo C Qg for all a < .

Lemma (3.7 follows easily from the definition of (Q, | o < k™).
Lemma 3.7. Foralla < 3 < k™, q¢€ Qg, andr € Qq, ifr <g, q | «,
then

(fr U fq [ [Oé, ﬁ)qu U 7})
is a common extension of ¢ and r in Qg.
Proof. Let p = (f, U fy | [, ), 7, UT,). We show that p satisfies items
(1)—(7) of the definition of a Qg-condition. It suffices to consider (5)

and (6), as all other clauses can be proved easily.
We first show that p satisfies clause (5). Thus let

€= <(N07’YU)7 (N1771)> € Tq U Tr
and

e = ((No,70): (N1, 7)) € (7 U ) N No.

. ¥5,IN,
W(/% }%ave to show that there are ordinals 5 > W]\;)O,,y& N1 and 7y >
71N such that

No,v0,N1,71
<(\IJN0,N1 (N(l))”yg)> (\IJNoJ\h (N{)/ﬁ)) € Ty U

We divide the proof into three cases:

(1) Both e and €’ belong to 7, (resp. 7,). Then the conclusion is
immediate as ¢ (resp. r) is a condition in Qg.

impossible to extend ¢ to a condition ¢’ such that z € f, (o). However, we can
certainly pick o’ such that p(a’) = p(«) and such that ¢ can be extended (trivially)
by making f(a’) = {z}. This will ensure that the generic specializing function for
T () Will be defined everywhere (cf. the proof of Lemma .
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(3)
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ecTt,and ¢ € 7,. Thene [ o € 7Ty, 50 as v <g, ¢ | «a,
we can find 75,7, < a such that 7y, > min{yy, a}n,, 7, >
min{vy,a}y, and ((No,7y),(N1,7,)) € 7. Hence, as r is a
condition, for some

! !
* o 7N
> 7700
To = N0,76l7N1771/
and
* '7’ 7N,
> 7
= No,’Y(/)/7N177;/
we have

((Wno.31 (Vo) %) (W o, (N1), 7)) € 7o

Asr € Q,, € €7, and 7(,7; < «, and by the choice of 7, ~7,
one can easily show that

0-No 7 0No
No,'yg,Nl,'y;/ = " No,v0,N1,71’
and
7£7N{ 'Yl»Nl
Noyvg sNiyyy = T Nov0,N1m
Thus > WPYO’NO and ~; 1N from which the
70 No,v0,N1,71 N No,v0,N1,71?

result follows.

e €1 and ¢ € 7,. Then € [ a € 74, and so we can find
Yo, < a such that v, > min{~y,, a}ny, v > min{~y;, a}
and ((N},7y), (N/,7,)) € 7. By the discussion after Definition
2.1, (N}, 7), (NI, 7)) € Ny. Hence, as r is a condition, we
can find

1"
'70 7N6
7o 2 7TN07’707N17'71
and
71 7N/
’yl = ﬂ-No,’Yo,NL’h
such that

<(\IIN0,N1 (N(l))a 78)7 (\PN&NI (NDa 7D> € Tr.

Asr € Qq, e € 7., and 79,71 < «, and by the choice of vg,'yg,
one can again easily show that

" N/ ! N/
Yo Vo 7.[.’707 0
No,v0,N1,71 = " No,v0,N1,7
and
"
’71 7N{ "/1 7N/
Novo,N1,m1 = T Noyvo, N1y

’yO?N() '71:N1

3 * *
from which we get that 7§ > my" 0\ o and 77 > w0y o

and the result follows.
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To show that p satisfies clause (6), let e = ((No, %), (N1,m)) € 7, U Ty,
n € (dom(f,) Udom(f;)) N NoNo, n # 0, and z € (f,(n) U f,(n)) N No.
We have to show that 7 € dom(f,) U dom(fq) and z € f.(n) U f,(7),
where 7 = Wy, x, (1).

If n < a, then n € dom(f,) and = € f.(n). Asr <, q | «, for
some 7}, v, we have ((No,7(), (N1,71)) € 7 (if e € 7, we can take
Y = 7 and ] = 71, otherwise, we can take 7 > min{~o, o}y, and
v, > min{vy, a}y,). But then 7 € dom(f,) and = € f,.(7).

Next suppose that n > «. In this case we must have e € 7, and
n € dom(f,) \ dom(f,). But then i € dom(f,) and = € f (7). O

Throughout the paper, we write P<<Q to denote that P is a complete
suborder of Q (i.e., P is a suborder of Q and maximal antichains in P
are also maximal antichains in Q).

The following corollary is a trivial consequence of Lemma [3.7]

Corollary 3.8. (Q, | a < k™) is a forcing iteration, in the sense that
Qo <Qp foralla < f < kt.

We say that a partial order P is o-closed if every descending sequence
(Pn)n<w of P-conditions has a lower bound in P.

Remark 3.9. Suppose 8 < k™ and (7, : n < w) is a <pe 5-decreasmg
sequence of conditions in IP"fI> which are closed under copying. Then
U,<o T is also a condition in P and is closed under copying. The

reason that J
have

’/B

new Tn 18 closed under copying is that if n < m and we

€= <(N0770)7 (N1771)> € Tm
and
¢ = <(N6776); (N1,71)) € 7 N No,
then for some (), v{ we have e’ = <(N6,’yo) (N1,7{)) € T, and by the
discussion after Definition "€ Ny, so as in the proof of Lemma

for some 5 > W]’@O’],\;i Nim and "> X}O% Ny~ We have
(W (NG),76)s (P o, ni (N1),77)) € Ton

Lemma 3.10. Qg is o-closed for every < k*. In fact, every decreas-
ing w-sequence of Qg-conditions has a greatest lower bound in Qg. In
particular, forcing with Qg does not add new w-sequences of ordinals,
and therefore this forcing preserves both wy and CH.

Proof. Given a decreasing sequence (g, )n<, of Qg-conditions, it is im-
mediate to check that ¢ = (f,J,,, 7q4.) is the greatest lower bound of
the set {¢, | n < w}, where dom(f) = |, dom(f,,) and, for each
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n < wand a € dom(f,,), f(o) = U{f,.(a) | m > n}. For this one
proves, by induction on «, that ¢ [ a € Q, for every a < 5. O

Remark 3.11. Lemma [3.10] or rather its proof, will be used, often
without mention, in several places in which we run some construction,
in w steps, along which we build some decreasing sequence (¢, )n<, Of
conditions. At the end of such a construction we will have that the
ordered pair ¢ = (f, U, -, T4.), Where f is given as in the above proof,
is the greatest lower bound of (g,)n<w-

Given a € X, anode x = (p, () in k X wy, and an ordinal p < p, if Q,
has the r-c.c., we denote by Af ; the F-first maximal antichain of Q,
in H(x) consisting of conditions deciding, for some ordinal { < wy,
that (p, ) is Ta-below 2 If 20 = (po, (o) and 1 = (p1, (1) are nodes,
2 < po, p1, ro € A3, 5 ™1 € Ag 5 and there are ordinals G # ¢ in
w; such that r forces that (p,(p) is To-below 2 and r; forces that
(p, Cl) is T, -below x1, then we say that ro and ry force xg and xq to be
mcompamble n Taﬂ

The following lemma will be often used.

Lemma 3.12. Suppose q is a Q+-condition, o € dom(f,), a # 0, and

—

T (o) is defined. Suppose Quay has the r-c.c. Suppose (€, (p, ) is a
correct T,-thread, where p < k, and xoy = (po, (o) and x1 = (p1,(1) are
two nodes such that
® po, p1 < p, and
e there is some p < pg, p 1 such that q | p(a) extends conditions
o € Ag((:;)
i Lpa)-
Let & = Yg(a). Then
(1) ro and ry are in dom(Vg), and
(2) Ws(ro) and Vg(ry) force xo and 1 to be incomparable in T ,,s)-

Proof. Let

and ry € A - p forcmg xo and x1 to be incomparable

€= (((Ng;70), (N1,m)) | i <n)
Since w; U p+ 1 C dom(V¥y) and ¥y is a partially defined elementary
embedding from (N§, €,®,) into (N7, €,®4) we have, by definability
of A" and A" over the structure (H(k+), €, ®,) by formulas ¢

T0,p T1,p

20In Lemma we will prove that each Q, has the s-c.c. Hence, AF ; will be
defined for all x and p-

2IThis terminology is apt: since for each p < &, {p} x wy is forced to be the p-th
level of T, we have that every condition in Q, extending both of ro and r; must
force that ¢ and x; are incomparable nodes in T,,.
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and ¢1, respectively, with zg, x1 and p as parameters, and definability
of A% and A*®) gver (H(kT), €,®s), also by g and ¢y, respectively,

0.5 1.5
that
o A7, ALY € dom (W),
. Agéi—) = \Ifg(Afjéf:)—)), and
o AL = Ug(ALT).

Again by a definability argument, since |Ag§f})|, |A§50‘ﬁ) | < Kk, we also

have that Agé?g and Agf?‘p) are both subsets of dom(Wz). Finally, we
have (y # (7 in w; such that

o 7y forces in Q) that (p, (o) is below g in T (o) and

e 7y forces in Q) that (p, (1) is below z1 in T
But since Vg is a partial elementary embedding from (N§, €, ®,,) into
(N7, €,®4), by Lemma[3.4 we have that

o U(ry) forces in Q5 that (p, (o) is below x¢ in T () and that

e Us(ry) forces in Quq that (p, (1) is below zy in T,y a).

O

Given functions f and g, let us momentarily denote by f + g the
function with dom(f + ¢g) = dom(f) U dom(g) defined by letting

(f +9)(@) = f(z)Ug(z)
for all z € dom(f) U dom(g)

Given Q,+-conditions ¢g and ¢, let gy @ g1 denote the natural amal-
gamation of gy and ¢;; to be more specific, ¢y @ ¢q; is the ordered
pair (f, 7, ® 7, ), where f is the closure of f,, + f,, with respect
to relevant (restrictions of) functions of the form Wy, n,, for edges
((Nos70), (N1,7)) in 74y @ 74, so that clause (6) in the definition of
condition holds for gy @ ¢;. Even more precisely, we define

Qo D¢ = ((fqo + f(h) + /5 Tao @Tm)a

where f is the function with domain X—for X being the collection of

—

all ordinals of the form Wz(a), for a connected 74, &7, -thread (£, (p, )

such that € consists of edges, and such that (p,¢) € f,, (@)U f,, (a) for
some ( < w;—and such that for every @ € X, f(a) is the collection of

—

all nodes (p, ), for connected 7,, @ 7,,-threads (£, (p, «)) such that

(1) € consists of edges,

(2) (p,¢) € foo() U fg, (), and
(3) Vg(a) = a.

22Where, we recall, if h is a function and z ¢ dom(h), we are setting h(x) to be 0.
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Lemma holds by the construction of ¢y ® ¢;.

Lemma 3.13. Let qy and q1 be Q+-conditions and let ¢ = qo & q1.
Then the following holds.
(1) 7, is closed under copying.
(2) For every edge ((No,70),(N1,m)) € 7, and every a € Ny Ny
such that & == Uy, N, (@) < m, if @« # 0, a € dom(f,), and
x € fy(a) N Ny, then
(a) a € dom(f,), and
(b) z € fo(@).

The following lemma is a trivial consequence of Lemmas and
214

Lemma 3.14. For every two Q.+-conditions qo and q1, if qo B 1 =
(f,7), then for every a € dom(f) and every x = (p,() € f(«) such that
x & foola)U fy (a) there is some o € dom(f,,) U dom(f,,) such that

—

z € f(a*)U fy(a*) and some connected T,y U 1, -thread (€, (p, a*))
such that Vg(a*) = a. Furthermore, if X < k is such that all edges in

Tqo 1mvolve models of height less than X, then all members off involving
models of height at least X are edges in 7,

Extending our notation f + g for functions f, g, if F is a set of
functions, we denote by @ F the function g with domain

Uldom(f) | f € F}
given by
g(@) = | J{f (@) | v € dom(f)}.

The following lemma will be used in the proof of Lemma 4.1

Lemma 3.15. Let 5 < k%, and suppose qo, ¢1 € Qg are such that for
every a < f3, if
(@)@ (g [ @) €Qq,

then

(@ lat+1)@ (@ at+1)€ Qo
Then qo & q1 € Qg.
Proof. The proof is by induction on 5. We only need to argue for the
conclusion in the case that § is a nonzero limit ordinal. In that case

the conclusion follows easily from the induction hypothesis and the fact
that for every a < f3,

Joon @ = @{f(qo[a’)@(ql ) la]a<ao < B}
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To see this equality it suffices to note that for every a € dom(fy a4 ),
any given (p, () in

f%@th (d> \ (fQO (d) U fQ1 (@))
has arrived there, thanks to Lemma by virtue of some connected

Toolar U Ty jor-thread (€, (p,a*)) for some high enough o/ < S.

If gy ® ¢1 were not a Qg-condition, there would be some o < 3 such
that some finite piece of information contained in fy g, [ o fails to
satisfy clause (4), (6) or (7) in the definition of Q,-condition. But that
piece of information would occur in fg 10 )@(qi1e) | @ for a high enough
o/ < ff above a. Hence, by taking o' high enough we may guarantee
that the fact that the piece of information violates some clause in the

definition of Q,-condition entails that

(faotone(@tar | @ Tigorane@ia I @)
is not a Q,-condition. But that contradicts (¢ | @) ® (¢1 | @) € Qu,
which we know is true by induction hypothesis. O

We will now introduce the notion of adequate condition, which we
already alluded to at the beginning of this section.

Definition 3.16. Given 8 < k™ and ¢ € Qg, we will say that q is
adequate in case (1) and (2) below hold.

(1) For every a € dom(f,) such that Q) has the k-c.c. and T ()
is defined and for all distinct xo = (po, (o), 1 = (p1,C1) € fy(a)

there is some p < pgo, p1, together with conditions ry € AM)

0,0
and r € A’;E?p) weaker than q | p(a) and such that ro and

force xo and xy to be incomparable in T ).
(2) The following holds for every correct T,-thread (€ (p,@)), where
a=Vgsa), p<k, (<wy, andx = (p,C) € fo(@).
(a) a € dom(f,) and x € f, ().
(b) For every {(No,0), (N1,m)) € 7,Ndom(E) with o, 11 < a
there are vy > Wg(0) and v; > Va(v1) such that

<(\D5(N0)a 7(,))’ (\ij(Nl)a 71)) € Tq

We call a condition weakly adequate if it satisfies clause (1) from

Definition [3.16]

Lemma 3.17. The set of weakly adequate conditions is dense in Qg
for each B < k.

Proof. For each condition ¢ € Qg let ((ag,z{,,,2{,) : n < w) be the
F-least enumeration of all triples («,zg, 1) such that a € dom(f,),
a # 0, is such that Q) has the s-c.c. and Ty is defined, and
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zo = (po, C), 1 = (p1, (1) € fy, () are distinct. Let also ¢ : wxw — w
be a bijection such that p(m,n) > m for all m,n < w.

By induction on i < w we define a decreasing sequence (g; : i < w)
of Qg-conditions as follows. To start, set ¢go = q. Now suppose that
i < w and that g; is defined. Let m, n be such that ¢(m,n) = ¢ and set

(o, 20, 21) = (alm, zf, 217). Let giy1 be an extension of g; such that

there are p < py, p1, together with conditions ry € Agé?g and r; € Agf?p)
weaker than ¢; 1 [ p(«) and such that ry and r; force zy and x; to be
incomparable in T',q). Then the greatest lower bound of {g; | i < w}

is weakly adequate. U

In fact, the set of adequate conditions is dense in Qg for each § < k™,
as shown in Lemma [3.19] To show this, we need the following lemma.

Lemma 3.18. Let a < k*, ¢ € Qur1, € = (No,a + 1), (N1,m1)) @
generalized edge coming from 7o, and € = ((Ni, i), (NI, 41)) | i <n)
a sequence of generalized edges coming from 7, with ((N§,~3), (NY,99)) =
e and such that (€,(0,)) is a correct thread. Let & be such that
Ug(a) = av. Let also 6 = min{dy; | i < n}. Suppose that

(1) q | v is adequate, and that

(2) q | pla) forces every two distinct nodes in fo(a) N (0 X wy) to

be incomparable in T ().

Then there is an extension ¢* € Qu41 of ¢ such that fy(a) N (6 x wy) C
for ().

Proof. We may obviously assume & # « as otherwise there is nothing
to prove. Let r = (fy, (7, \ 7) U (7, [ @) U (7 [ «0)), where

7 = {{(No, %), (N1, 71)) € 7q | max{yg, M} =+ 1, Oy = O -

5 .
Then r € Q. and e [ @ comes from 7,. To see the latter claim, note

that e clearly comes from 7, and hence e | a comes from 7 | o C 7.

Also note that r | u(a) = g | p(«), hence by clause (2), r | u(«) forces

every two distinct nodes in fo(@)N(d xw;) to be incomparable in 7',
Set

E = ()~ ((Ng,70), (N[, ) T e[ 0 <i < m).
Then (€%, (0, «)) is a correct thread (since & < «). Since clearly all
members of £ come from 7, U {e}, by clause (7) of the definition of
Q4 1-condition for ¢ there is an extension r* € @iﬂol of r such that
frr(@) 2 fir(a) N(0 x wi) = fo(a) N (S x wi)

and such that r* | u(a) forces every two distinct nodes in

(fo(@) N (6 x wy)) U fo(a)
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to be incomparable in T',,(,). Let

¢ = (frr TaU{(a, fy(a) U (fo(a) N (6 x wi)))}, 7 UTpe [ ).

It suffices to show that ¢* is a Q4. 1-condition, as then it is an extension
of ¢ in Qu41 as desired.

To see that ¢* € Q,1, we only need to show that ¢* satisfies clause
(6) of the definition of Q,i-condition, as all other clauses can be
checked easily. Thus let ¢ = ((Nj,a +1),(N{,71)) € T, U T | «
be such that o’ := Wy, nr(a) <77 and let us note that in fact ' € 7.
We have to show that

(fa(@) U (fo(@)) N (9w X w1) N NG € for (o).
We may assume that o/ < a. Since ¢’ € 7,, we have that f,(a) NN} C

fq(a) C fir (/). To show that fy(a) N (dn, x wi1) N N§ C fo(a'), let
z = (p,() € fol@) N (dn, X w1) with p < dns. Let

E7 = (NP7 A1), (NG ™2 ™)) i < m)
and let us consider the correct 7, | a-thread (F, (p, @)), where
F=(ETa) (€ a).

Then ¥z(a) = o, and since ¢ [ a is adequate, we have x € fg-(a).
Thus, the conclusion follows. O

Lemma 3.19. For every § < k™, the set of adequate Qg-conditions is
dense in Qg.

Proof. Let ¢ € Qg. We will find an adequate Qg-condition ¢* stronger
than q. We prove this by induction on f.

First, suppose that 3 is a limit ordinal of countable cofinality and let
(Bi)i<w be an increasing sequence of ordinals cofinal in 5. We define,
by induction on ¢ < w, two sequences (¢;);<, and (r;);<, of conditions
such that go = ¢ and such that for all 7 < w,

(1) ¢ € Qg,

(2) r; is an adequate Qg,-condition,

(3) ri <q@s, @ I Bi, and

(4) qi+1 = (fn U fqi r [ﬂiaﬁ>77—ri U qu‘)ﬁ

The construction can be carried out using the induction hypothesis.

Let ¢* be the greatest lower bound of the sequence (g;);<w, which
exists by Lemma[3.10} Then ¢* is an adequate Qg-condition extending
q. The point is that every instance of adequacy depends on ordinals

23Note that by Lemma (and Lemma , each g;11 is indeed a Qg-condition.
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a, @ <  and is in fact verified at some high enough stage ¢ of the
construction.

If 8 is a limit ordinal of uncountable cofinality, then we fix some
B < B such that dom(f,) C B, find an adequate extension ¢’ of ¢ | 3
in Qg (which exists by the induction hypothesis), and note that ¢* =
(fy, g UT,) is an extension of ¢ in Q4 by Lemma But then we are
done since ¢* is adequate by the choice of ¢'.

Finally, suppose that § = a4 1 is a successor ordinal. By induction
hypothesis together with Lemma |3.7, we may assume that ¢ [ « is
adequate. We may also assume that there is some generalized edge
coming from 7, of the form ((Ny, (), (N1,7)), as otherwise we are
done. We build ¢* as the greatest lower bound of a suitably constructed
descending sequence (g, ),<, of conditions extending gy = ¢ and such
that ¢, is weakly adequate, and ¢,, | « is adequate for each n. For every
n, and assuming ¢, has been found, we construct ¢,. in the following
way.

Let us pick some correct 7, -thread <<‘j, (p,a)). Let p < K, ¢ < wy,
and suppose z = (p,() € fy,(@). Let § = min{dy; : i < m}, where
E = (((Ni,~8), (Ni,41)) : i < m). Let a = Us(a). By the adequacy
of ¢, | a and using Lemma , we have that ¢, | p(a) forces any two
distinct nodes in f,, (@) N (d X wi) to be incomparable in T',,). This is
true since for any two distinct nodes .,y in f,, (@) N (0 X wy), by weak
adequacy of ¢,, some condition r € Q) weaker than ¢, | p(a) and
belonging to the final model of & forces z and y to be incomparable in
T,(5)- By adequacy of ¢, [ p(@), ¥g(r) is also weaker than g, [ p(a).
And by Lemma m, Us(r) is a condition in Q) forcing x and y,
which of course are fixed by Wz, to be incomparable in T}, ,).

By Lemma we may find an extension ¢° +1 € Qp of g, such that

fan(@) N (8§ x w1) C fo (@) N (8 x wi) [

Let then ¢}, = ( @ > Tqt ), where 7,1 is the union of 70 ~and
the set of edges of the form

W({((No; %), (N1, 7))
with ((N§,76), (N1,71)) € 74, N NJ and 7f, 71 < a. We note that
W(((N§, ), (N1,71))) is obtained from some already present edge
(Ua(Ng, %0), Yg(N1,71)) in g, by, at most, increasing some of the mark-
ers 4. to a, and that doing so does not force us to add working parts
that were not already present in ¢° 41

241 fact, by the proof of Lemma it suffices for this to simply add to f, (o) all
nodes in fg, (@) N (6 X w1).
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Let now g,+1 be an extension of g, obtained by first extending
q 41 | @ to an adequate condition using the induction hypothesis and
then applying clause (7) in the definition of condition, such that

fq}LH(O‘) N (6 X wl) C f%ﬂ(d)'

By further extending ¢,,+ using Lemma[3.17]and the induction hypoth-
esis (and Lemma[3.7), we may assume in addition that g, is weakly
adequate and ¢,11 | « is adequate.

Using some suitable book-keeping, we can make sure that (g,)n<w
is built in such a way that every relevant (£, (p,@)) for which there is
some x = (p, () € f,. (@), occurring at any stage m in the construction,
is taken care of at infinitely many stages n > m. Let ¢* be the greatest
lower bound of {g, | n < w}. We then have that ¢* is an adequate

condition extending gq. O

Given a Q,+-condition ¢ and a model N, we denote by ¢ [ N the
ordered pair (f, 7,NN), where f is the function with domain dom(f,)N
N such that f(z) = f,(x) NN for every z € dom(f).

It will be necessary, in the proof of Lemma [5.1] to adjoin a certain
edge to some given condition. This will be accomplished by means of
the following lemma.

Lemma 3.20. Suppose for every f < k™, Qg has the k-c.c. Leta < k'
and let

e = ((No,a + 1), (N1, 1))
be a generalized edge. Suppose (No, €, Ppi1) < (H(kT), €, Pos1). Sup-
pose Q¢ N Ny is a complete suborder of Q¢ for every £ € (a+2) N Ny.

Letr e QZI_V& and suppose e | a comes from T,.. Let

€ = ({((Ng, %), (N, ) | i <n)
be a sequence of generalized edges coming from 7. U {e} such that
(N2, 40), (N2, A8)) = e and (€, (D,a)) is a correct thread. Let § =
min{éNé i <n}anda = VYg(a). Suppose & < a and supposer | pi(c)
forces every two distinct nodes in f.(&) N (§ X wy) to be incomparable
i Tya)-

. . s
Then there is an extension r* € Q. of r such that

(1) fr(a)N (0 xwy) C fre(a) and
(2) r* | () forces every two distinct nodes in

(fr<0_5> N (5 X Wl)) U fr(a>

to be incomparable in T ,(a)-
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Proof. The proof is by induction on a. To start with, since Qu41 N
Ny < Qui1, 7 | Ng may be extgnded to a condition ¢y € Q.11 N Ny
forcing that every condition in Gg,_,nn, is compatible with r.

Claim 3.21. We may extend qy to a condition ¢ € Qa1 N Ny for
which there is a generalized edge

¢ = (NG, ), (N1, 7)) € 74y
such that QeN N is a complete suborder of Q¢ for every & € (a+1)NNg,

Sy
together with some r’ € Qoffl with €' | « coming from 7., and together
with a sequence

€= (((Ng',70), (NI A1) | i <)

of generalized edges coming from 1,, U {e'} such that
(N’ 76), (NG, 70)) =€

and such that (5’, (0, ) is a correct thread and such that, letting ' =
min{dys | @ < n} and & = Vg(a), we have that p < 0" for every
(p,v) € foola) with p < §, & < «, and that 7" | p(a) forces every
two distinct nodes in f/(') N (6" x wy) to be incomparable in T .-
Moreover, qo € N§, qo [ N{ = qo [ NyN Ny, and f,, (&) N (6 X wy) =
Jou (@) N (0" x wn).

Proof. In order to find ¢, we first find €, & and v’ in Ny as in the
statement. The existence of such objects is witnessed by e | «, £ and r,
respectively, and can be expressed by a sentence over (H(k"), €, P41 1)
with parameters in Ny.

We can now find a suitable condition ¢; in Q,4+1 N Ny extending gy
and such that ¢’ € Ty - Indeed, ¢; is obtained by adding e’ to 7,, and
copying the relevant information coming from gy into Ny via Wy n7 s0
as to make clauses (5) and (6) in the definition of condition hold for
qy ; in other words, ¢; = qo @ (0, {¢'}).

The result of copying any piece of information carried by ¢o in N{ into
N7 will not interfere with any piece of information previously carried
by qo in Ni as that information is also in N and therefore fixed by
Wy v Also, clause (7) in the definition of condition is ensured for e’
at all ordinals £ +1 € NjN «a by the induction hypothesis applied to
all £ € (NjU Nj) N a. It then easily follows that ¢, is a condition.

But now we may find ¢; as desired by simply copying the relevant in-
formation coming from go at stage o via Wy v, which again is possible
since qo [ N7 = qo [ V) N Ny. O
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Let us fix ¢1, ¢, £ and 1’ as given by the claim. By the choice of
¢o we may find a common extension 15 € Q, of ¢ [ o and 7 | a,
which we may assume is adequate by Lemma [3.19} By adequacy of r{
it follows that f.-(a') N (6" X w1) = frz(@) N (0" x wy). Let g2 € Ny
be the amalgamation, as given by Lemma of rj [ Ny and ¢;. In
order to finish the proof it suffices to argue that (f, 7,,) is a condition
in Qa4+1 N Ny, where f is the function such that f [ o = f,, | @ and
fla) = fo(a) U (frs(@) N (0 X wy)), since then we can take 7* to be

any condition in Qij_vfl extending both (f,7,,) and r, which exists by
the choice of qq.

(f,74) is of course in Ny. By our hypothesis, the only way (f,7,,)
could fail to be a condition in Q41 is that there are distinct z € f,, ()
and y € frx(a) N (6" x wy) such that g [ () does not force z and y to
be incomparable nodes in T',(). We can then extend ¢y [ p(a) to some
7" € Qua) N Ny forcing z and y to be T -comparable. By the x-c.c.
of Q) We may of course assume that r’ extends some 7 € Qo) N N
forcing z and y to be T, )-comparable. Once again by the choice
of qo, let ¢ € Q, be a common extension of " and r [ u(a) which,
thanks to Lemma we may assume is adequate. But now Wg (7)
is a condition weaker than ¢ [ u(a’) (by clauses (5) and (6) in the
definition of condition applied to ¢) and forcing x and y to be T ,(ar)-
comparable, which of course is a contradiction since z, y € f,(@/). O

4. THE CHAIN CONDITION

This section is devoted to proving Lemma (4.1,
Lemma 4.1. For each f < k™, Qg has the k-chain condition.

As we will see, the weak compactness of k is used crucially in order
to prove Lemma Let F be the weak compactness filter on &, i.e.,
the filter on k generated by the sets

{)\<I§ | (V)\,E,BQV)\) ):¢},

where B C V,; and where v is a II] sentence for the structure (V,, €, B)
such that (Vi, €, B) 1. F is a proper normal filter on x. Let also S
be the collection of F-positive subsets of &, i.e.,

S={XCr|XNC#0Dforall CeF}

We will call a model @ suitable if () is an elementary submodel of
cardinality s of some high enough H(0), closed under <k-sequences,
and such that (Q, | @ < k%) € Q. Given a suitable model @, a
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bijection ¢ : kK — @, and an ordinal A < x, we will denote p“\ by M.
It is easily seen that

A<k | M <Q, M{Nk=\and *M{ C M{} € F.

Definition 4.2 (strong chain condition). Given 8 < k™, we will say
that Qg has the strong s-chain condition if for every X € S, every
suitable model Q) such that B, X € @), every bijection ¢ : k — @, and
every two sequences (¢ | A € X) € Q and (¢3 | A € X) € Q of adequate
Qgp-conditions, if
e M{NKk=A\and
o )| MY =q} | MY for every X € X,
then there is some Y € §, Y C X, together with sequences
(R A€Y)
and
(rA | A€Y)
of adequate Qg-conditions with the following properties.
(1) m} <q, @} and 7} <q, q; for every A €Y.
(2) For all \g < Ay inY, 13, @1}, is a common extension of 13,
and r}, .
The following lemma is an immediate consequence of Lemma [3.19|

Lemma 4.3. For every 8 < k", if Qg has the strong k-chain condition,
then Qg has the k-chain condition.

Following [5], given 8 < k™, a suitable model @ such that 8 € @, a
bijection ¢ : kK = @, A < k, and a Qg-condition ¢ € @), let us say that
q 15 A\-compatible with respect to ¢ and 8 if, letting Q3 = Qs N Q, we
have that

e QpN MY <Qy,

e q [ M € Qj, and

eq | M X forces in Qf N MY that ¢ is in the quotient forcing
@E/GQ;BQM;»; equivalently, for every r € Qj N My, it r SQ;BQMK;
q [ M7, then r is compatible with q.ﬁ

Adopting the approach from [I0], rather than proving Lemma
we will prove the following more informative lemma.
Lemma 4.4. The following holds for every 8 < k.

(1) Qg has the strong k-chain condition.

25In [10], this situation is denoted by *f(qo, qo | MY).
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(2)s Suppose D € F, Q is a suitable model, B, D € Q, ¢ : k = Q
is a bijection, and (¢ | X € D) € Q and (¢ | A € D) € Q
are sequences of Qg-conditions. Then there is some D' € F,
D' C D, such that for every A € D' and for all ¢ <g, % and
A <op @b @ T M{ € Qs and ¢f | M = qi | MY, then
there are conditions 1 <q, ¢\ and r} <o q\ such that
(@) rS | M7 =1y | MY and
(b) Y and r} are both \-compatible with respect to ¢ and 3.

Corollary 4.5. Q.+ has the k-c.c.

Proof. Suppose ¢;, for ¢ < k, are conditions in Q.+. By Lemma [3.19,
we may assume that each ¢;, for i < k, is adequate. We may then
fix 8 < kT such that ¢; € Qg for all i < k. But by Lemma (1)s
together with Lemma there are ¢ # i’ in k such that ¢; and ¢; are
compatible in Qg and hence in Q,+. O

The rest of the section is devoted to proving the above lemma.

Proof. (of Lemma The proof is by induction on 3. Let § < st
and suppose (1), and (2), hold for all @ < f. We will show that (1)
and (2)s hold as well.

There is nothing to prove for § = 0, and the case g = 1 is trivial,
using the inaccessibility of x and the fact that Q is essentially the
Lévy collapse turning x into Ny.

Let us proceed to the case when 5 > 1. We start with the proof of
(1)s.

Let X € S be given, together with a suitable model ) such that
B8, X € @, a bijection ¢ : kK — @, and sequences

Go= (x| A eX)€Q
and
=0 AeX)€Q
of adequate Qg-conditions such that
M{NKk=A
and
g3 I MY =gy | MY
for every A € X. We need to prove that there is some Y € S, Y C X,
together with sequences
(N[ AeY)
and
([ AeY)
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of Qg-conditions such that the following holds.
(1) 7§ <@, @) and r} <q, q; for every A € Y.
(2) Forall \g < Ay in Y, r§ @7} is a common extension of 3 and
T, -
We note that 4+ 1 C (). In what follows, we will write M, instead of
MY,

Let Qf = Q, N Q for every a € B+ 1. By the induction hypothesis,
Q. has the k-c.c. for every @ € 5. Hence, since <*Q) C (), we have
that Q¥ < Q, for every such «; in particular, we have that for every
a € XN B, Q forces over V that T, does not have x-branches.

Given

e conditions ¢*; ¢' in Qg,

e nonzero stages a € dom(fp) and o’ € dom( fql)m

e nodes x = (po,p) and y = (p1, (1) such that x € fo(a) and

RS fql(o/)ﬂ and

o )\ <K,
we will say that x and y are separated below A at stages p(a) and p(o)
by ¢° and ¢* (via Z, y) if there are p < X and ¢ # ¢’ in w; such that
Z=(p,C) and y = (p, ('), and such that

(1) ¢° I () extends a condition in A“%) forcing Z to be below
in Z#(a) and
o (@) L
(2) ¢' | p(’) extends a condition in A} 7" forcing 7 to be below y
in T yu(at)-
Definition 4.6. GivenY € S such that Y C X and such that My < @,
MyNk =\, and <*M, C My for all \ €Y, and given two sequences
dg =} | Ne€Y), a7 = (ry | A €Y) of adequate Qf-conditions, we
say that &, 07 is a separating pair for oy and & if the following holds.
(1) For every A € Y, 1} <q, @%. m\ <q, ¢, and dom(fn) =
dom(f,1).
(2) For every A € Y, every a € dom(frg) N My, every nonzero

o € dom(f,1) such that o/ < a, and for all
z € frg(a) \ (A xw)

and
ye fri(a/) \ (/\ X wl)v

26Note that, by induction hypothesis, both Q) and Q) have the s-c.c. and
hence T,y and T, (o) are both defined.
27 and o may or may not be equal and the same applies to z and y.
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x and y are separated below X\ at stages p(a) and p(a’) by 9
and 13 via some pair xo(z,y, o, ', N), x1(z,y, o, ', \) of nodes.
(3) The following holds for all \g < Ay in Y.
(a) rg)\() [ My, = T}q [ M, .
(b) TS)\O € M)\l.
(c) Let Ny, and =,_, for e € {0,1}, be defined as follows.
e N, is the union of the sets of the form Ny U Ny,
where ((No, %), (N1,71)) € T Ut and INg < Ae.
e =, is the collection of ordinals of the form Wg(a),

where (€, (p,@)) is a connected 7,1 -thread such that

(p,a) € NN (k x k") for some model N of height
less than A\, coming from some edge in Tl
Then ‘
(i) N)\O N My, :N)\l N My, and
(i) Zx, N My, = =5, N M)y,
(4) For all \g < Ay in'Y, all ordinals o € dom(frgo) N M, and

o € dom(f,1 ) such that 0 < o' < a, and all nodes
1

7 € fig (@) \ (Ao xw)
and
Y € fy (@) (h x 1)
there are
e a node x' € f,gl (@) \ (A1 x wy),
e a stage a* € dom(fTiO) such that o* < «, and
e anodey € f”io (a*)\ (Mo X w1)
such that
Xo(z,y, a, a*; No) = xo(2, ¥, o, @' A\p)
and
Xi(z,y, a,a*, N) = x1 (2, vy, a, 0l Aq)

Let us now prove the following.

Claim 4.7. Let Y € S be such that My Nk = X for all A € Y, and
suppose a5 = (1 | N €Y), & = (ry | X € Y) is a separating pair
for @y and &1. Then for all \g <X < Xy inY, r} @7}, is a common
extension of 3 and r), in Qg.

Proof. Suppose, towards a contradiction, that there are A\g < A < A\;
in Y such that 7§ @7}, is not a common extension of 7§ and r} . It
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then follows that @ 7}, is not a condition. Hence, by Lemma [3.15]
there is an ordinal o < (8 such that

q:=(r3, [ @) @ (13, | @)
is a condition yet
g =03, Ta+)®(r, [a+1)

is not. Assuming that we are in this situation, we will derive a contra-
diction by proving that ¢* is a condition after all.
To start with, note that & > 0. We will need the following subclaim.

Subclaim 4.8. Suppose
(1) 51 < By are ordinals in My,
(2) € = (((Ni,4), (N, A1) | i < n) is a sequence of generalized
edges coming from 5y such that (5, (0, 50)) is a T, -thread,

(3) B = q’g(ﬁo); and
(4) 5N0¢ > A\ foralli <n.

Then ﬁl = ﬁo.

Proof. By correctness of (NJ, €, ®) within (H(kT), €, ®y), we may pick
some model M € N§ closed under € such that 3y € M, 6,y = ), and
|M| = X (since M), is such a a model). Given that 5; < f, are both
in My, dp, = A, and By € M, by the first part of Lemma we then
have that f; € M C Ng. But that means that

(Ung,np 0.0 o no)(Bo) = B
is in fact By since 8, € NJ N N7 implies, by the second part of Lemma

that
50 = (\IJN{L,N(? ©...0 WN?,NS)(BI) == ﬁl-

We will also be using the following subclaim.

Subclaim 4.9. Suppose o* € dom(f.0 ) Udom(f.1 ), x = (p,() €

1
Ao A1

f,,go (a*) U fTil (a*), (€., (p,a*)) is a connected T U T -thread, and

1
all members ((No, 7o), (N1,71)) of E« such that Sy, > A1 are edges from
7x,- Then at least one of the following holds, where & = g (o).
(1) a e dom(frgo) and x € frgo (@).
(2) a € dom(f,&l) and x € f,&l (@).
(3) There is some o™ € dom(fy ) such that x € f,0 (&™) and
0 0

—

some connected .1 -thread (€, (p, ™)) such that
1
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o V(o) =a and
e all members of € are edges ((No, o), (N1,m)) such that
ONg = A1

Proof. We prove this by induction on |5*|, which we may obviously
assume is nonzero. Let

Ev = (((N§; %), (N1 1) | i < m)
and
€= <(N(§nv’7(7)n)v (N{nv'ﬂn»

By induction hypothesis, one of (1)~(3) holds for (£, | m, (p,a*))
Let of = Ve (@)

Suppose (1) holds for (£, | m, (p,a*)). We have two cases. If e €
79 then (1) holds trivially for (£,, (p,@*)) by adequacy of 3, The
other case is that e € il If Onm > A1, then obviously (3) holds

for (€., (p,a*)) as witnessed by a and the thread ((e), (p, al)). We
may thus assume that (5N5n < A. We know that of € Ny, N My, by
clause (3)(b) in Definition for the pair r§ , r} . It follows that
al € Ny, N My, by (3)(c), and hence af € dom(fril) and z € fril (af)
by (3)(a). But then a € dom(fril) and z € f"il (@) by adequacy of r}

—

and so (2) holds for (&, (p, a¥)).
Next suppose (2) holds for (£, | m,(p,a”)). Suppose e € 7. .

Since e € M), by clause (3)(b) in Definition [4.6] it follows from (3)(&2)
that o € dom(f,0 ) and x € f.o (af). But then, by adequacy of 79
Ao 0

0
Ao
a € dom(r})) and = € foo (@). Hence (1) holds for (&, (p,a*)). If
0

—

e € 7,1 , then (2) holds trivially for (&, (p,a*)), again by adequacy of
1

1
7”>\1.

Finally, suppose (3) holds for (£, [ m, (p, o)), as witnessed by a** €

—

dom(f,o ) together with a connected 7,1 -thread (£, (p, a™)). Suppose
0 1

e €T . Then, since all models occurring in the edges in & are of
0

height at least \; and since, once again by clause (3)(b) in Definition

8, € M, we have by Subclaim that af = ™. But then

a € dom(f, ) and = € f,o (@) by adequacy of r,, and so (1) holds
0

0
20
o

for (., (p,a*)). Finally, suppose e € 3. If dym > Ay, then (3)

Z8Note that <5* I 'm, (p,a)) is also a connected thread, so we may indeed apply
the induction hypothesis to it. This is in contrast with the fact that it does not
follow that (& | m, (p,a*)) is a correct thread if we just assume that &, is correct.
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— —

holds trivially for (&, (p,a*)) as witnessed by (€7 (e), (p, a**)). In the
other case, by clauses (3)(c)(ii), (3)(b) and (3)(a) in Definition {4.6| for
the pair 7§ , vy, we have that o™ € Z, N M, = =\, N My,, and
therefore a** € dom(f,,il) and = € fril (a**) again by (3)(a). But then

a € dom( fu )and x € fr (@) by adequacy of 7} . Thus we have that
1 1

—

(2) holds for (&, (p, *)), which finishes the proof of the subclaim. [
Remember that
gt = (rgo [a+1)€9(r§1 fa+1)
and that we are aiming to prove that ¢* € Q1. We also know that
g= (3, )@ (ry, @)
is a condition in Q.. One way ¢t could fail to be a condition is that
there are €, € € {0,1}, together with ap € dom(f ), 2o = (po, o) €
fre (an), a1 € dom(fr;’ ), v1 = (p1,¢1) € fr;’ (1), a1, a9 < «, and

€ /

€ €
a nonzero ordinal & such that there are connected Tr0 @rl -threads
0 1

(6_';’{, (po, ap)) and (fjf, (p1, 1)), respectively, such that
e O = \I’gg(()éo) = \Ifgf(al),
e both & and & consist of edges in i @rl and such that
e ¢ [ p(@) does not force 79 and ; to be incomparable in 7',

By Lemma [3.140 we may replace (£, (po, ag)) and (E7, (p1, 1)) by

—

connected Trgoudl—threads (€, (po, ) and (€], (p1, 1)) all of whose

members involving models of height at least A\; are edges in T @
1
By Subclaim , applied to oy, 7o and the connected 79 urd -t read

—

(&, (po, ap)), at least one of the following holds.
(1)g @ € dom(frgo) and zg € f?’ﬁo(o_‘)'
(2)g @ € dom(fTil) and xg € f,&l (@).
(3)o There is some af* € dom(frgo) such that o € frgo (ag*) and
some connected 7,1 l—thread (&, (po, ")) such that
° ‘1156,(@3*) =a anii)
e all members of & are edges ((No,70), (N1,71)) such that
Ny > A1
Similarly, and b)g applying Subclaim to aq, 1 and the connected
T0 Ut ~thread (&7, (p1,aq)), at least one of the following holds.

r/\OUr/\l

29€1 and & may of course involve anti-edges.
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(1)1 & € dom(f,o ) and z1 € fro ().
0 0
(2)1 & € dom(f,1 ) and z1 € f1 ().
1 1
(3); There is some aj* € dom(frgo) such that z; € f’”go (a7*) and
some connected 7,1 -thread (£, (p1,a7")) such that
1
o \Ilgi,(a’{*) = a and
e all members of £ are edges ((No, 7o), (N1,71)) such that
ONg = A1
After changing some of the above objects if necessary, we essentially
reduce to one of the following situations.
(1) a € dom(frgo) and zg, r1 € frgo (@).
(2) @ € dom(f,1 ) and zo, 1 € f1 ().
1 1
(3) a e dom(frgo) N dom(fril), T € f’”go (@), and z; € f,&l (@).
(4) o € dom(f,,go), xy € frg()(Oé(]), and there is a connected Ty, -
thread (&, (po, ap)) such that
o Vs () =a and
e all members of & are edges involving models of height at
least Ay,
and such that one of the following holds.
(a) a € dom(ngO) and z; € frgo (@).
(b) a € dom(fril) and z; € f”il(d)‘
(c) a1 € dom(f0 ), z1 € fu (a1), and there is a connected
0 0

7,1 -thread (€}, (p1, 1)) such that
1
o Uy (1) =a and
e all members of & are edges involving models of height
at least ;.

We may clearly rule out (1) and (2) since ¢ | p(@) extends both of
S, | (@) and r} | pu(@). Let us assume that (4) holds || We will first
consider the subcase when (a) holds. By Subclaim applied to the
fact that the height of all models occurring in & is at least A\; and the
fact that both & and ag are in M), we get that & = «y. But then we
get a contradiction as in case (1).

Let us now consider the subcase when (b) holds. By adequacy of 73,
it follows that oy € dom( fr1 ). If py < Ay, then by adequacy of r} we

get that z, € f} () and then z; € fro (a0) by clauses (3)(a)-(b) in
0

30We are considering this case before the case that (3) holds since the proof in the
latter case will be a simpler variant of an argument we are about to see.
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Definition [4.6| for 3 and 7} . But then r{ | y(ag) extends conditions

ro € Aﬁéf}o and r; € A’;Ef}o), for some p < min{py, p1}, forcing zg
and x; to be incomparable in T, and, by Lemma , Vs (7o)
and Wg (r1) are conditions weaker than ¢ | u(@) and forcing zy and
21 to be incomparable in T @) We may thus assume that p; > A;.
Suppose py < Ag. Then xy € fril (ap) by clause (3)(a) in Definition
and hence x, € fTil(a) by adequacy of r} . We again reach a

contradiction as in case (2). Hence we may assume \g < po. The rest
of the argument, in this case, is now essentially as in the corresponding
proof in [I0]. Since @ < o due to the fact that all members of & are
edges, by an appropriate instance of clause (4) in Definition [4.6| we may
pick

e a node .%'6 = (pla C(/)) S fr?\l (Oéo) \ ()‘1 X wl)?

e a stage a* € dom(f,&o) such that o < ay, and

o a node af = (41,C7) € £y (0*)\ (Do X 1)
such that

Xo (o, 27, 2, @™, No) = Xo(zg, 21, g, @, Ap)
and

X1 (o, 27, g, @™, No) = x1(xg, 21, g, @, Ap)

(where o and x; are the projections in Definition . Let p be such
that

Xo(o, 27, ap, ™, Xo) = (P, o)
and

X1($6, 1, Qo, @7 )‘1) = (:57 C_l)
for some (o # (; in w;. We have that ¢ | uu(ap) extends a condition ry €
Aggf}‘)) forcing xo(wo, ], a0, a*, Ag) to be below zo in T ,(s,) (because
this is true about r | p(ap)). Also, 73, | p(@) extends a condition

r € Agffg forcing that xi(z(, 21, 2, @, A1) is below 1 in T @), and
therefore so does ¢ | pu(@). We also have that q | pu(a) extends Wg (1),
and by Lemma \Ilgo(ro) forces xo(zo, 7, v, a*,_)\o) to_be below zg
in T)@&). But now we get a contradiction since (o # ¢; and hence
q | u(a) forces z¢ and x; to be incomparable in T4

It remains to consider the subcase that (c¢) holds. Since all models
occurring in members of & or of & are of height at least A\; and both
ap and «; are in M), by Subclaim [4.§ we get that ag = 1. But now we
get a contradiction by the same argument we have already encountered

using Lemma [3.12]
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We finally handle the case when (3) holds. In this case we may
assume that both py > A\g and p; > A; hold, as otherwise we get, by
an application of clause (3)(a) in Definition [4.6] that at least one of
xg, o1 is in f’"go (@)N f"il (@), which immediately yields a contradiction.
But now, since pg > A¢ and p; > A;, we obtain a contradiction by a
separation argument using clause (4) in Definition With both «
and ¢/, in that definition, being a—like the one we have already seen.

We will now prove that clause (7) in the definition of Q,;-condition
holds for ¢*. This will conclude the proof that ¢t is a condition (the
verification of all remaining clauses in the definition of Q,,-condition
is immediate), and will therefore complete the proof of the claim.

Suppose @ < a+ 1 and e = ((No,@ + 1), (Ny,71)) is a generalized
edge coming from 7,+ [ @+ 1. We must show that the following holds.

5
Let r € Qd]jf]l be such that e [ & comes from 7,., and suppose

€= (((No,70), (Ni,m)) [ 1 <n)
is a sequence of generalized edges coming from 7, U {e} such that
((N9,~9), (N?,49)) = e and (£,(D,a@)) is a correct thread. Let § =
min{dy; | i < n} and o’ = Wg(a). Suppose r [ u(a) forces every two
distinct nodes in f,(a’) N (0 x wy) to be incomparable in T',5). Then

there is an extension r* € ngl of r such that
(1) fr(@) N (0 X wi) C fre(a') N (6 X wy), and
(2) r* | (@) forces every two distinct nodes in

(fr(@) N (0 xw1)) U fr(@)

to be incomparable in T4
We may assume that e does not come from either TQ O T1, as
0 1

otherwise we would be done since both r§ and r} are conditions. The
crucial point is now that, thanks to Lemma [3.4] the above is a fact
about e that can be expressed over (H(k%), €, $541) with e as parame-
ter. Letting now of = max{a+ 1,7}, e = Uz(e*) for some generalized
edge e* coming from (Trgo la*+ 1)U (Tril I a* + 1), for some o, and

—

some appropriate connected 7,0 U 7,1 -thread (£, (e*,a")) such that
0 1

Uz(a*) = al. The corresponding fact holds in (H(k"), €, P,~) about

e* since both 7 [ a* 4+ 1 and r}, | o + 1 are Qu+41-conditions. But

then the desired fact holds about e in (H(k™), €, $541) by correctness

(
of £, using the fact that Ve (a+1) < o*. This concludes the proof
of Claim (4.7 O

The following technical fact appears essentially in [10].
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Claim 4.10. Suppose Z € S, ()} | € Z) e Q and (p} | N€ Z) € Q
are sequences of conditions in Qf, and suppose that for every A € Z,
o p\ | My and p} | M, are compatible conditions in Qi N M,
e 1} and p}, are A\-compatible with respect to p and « for all « < 3,
e ay € dom(fyo) N M,
e o\ € dom(fy1) is a nonzero ordinal such that o < ay, and
o 2, = (0, QY) and yx = (p}, (y) are nodes of level at least \ such
that xx € fyo(an) and yx € fri(a)).
Then there is D € F, together with two sequences (p5 | X € ZN D),
(p3 | A € ZN D) of conditions in Qf such that
(1) for each X\ € ZN D, p3 < pS and p3 < pi,
(2) for each A € ZN D, pi | My and p3 | My are compatible in
Qj N My, and
(3) for each N € Z N D, z\ and y, are separated below A at stages
p(an) and p(eh) by p3 | p(an) and p3 | p(adh).

Proof. Let B C V,, code ¢, (Q},)ac(s+1)ng, the collection of maximal
antichains of Q;, for a € 8N Q, and (Ta)acxrsng- By a reflection
argument with an appropriate IT} sentence over the structure (Vy, €, B),
together with the fact that Q7 has the x-c.c. for every a € SN @), there
is a set D € F consisting of inaccessible cardinals A < x for which M)
is a model such that M, Nk = A\, M, is closed under <A-sequences,

and such that for every o € M) N 5,
(1) @;‘;(a) N M), forces, over V, that T, N M) has no A-branches,
(2) Qi N M, has the A-c.c., and
(3) QN My <Qj
Fix A € ZN D. Thanks to Lemma it suffices to show that there
are extensions p3 and p3 of p§ | a and p} | ), respectively, such that
py | My and p} | M, are compatible in Q}, N My, and such that x
and y, are separated below \ at stages u(ay) and p(cd) by p3 | pu(ay)
and p3 | p(ad). By (3) we may view Q7 as a two-step forcing iteration
(Q}, N My) x S. By A-compatibility we may then identify P} | ay and
pi | ax with, respectively, (%, s%) and (r', s'), both in (Q}, NM,)*S.
Note that r* and 7' are compatible in Q} N M,. Working in an
(Q}, N My)-generic extension V[G] of V' containing r° and !, we note
that there have to be
e extensions (r%, s%) and (r®, s) of (r° s°) and
e an extension <r3r,\1§J3> of (rt, rgf\; ~
such that %, r% and r® are all in G, together with some p < \ for
which there is a pair (% # (% of ordinals in w; and there is (¢ € w;



42 D. ASPERO AND M. GOLSHANI

such that, identifying T',(,) and T',(a;) With (Qj;A N M,) * ﬁ-namesﬂ
we have the following.
00

extends a condition in A"*) forcing that (7, (%) is

[ ] <T00, r§/ ZTN,P
below z in T ya,)-
01y extends a condition in A** forcing that (p, (%) is

01
.<T' 7,‘3 TX,p

below ) in T yay)-
e (r, 57) extends a condition in AZA > forcing that (p, (%) is be-
low yx in T 'jyat)-
Indeed, any condition (r, s) in (Q}, N M) * S such that r € G can
be extended, for any p < A, to a condition (r*, s*) such that
e (r*, s™) is stronger than some condition in A
some node (p, () to be below xy in T a,), and
e rt €@,
and similarly with yx and 7T',(a,) in place of z) and T (). Hence, if
the above were to fail, then the following would hold.

demdlng

517,\/?

e For every p < A there is exactly one ( < wy for which there is
some condition (r, s) in (Qf, N M,) * S stronger than (r°, s°)
with r € G, and such that (r, s) extends a condition in Agf‘;)
forcing that (p, () is below z in T y(a,)-

It would then follow that T',,,,) has a A-branch in V[G], which con-
tradicts (1).

Let ¢* < wy be such that some condition (r?, s%) extending (r', s ')
is such that

o (r’, s%) I u(cay) extends a condition in Agi " forcing (p, ¢?) to
be below y in 141, and

e ec(

But now, given conditions (r”, s*) as above (for i € {O 1}) there
must be i € {0,1} such that ¢% # ¢3. We may then set p? = (% , 5%
and p3 = (r®, 5°). O

By Claim in order to conclude the proof of the current instance
of (1), it suffices to prove the following.

Claim 4.11. There is a separating pair for 6o and 7.

Proof. This follows from first applying Claim and (2),, for a < 3,
countably many times, using the normality of F, and then running a
pressing-down argument again using the normality of F.

31
Tu(a )
sense.

is of course a Qj,, -name since Q;, C Q7 , so this identification makes
‘ ,
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To be more specific, we start by building sequences
0_"0771 = (q[))\m | Ae XN Dn)

and

51771 = (q}\,n | AEXN Dn)a
for a C-decreasing sequence (D,,), <, of sets in F, such that &y = Y
and 719 = 01, and such that for every n < w, Gp,+1 and &1 ,41 are
obtained from &Y, and &;, in the following way.

We first let

5O,n,+ = (q[))wnd‘ ’ AeXn Dn)
and
51,n,+ = (Q}\7n,+ ’ AE XN Dn)
be sequences of Q-conditions such that for every A € X N D,
L qg)\,n,—l- SQ,B qg)\,n and QS)\,n,-Q— SQ[% (bl\,nv
e ¢) . | Myand g, | My are compatible conditions in QjN My,
and
e ., and g}, , are both A-compatible with respect to ¢ and «
for every a < 5.

Recall that eg : Kk — 3 is a surjection. Let also D_; = k. We may
take D,, to be the diagonal intersection A¢c,, Dy, where for each a < K,
D¢ witnesses (2)ey(e) for 6o, G1n, ¢, and D,,_1, ie., D € F is such
that D? C D,,_1 and such that for every A € Dg and for all qf)\/ gQEB ©

43, and q SQey0e) GAn» if A M, € Qe,(¢) and @ I MY =g} | My,
then there are conditions r <., qY and r} <Qu,0e) qi such that

(1) Q| My =ri | M, and

(2) r9 and r} are both A-compatible with respect to ¢ and eg(€).

Given A € X N D, we need to construct ¢3, , and gy, ,. For this,
let W5, be, for each e € {0, 1}, the set of ordinals a« € My N 3 such
that
e a € dom(fy ) or

b
e there is a connected Tqiyn-thread (5, a) with Wg(a) € dom(fqi,n)
and such that & consists of edges.
We of course have that [W5 | < Ro. We may assume that both W}
and WY, are nonempty (the proof in the case when at least one of Wy,
and Wf’n is empty is an easier variation of the proof in the other case).
Let € € {0,1} be such that sup(Ws,) = max{sup(W7 ),sup(W )}.
We will assume that sup(W5 ) has countable cofinality (the proof when
W5, is empty or has a maximum is an easier variant of the proof in the
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case that cf(sup(W5,)) = w). Let (Bn)m<w be a strictly increasing se-
quence of ordinals in M) converging to sup(Wy ). We construct q?\% n
and ¢3 ,, , as the greatest lower bound of (¢3,, ,,)m<w and (g} ,, ) m<w
respectively, where ¢} ., = ¢}, and ¢3¢ = @3, and where, for each
m < w, qg)\,n,m-‘rl = r())\,n,m 52 q())\,n,m and q}\,n,m—i-l = T}\,n,m ©® q/l\,n,m7 where
2 s Tanm € Qg,, are conditions extending ¢y, ,,, and gy ,, ,,,, respec-
tively, and such that

(1) 72 [ Mx =73, | My and

(2) 7%,,m and 7}, . are both A\-compatible with respect to ¢ and

-

We may assume each r§ | and 73, ., to bein @Q, so that ¢3,, , and
GAn. are both in Qj.

Now we find D,,+1 and 0 n+1, 01,41 by an application of Claim
to don+ and 07, 4+ with an appropriate sequence ay j, O/)\M, Txn, Yan
(for A € X N D,). By extending ¢},,, and g}, if necessary for
A € X N Dyyy we may assume that for every such A, ¢3,,,, and ¢} ,,,,
are both adequate conditions, and dom( fqg\,n+l) = dom( qi,n+1> :

Let 7§ and 73 be the greatest lower bound of, respectively, (g3 ,,)n<w
and (g3, )n<w, for A € X N[, Dh.

By construction we have that for all A € X N[ D,, r} and r}
are both adequate conditions, and dom( frg) = dom( f?“i) . Also, by a
standard book-keeping argument we can ensure that all relevant objects
Uy Xy Tams Yaon (for n <w and A € X N D,,) have been chosen in
such a way that in the end

() | xe XN (D)

and
(ry | Ae XN () Dn)

satisfy clause (2) in Definition as well. Finally, by a standard
pressing-down argument using the normality of 7, we may find Y € S,
Y C XN, Dy such that 75 = (r} | AeY)and oy = (r) | N€Y)
satisfy clauses (3) and (4) in Definition [4.6] O

We are left with proving (2)s. This is established with an argument
similar to the one in the corresponding proof from [I0]. Suppose D € F,
@ is a suitable model such that 5, D € @, ¢ : Kk — @ is a bijection, and
(8| X € D) € Q and (g5 | A € D) € Q are sequences of Qg-conditions.
By shrinking D if necessary we may assume that M), Nk = A for each
A € D. Tt suffices to show that there is some D’ € F, D' C D, with
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the property that for every A € D', if ¢¥ <z ¢) and ¢} <g ¢} are such
that qgl I My € Qs and qf)\l I My = q}\' I M), then there is a condition
rx <qg q?\/ [ M) such that every condition in Qs N M), extending ry is
compatible with both ¢} and ¢i .

The case when £ is a limit ordinal follows from the induction hypo-
thesis, using the normality of F (cf. the proof in [10]). Specifically,
we fix an increasing sequence (/3;);<ct(g) of ordinals in () converging to
B. If cf(5) = K, we take each B; to be sup(M, N B) for some X\ € D.
For each i < cf(8) we fix some D; € F, D; C D, witnessing (2)s, for
(3 I il A€ D)and (g | B; | A € D). We make sure that (D;);i<c(g)
is C-decreasing. If cf(8) < &, then D" = (,_ 55 D; will witness (2)4
for (¢8 | A € D) and (g} | A € D), and if cf(8) = k, D' = A;j.D; will
witness (2)3 for these objects. This can be easily shown, using the fact
that each M), is closed under w-sequences in the case when cf(f) = w.

To see this, suppose A € D', ¢% <g, ¢%, a3 <q, @, &% | My € Qg,
and ¢ | My = ¢} | M. Suppose first that cf() > w. In this case,
we pick any ¢ € cf(5) N M), such that 5; is

e above (dom(fqgf) U dom(fqif)) Nsup(M, N B) and

e above every ordinal a € M, N B such that ¥g(a) € dom(fqg/) U
dom( f‘&/ ), for some connected T YU Tqi/—thread (€, a) such that
& consists of edges

and find a condition r € M, N Qg, with the property that every condi-
tion in Qg, N M, is compatible with both ¢) | 3; and ¢} | B;. Let 7y
be any condition in Qg N M, extending r and ¢§ | M,. It then follows
that every condition in Qz N M) extending r, is compatible with both
gy and g} .

Now suppose 3 has countable cofinality. Since 3 € M), we may build
sequences (¢3' | i <w), (¢y° | i <w) and (r} | i < w) such that for
each i,

(1) ¢v" and ¢, are conditions in Qg, extending ¢ | 8; and ¢} | S,
respectively,

(2) 3 € Qg N M, ,

(3) every condition in Qg, N M) extending 73} is compatible with

0,0 1

both ¢, and ¢,

(4) q?\”fl I B; extends qg”. and rf\,

5) ¢yt | B; extends ¢v" and i, and

(5) g, qx A

(6) it | B; extends 4.

32¢f. the proof of Claim
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Let 7y € Qg be the greatest lower bound of {r} | i < w}, and note that
ran € M)y since M) is closed under sequences of length w. But now it is
straightforward to verify that every condition in Qg N M) extending ry
is compatible with ¢¥ and ¢} .

It remains to consider the case that § is a successor ordinal, § =
Bo + 1. Assuming the desired conclusion fails, there is some X € S,
X C D, together with sequences (¢) | A € X) and (¢ | A € X) of
conditions in Q4 such that for every A € X,

e ¢ extends ¢f and ¢} extends g},

o Q?\/ r M)\ € Qﬂ?

o ¢} | My=g} | My, and

e for every condition r in Qg N M) extending qf)\/ I M) there is
a condition in Qg N M) extending r and incompatible with at
least one of ¢, g} .

Thanks to the induction hypothesis applied to §y and to the fact
that (1)g holds we may assume, after shrinking X to some Y € S
and extending the corresponding conditions if necessary, that for each
AeY,

° q?\/ I 8o and q}\/ I Bp are both A-compatible with respect to ¢
and [y, and
] qg/ S5 q,l\/ is a condition for each A* € Y, \* > A

By our assumption above we may then assume, after shrinking Y
if necessary, that for each A € Y there is a maximal antichain A, of
Qs N M, below ¢ | M) consisting of conditions 7 such that at least
one of the following statements holds.

0,0.: T is incompatible with ¢Y .
0,1.: T is incompatible with ¢} .

By the definition of F coupled with an appropriate ITj-reflection
argument, we may further assume that each A, is in fact a maximal
antichain of Qg below ¢ | M, and that it has cardinality less than A
(cf. the proof of Claim . Hence, after shrinking Y one more time
using the normality of F, we may assume, for all A < A\* in Y, that

[ A)\ = A)\* and that
o for every r € Ay, 0,0, holds if and only if 0, - does, and 6,1 »
holds if and only if 6, ; y+ does.

Let us now fix any A < A* in Y. Since A, is a maximal antichain of
Qg below ¢ | M), we may find some r € A, compatible with ¢ @ ¢l..
We have that 6, cannot hold since ¢§ @ ¢l. extends ¢f. Therefore
0,1, holds, and hence also 6, ; »» does. But that is also a contradiction
since ¢ @ qi. extends g}..
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This contradiction concludes the proof of (2)s, and hence the proof
of the lemma. O

It may be worthwhile observing that, as opposed to what is usually
the case in forcing constructions incorporating models as side condi-
tions, our use of side conditions does not interfere with the k-chain
condition. The underlying reason is of course the fact that our pure
side condition forcing is trivial (Lemma [2.9)).

5. COMPLETING THE PROOF OF THEOREM

In this final section we conclude the proof of Theorem|1.2 By Lemma
.10, Q.+ does not add new w-sequences of ordinals and hence it pre-
serves CH. We will start this section by proving that Q.+ also preserves
2% = N,. Of course, the reason we have incorporated edges in our con-
struction is precisely to make this proof work.

Lemma 5.1. kg 2% =&

Proof. Suppose, towards a contradiction, that there is a condition ¢ €
Qx+ and a sequence (7 ;)i<x+ of Qu+-names for subsets of w; such that

qlrq . ri# rvforali<i <wk®

By Lemma {4.1| we may assume, for each 4, that r; € H(x™) and r; is
a Qg,-name for some f; < k.

Let 0 be a large enough regular cardinal. For each i < k™ let N <
H(0) be such that

(1) |N7| = [N (el

(2) N is closed under sequences of length less than | N,

(3) q, T, Bi, (q)a)oz</{+7 (@a)oz@ﬁ‘ S Ni*a and

(4) Qu N N < Q, for every o € k™ N N/
N} can be found by a ITi-reflection argument, using the weak compact-
ness of k and the k-chain condition of each Q,, as in the proof of Claim
4.10, Let N; = N N H(x™) for each i.

Let now P be the satisfaction predicate for the structure

(H(x"),€,9),

where ® C H(rT) codes (o) qenr in some canonical way, and let M be
an elementary submodel of H(f) containing g, s, (8i)ics+, (Qa)a<ut
(N})i<wx+ and P, and such that |[M| = k and <*M C M.

Let ig € kT \ M. By a standard reflection argument we may find

iy € kT N M for which there exists an isomorphism

N 2% (Nim €7P’ ,T\,iO’ﬁiov(J) = (Ni17 €7P7 £i176i17Q)7
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such that U(§) < ¢ for every ordinal £ € IV;,. Indeed, the existence of
such an ¢; follows from the correctness of M in H(#) about an appro-
priate statement with parameters (N;)icxt, ¢, P, (Bi)icxt, (7i)icnt,
N;, " M, and the isomorphism type of the structure

(Nim E,P, LioaﬂiWQ)a

all of which are in M.
Let ¢ = (f;,73), where

73 = Tg U {{(Nig, Bip + 1), (Niy, B, + 1)) }-

It follows, using Lemma (3.20, that ¢ € Q.+. We now show that
q “_Q,ﬁ Tio = Lia-

Suppose not, and we will derive a contradiction. Thus we can find
v <w; and ¢’ <.+ ¢ such that

g, “vET, <= vy

Let us assume, for concreteness, that ¢’ Fo,, “v € 1 and v ¢ Ty
(the proof in the case that ¢' g , “v € 1, and v & 1,,” is exactly
the same). By correctness of N; we have that this model contains
a maximal antichain A of conditions in Qg, deciding the statement
“v € 1;". By Lemma we know that |A| < k and hence, since
NNk e€r, ACNENH(K") = Nj, (cf. the proof of Lemma @D
Hence, we may find a common extension ¢” of ¢’ and some r € N;, N A
such that r kg , “v € ;7.

Also, note that, since ¥ is an isomorphism between the structures
(Niy, €, P, 149, Biy, @) and (N, €, P, 74, Biy, q), and by the choice of P,
we have that

U(r) II—Qﬁi1 “ve \If(g;lo) =1i "

But then, by clauses (5) and (6) in the definition of condition, we have
that ¢” < W(r). We thus obtain that ¢” IFq , “v € r;”, which is
impossible as ¢’ IFq_, “v ¢ 1,;” and ¢" < ¢'.

We get a contradiction and the lemma follows [ O

Corollary 5.2. Q.+ forces GCH.

Lemma [5.3] which completes the proof of Theorem [I.2] follows im-
mediately from earlier lemmas, together with a standard density argu-
ment.

Lemma 5.3. Q.+ forces SATPy,.

33Note the resemblance of this proof with the proof of Lemma



THE SPECIAL ARONSZAJN TREE PROPERTY AT X, AND GCH 49

Proof. Let G be Q,+-generic over V. Since CH holds in V[G], there
are No-Aronszajn trees there. Hence, it suffices to prove that, in V[G],
every No-Aronszajn tree is special.

Let T' € V[G] be an Ny-Aronszajn tree. Note that Ny = x in V[G] by
Lemmas[3.5and 4.1 We need to prove that T is special in V[G]. Let us
go down to V' and let us note there that, by the x-chain condition of Q-+
together with the choice of ®, we may find some nonzero @ € X such
that ®(a) is a Q,-name for an Ny-Aronszajn tree such that ®(a)g =T
We then have that T, = ®(«).

For every v < wy, let A, = J{f,(a+v) | ¢ € G}. By the definition
of the forcing, we have that A, is an antichain of T'. Also, given any
condition ¢ € Q.+ and any node x € k X w; such that x ¢ f,(a+v) for
any v < wi, it is easy to see that we may extend ¢ to a condition ¢* such
that © € fy«(a + v) for some v < wy; indeed, it suffices for this to pick
any v < wp such that o +v ¢ dom(f,) for any o/ € X', which of course
is possible since dom(f,) is countable, extend f, to a function f such
that a +v € dom(f) and f(a+v) = {z}, and close under the relevant
(restrictions of) functions Wy, n, for edges ((No,70), (N1,71)) € Tqﬂ
The above density argument shows that every node in T is in some A,,.
It follows that T is special in V[G], which concludes the proof. O

Acknowledgements. The first author acknowledges support of EP-
SRC Grant EP/N032160/1. The second author’s research has been
supported by a grant from IPM (No. 97030417). Much of the work
on this paper was done while the first author was visiting the Institute
for Research in Fundamental Sciences (IPM), Tehran, in December
2017. He thanks the institute for their warm hospitality. We thank
Assaf Rinot for a comprehensive list of historical remarks on GCH vs.
SATPy,; we have only included the remarks pertaining to the early
history of the problem, leading to the Laver-Shelah result from [I0].
We thank Desmond Lau and Rahman Mohammadpour for their care-
ful reading of some parts of an earlier version of the paper and for
their useful comments. We also thank Tadatoshi Miyamoto and Boban
Velickovi¢ for their comments on the use of predicates in forcing con-
structions related to the one in the paper.

REFERENCES

[1] Asperd, David; Mota, Miguel Angel, Forcing consequences of PFA together
with the continuum large, Trans. Amer. Math. Soc., vol. 367 (2015), no. 9,
6103-6129.

3410 other words, we may take ¢* = ¢ & ¢/, for ¢ = (f,0), where dom(f) = {a+v}
and fy(a+v) = {z}.



50

2]

[19]

D. ASPERO AND M. GOLSHANI

Asperd, David; Mota, Miguel Angel, Few new reals, to appear in Journal of
Math. Logic (2024).

Baumgartner, J.; Malitz, J.; Reinhardt, W., Embedding trees in the rationals,
Proc. Nat. Acad. Sci. U.S.A., vol. 67 (1970), 1748-1753.

Devlin, Keith J.; Johnsbraten, Havard, The Souslin problem, Lecture Notes in
Mathematics, vol. 405, Springer—Verlag, Berlin, New York, 1974. viii+132 pp.
Golshani, Mohammad; Hayut, Yair, The Special Aronszajn tree property, J.
Math. Logic., vol. 20 (2020), no. 1, 2050003.

Gregory, John, Higher Souslin trees and the generalized continuum hypothesis,
J. Symbolic Logic, vol. 41 (1976), no. 3, 663-671.

Jensen, Ronald, The fine structure of the constructible hierarchy. With a sec-
tion by Jack Silver, Ann. Math. Logic, vol. 4 (1972), 229-308; erratum, ibid.
4 (1972), 443.

A. Kanamori; M. Magidor, The evolution of large cardinal axioms in set theory,
in Higher set theory (Proc. Conf. Math. Forschungsinst., Oberwolfach, 1977),
Lecture Notes in Mathematics, 669, Springer, 9-275.

Kurepa, Djuro, Ensembles ordonnés et ramifiés. Thése, Paris. Published as:
Publications mathematiques de 1'Université de Belgrade, vol. 4 (1935). 1-138.
Laver, Richard; Shelah, Saharon, The No-Souslin hypothesis, Trans. Amer.
Math. Soc., vol. 264 (1981), no. 2, 411-417.

Rinot, Assaf, Jensen’s diamond principle and its relatives, in Set theory and its
applications, 125-156, Contemp. Math., 533, Amer. Math. Soc., Providence,
RI, 2011.

Rinot, Assaf, Higher Souslin trees and the GCH, revisited, Adv. Math., vol.
311 (2017), 510-531.

Shelah, Saharon, Proper and improper forcing. Second edition, Perspectives in
Mathematical Logic, Springer-Verlag, Berlin, 1998. xlviii+1020 pp.

Shelah, Saharon, On what I do not understand (and have something to say). I,
in Saharon Shelah’s anniversary issue, Fund. Math. 166 (2000), no. 1-2, 1-82.
Shelah, Saharon; Stanley, Lee, Weakly compact cardinals and nonspecial Aron-
szajgn trees, Proc. of the Amer. Math. Soc., vol. 104 (1988), no. 3, 887-897.
R. Solovay; S. Tennenbaum, Iterated Cohen extensions and Souslins problem,
Ann. of Math. (2) 94 (1971), 201-245.

E. Specker, Sur un probléme de Sikorski, Colloquium Math. 2 (1949), 9-12.
S. Todoréevié, Trees and linearly ordered sets, in Handbook of set-theoretic
topology, pp. 235—293, North-Holland, Amsterdam, 1984.

S. Todorcevié, Partitioning pairs of countable ordinals, Acta Math., vol. 159(3-
4):261-294, 1987.

DAVID ASPERO, SCHOOL OF MATHEMATICS, UNIVERSITY OF EAST ANGLIA,
NorwicH NR4 7TJ, UK
Email address: d.aspero@uea.ac.uk

MOHAMMAD GOLSHANI, SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH
IN FUNDAMENTAL SCIENCES (IPM), P.O. Box: 19395-5746, TEHRAN, IRAN.
Email address: golshani.m@gmail.com



	1. introduction
	2. Models with markers and edges
	3. Definition of the forcing and its basic properties
	3.1. Basic properties of Q+

	4. The chain condition
	5. Completing the proof of Theorem 1.2
	Acknowledgements

	References

