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Abstract. We study the spectrum of forcing notions between the iter-
ations of �-closed followed by ccc forcings and the proper forcings. This
includes the hierarchy of ↵-proper forcings for indecomposable countable
ordinals ↵, the Axiom A forcings and forcings completely embeddable
into an iteration of a �-closed followed by a ccc forcing. For the latter
class, we present an equivalent characterization in terms of Baumgart-
ner’s Axiom A. This resolves a conjecture of Baumgartner from the
1980s.

We also study the bounded forcing axioms for the hierarchy of ↵-
proper forcings. Following ideas of Shelah we separate them for distinct
countable indecomposable ordinals.

1. Introduction

After the discovery of finite support iteration [15] and Martin’s Axiom
[11], the technique of iterated forcing was dramatically extended through
consideration of iterations with countable support. The classical paper of
Baumgartner and Laver [4] on countable support iterations of Sacks forcing
was developed further by Baumgartner into the theory of Axiom A forcing
[3]. Baumgartner’s Axiom A captures many of the common features of
ccc, �-closed and tree-like forcings and is su�cient to guarantee that !1 is
not collapsed in a countable support iteration. The more general theory of
proper forcing was later developed by Shelah [14] and has replaced Axiom A
as the central notion in the theory of iterated forcing with countable support.

Together with the introduction of proper forcing, Shelah also considered
the notion of ↵-proper forcing [14, Chapter V] for indecomposable count-
able ordinals ↵. Forcings which are ↵-proper for all countable ordinals are
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called <!1-proper. Ishiu [9] proved that the notions of Axiom A and <!1-
properness are in fact the same, meaning that, up to forcing-equivalence,
they describe the same classes of quasi-orders. This also explained an ear-
lier result of Koszmider [10] saying that Axiom A is preserved by countable-
support iteration.

Baumgartner showed that the analogue of Martin’s Axiom for proper
forcing, called PFA (the Proper Forcing Axiom) is consistent relative to a
supercompact cardinal and it is conjectured that its consistency strength
is exactly that. PFA and the forcing axioms for the classes of ↵-proper
forcings (written as PFA↵) were later systematically studied by Shelah [14].
However, a still very useful weakening of PFA considered by Goldstern and
Shelah [7] and called BPFA (the Bounded Proper Forcing Axiom) turned
out to have much lower consistency strength, below that of a Mahlo cardinal.
In addition, some important consequences of PFA, such as the Todorčević–
Veličković result [19, 5] that c = @2 holds under PFA, were shown to also fol-
low from BPFA [13] (see also [6]). On the other hand, one should remember
that the proof of Todorčević–Veličković in fact only uses FA(�-closed ⇤ ccc),
i.e. the forcing axiom for the class of forcings completely embeddable into
an iteration of �-closed followed by ccc forcing. We will say that a forcing
is embeddable into �-closed ⇤ ccc if it is forcing-equivalent to a forcing which
can be completely embedded into an iteration P ⇤Q where P is �-closed and
Q is ccc.

Back in the 1980s, when Axiom A and proper forcing were invented,
Baumgartner conjectured that every forcing satisfying Axiom A can be em-
bedded into an iteration of a �-closed followed by a ccc forcing. This would
of course mean that the two classes are the same, up to forcing-equivalence.
Probably, the first motivation came with the Mathias forcing and its decom-
position into P (!)/fin followed by the Mathias forcing with an ultrafilter.
Later, the conjecture was confirmed for the Sacks forcing and other tree-
like forcing notions in [8]. Miyamoto [12] proved it for the iterations of a
ccc followed by a �-closed forcing. Recently, Zapletal proved that in most
cases if an idealized forcing is proper, then it is in fact embeddable into
�-closed ⇤ ccc [22, Theorems 4.1.5, 4.2.4, 4.3.26, 4.5.9, Lemma 4.7.7].

We introduce the notion of a strong Axiom A forcing (for a precise defi-
nition see Section 2), which essentially says that the forcing notion satisfies
Axiom A after taking a product with any �-closed forcing. We prove the
following characterization.

Theorem 1.1. Let P be a forcing notion. The following are equivalent

(i) P satisfies strong Axiom A,

(ii) P is embeddable into �-closed ⇤ ccc.

Theorem 1.1 is in the spirit of Baumgartner’s conjecture as it shows that
there is a close connection between Axiom A and embeddability into �-
closed ⇤ ccc. This characterization, however, cannot be strengthened to the
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one suggested by Baumgartner and Theorem 1.1 leads also to the following
counterexample, which refutes the original conjecture.

Corollary 1.2. There is an Axiom A forcing notion which is not embeddable

into �-closed ⇤ ccc. It is of the form ccc ⇤�-closed ⇤ ccc.

Given a class of forcing notions S, the Bounded Forcing Axiom for S,
denoted by BFA(S), is the statement that for each complete Boolean algebra
B in S and any collection D of !1-many size at most !1 predense subsets of
B, there is a filter on B which intersects each element of D. An equivalent
form of of BFA(S), due independently to Bagaria [2] and Stavi–Väänänen

[16], states that H(!2)V is ⌃1-elementary in H(!2)V
B

for any complete
Boolean algebra B in S.

The Bounded Forcing Axiom for the class of ccc forcing notions is equiva-
lent to Martin’s Axiom and the Bounded Forcing Axiom for the class of
proper forcings is exactly BPFA. In fact, there is a whole spectrum of
bounded forcing axioms, namely the Bounded Forcing Axioms for the classes
of ↵-proper forcing notions (written as BPFA↵), where ↵ can be any count-
able indecomposable ordinal. There is also the Bounded Forcing Axiom for
<!1-proper forcing notions, which is (a priori) weaker than all BPFA↵. By
the result of Ishiu, it is equivalent to the Bounded Forcing Axiom for the class
of Axiom A forcings, also denoted by BAAFA. A still (a priori) weaker varia-
tion is the Bounded Forcing Axiom for the class of forcings embeddable into
�-closed ⇤ ccc. We denote this axiom by BFA(�-closed ⇤ ccc). Todorčević
showed (see [18] or [1, Lemma 2.4]) that the consistency strength of BFA(�-
closed ⇤ ccc) is the same as of BPFA, i.e. a reflecting cardinal. This implies
that actually all the axioms along this hierarchy have the same consistency
strength.

In [20] Weinert showed that BAAFA is strictly weaker than BPFA, relative
to a reflecting cardinal. In [14, Chapter XVII, pages 837–838] Shelah men-
tions that the forcing axioms PFA↵ for indecomposable countable ordinals ↵
can be separated by the full club guessing principles. Following this idea, we
separate the axioms BPFA↵ for indecomposable countable ordinals. Here,
however, we consider a hierarchy of weak club guessing principles TWCG↵

(for a definition see Section 3) and show the following

Theorem 1.3. For indecomposable ordinals ↵ < � < !1 the axiom BPFA↵

(or PFA↵) is consistent with TWCG↵, relative to a reflecting cardinal (or

a supercompact), whereas BPFA↵ is inconsistent with TWCG�.

The weak club guessing principles were introduced already by Shelah, who
considered them as a variant of the full (or tail) club guessing principles (cf.
[9]). Theorem 1.3 refines the separation of the axioms PFA↵ in terms of the
full club guessing principles. We also show the following.

Theorem 1.4. For indecomposable ordinals ↵ < � < !1, the principle

TWCG� implies TWCG↵ and TWCG↵ does not imply TWCG�.
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This paper is organized as follows. Section 2 contains the characterization
of forcings embeddable into �-closed ⇤ ccc. Section 3 contains the results on
the weak club guessing principles and the bounded forcing axioms for ↵-
proper forcings.

1.1. Remark. After this work has been done, we have learnt that in the
1980s Todorčević also derived Corollary 1.2 with di↵erent methods from his
results on the S-space problem in [17, Section 2]; that proof has, however,
never been published.

2. Forcings embeddable into �-closed ⇤ ccc

Recall that a forcing notion P satisfies the uniform Axiom A if there is an
ordering 0 on P refining its original ordering such that any 0-descending
!-sequence has a 0-lower bound and for any antichain A in P any condition
can be 0-extended to become compatible with at most countably many
elements of A. By a quasi-order we mean a reflexive and transitive relation.

Ishiu showed [9, Theorem 4.3] that, up to forcing-equivalence, Axiom A
and uniform Axiom A are equivalent and describe precisely the class of
<!1-proper quasi-orders. More precisely, he showed that if P is an Axiom
A forcing notion, then there is a quasi-order P 0 which is forcing-equivalent
to P and an ordering 0 on P 0 such that P 0 satisfies the uniform Axiom A
via 0. This is a motivation for the following definition.

Definition 2.1. A forcing notion P satisfies strong Axiom A if there a quasi-
order P 0, forcing-equivalent to P , with an ordering 0 on P 0 such that for
any �-closed forcing S the product S ⇥ P 0 satisfies uniform Axiom A via
S ⇥ 0.

Any forcing of the form R ⇤ Q̇, where R is �-closed and Q̇ is forced to
be ccc, satisfies the uniform Axiom A. The ordering 0 on R ⇤ Q̇ is simply
R ⇥=̇, i.e. (r1, q̇1) 0 (r0, q̇0) if r1 R r0 and r1 � q̇0 = q̇1. To see that
0 witnesses the uniform Axiom A, take an antichain A in R ⇤ Q̇ and a
condition (r0, q̇0) 2 R ⇤ Q̇. Pick any R-generic filter G over V through r0
and note that in V [G] we have that {(q̇)/G : 9r 2 G (r, q̇/G) 2 A} is an
antichain in Q̇/G and hence it is countable by the assumption that R � Q̇ is
ccc. Note that for each (q̇)/G in the above set, there is only one r 2 G such
that (r, q̇) 2 A, as A is an antichain. Since R does not add new countable
subsets of the ground model, there is a countable A0 ✓ A in V such that
for some condition r0 2 G we have

(⇤) r0 � {(r, q̇) 2 A : r 2 Ġ} = A0.

Enumerate A0 as {(r0n, q̇n) : n < !}. Since r0, r
0 and all the r0n are in

G, we can find r1 2 R extending all these conditions. Now we have that
(r1, q̇0) 0 (r0, q̇0) and it is enough to check that {(r, q̇) 2 A : (r, q̇) is
compatible with (r1, q̇0)} is contained in A0. But if (r00, q̇00) 2 A \ A0 were
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compatible with (r1, q̇0), then forcing with a filter G such that r00, r1 2 G
would give that (r00, q̇00) 2 {(r, q̇) 2 A : r 2 G}, contradicting (⇤).

Recall that if A is a complete Boolean algebra and B is a complete Boolean
subalgebra of A, then the projection ⇡ : A ! B is defined as follows: ⇡(a) =V
{b 2 B : a  b}, where the Boolean operation is computed in either of the

two Boolean algebras.
Now we prove Theorem 1.1. The proof will use an old idea of Groszek [8].

Proof of Theorem 1.1. (ii))(i). Suppose P l R ⇤ Q̇, where R is �-closed
and Q̇ is forced to be ccc. Without loss of generality assume that P is a
complete Boolean subalgebra of ro(R ⇤ Q̇) and let ⇡ : ro(R ⇤ Q̇) ! P be the
projection. Let

P 0 = {(p, (r, q̇)) : p 2 P, (r, q̇) 2 R ⇤ Q̇ and p ^ (r, q̇) 6= 0},
where the Boolean operation is computed in ro(R⇤Q̇). Consider the function
⇡0 : P 0 ! P defined as:

⇡0((p, (r, q̇))) = p ^ ⇡((r, q̇))

and define the order P 0 on P 0 as follows: (p1, (r1, q̇1)) P 0 (p0, (r0, q̇0)) if
⇡0((p1, (r1, q̇1))) P ⇡0((p0, (r0, q̇0))). Thus P 0 becomes a quasi-order with
P 0 . Note that the definition of P 0 implies that the function ⇡0 is a dense
embedding from P 0 to P , hence P 0 and P are forcing-equivalent.

Recall that on R ⇤ Q̇ we have the natural ordering R ⇥=̇ (see remarks
preceeding this theorem) to witness uniform Axiom A. Let 0 on P 0 be
defined as follows: (p1, (r1, q̇1)) 0 (p0, (r0, q̇0)) if p1 = p0, r1 R r0 and
r1 � q̇1 = q̇0. Now we claim that this 0 witnesses the strong Axiom A.

Let S be a �-closed forcing notion. We need to check that S⇥P 0 satisfies
uniform Axiom A via S ⇥ 0. It is clear that S⇥P 0 is �-closed with respect
to S ⇥ 0. Take an antichain A in S ⇥ P 0, s 2 S and (p, (r, q̇)) 2 P 0. Via
id ⇥ ⇡0 we get an antichain A0 in S ⇥ P . As every element of ro(R ⇤ Q̇) is
a supremum of an antichain in R ⇤ Q̇, we can refine the antichain A0 to an
antichain A00 such that

(a) every element of A00 is of the form (s, (r, q̇)) for some s 2 S and
(r, q̇) 2 R ⇤ Q̇,

(b) every element of A0 is the supremum of a subset of A00.

Now, A00 is an antichain in S⇥ (R⇤ Q̇). The latter is the same as (S⇥R)⇤ Q̇
(where Q̇, as an R-name naturally becomes an S ⇥ R-name). We need the
following lemma.

Lemma 2.2. Let T be a �-closed forcing notion and C be ccc. Then

T � Č is ccc.

Proof. Suppose not. Let {ċ↵ : ↵ < !1} be a T -name for an antichain in Č.
Since T is �-closed, we can build a descending sequence ht↵ 2 T : ↵ < !1i
and a sequence of conditions hc↵ 2 C : ↵ < !1i such that

t↵ � ċ↵ = č↵.
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But then {c↵ : ↵ < !1} is an uncountable antichain in C, a contradiction.
⇤

Now, Lemma 2.2 implies that if G is any R-generic over V , then in V [G]
we have

S � Q̇/G is ccc.

This means that R � “S � Q̇ is ccc”, or in other words, R ⇥ S � Q̇ is ccc.
Since S ⇥R = R⇥ S, by the remarks preceeding this theorem, we get that
S⇥R⇥=̇ witnesses uniform Axiom A for (S ⇥R) ⇤ Q̇.

Therefore, there are s0 S s and r0 R r such that (s0, (r0, q̇)) is compat-
ible with only countably many elements of A00. By (b) above, (s0, r0, q̇) is
compatible with only countably many elements of A0 and so is (s0,⇡(r0, q̇))
since A0 ✓ S ⇥ P . Since (s0,⇡0(p, (r0, q̇))) S⇥P (s0,⇡(r, q̇)) and by the defi-
nition of P 0 , we get that (s0, (p, (r0, q̇))) is compatible with only countably
many elements of A. We also have

(s0, (p, (r0, q̇))) S ⇥0 (s, (p, (r, q̇))),

hence S ⇥ 0 witnesses uniform Axiom A for S ⇥P 0. This ends the proof
of implication (ii))(i).

(i))(ii). Suppose P satisfies strong Axiom A. Since embeddability into
�-closed ⇤ ccc is invariant under forcing-equivalence, we can assume that the
ordering 0 witnessing strong Axiom A is defined on P . We shall construct
a �-closed forcing notion R and an R-name Q̇ for a ccc forcing such that
P l R ⇤ Q̇. Let R be the forcing with countable subsets of P ordered as
follows: for ⇡0,⇡1 ✓ P countable write ⇡1  ⇡0 if

• for each p 2 ⇡0 there is q 2 ⇡1 such that q 0 p,
• for each q 2 ⇡1 the set ⇡0 is predense below q.

Note that R is �-closed. In any R-generic extension the union of the count-
able subsets of P which belong to the generic filter forms a suborder of P .
Let Q̇ be the canonical name for this subset. We will show that P l R ⇤ Q̇
and that Q̇ is forced to be ccc.

Lemma 2.3. The forcing R ⇤ Q̇ adds a generic filter for P .

Proof. We show that R forces that the Q̇-generic filter is P -generic over V .
It is enough to show that for any dense open set D ✓ P and p 2 P the set

{⇡ 2 R : (⇡ � p /2 Q̇) _ (9d 2 ⇡ p 2 D ^ d  p)}
is dense in R. Take any ⇡ 2 R and suppose ⇡ � p 2 Q̇. There is ⇡0  ⇡ and
p0  p such that p0 2 ⇡0. Pick d 2 D such that d  p0. Then ⇡0 [ {d}  ⇡ is
as needed. ⇤

Note now that for any ⇡ 2 R we have

(?) ⇡ � ⇡ is predense in Q̇.

Indeed, if ⇡0  ⇡ and ⇡0 � p 2 Q̇, then there is ⇡00  ⇡0 and q 2 ⇡00 such that
q  p. Since ⇡00  ⇡, there is r 2 ⇡ and t  r, q. Now ⇡00 [ {t} � t  r, q.
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We will be done once we prove the following.

Lemma 2.4. R forces that Q̇ is ccc.

Proof. Suppose that Ȧ is an R-name for an uncountable antichain in Q̇.
Assume that Ȧ is forced to be of cardinality !1, namely R � Ȧ = {ȧ↵ : ↵ <
!1}.

Sublemma 2.5. For each ⇡ 2 R and p 2 ⇡ there are ⇡0  ⇡, p0 0 p such

that p0 2 ⇡0
and a countable Ap ✓ P such that

⇡0 � {a 2 Ȧ : a is incompatible with p0} ✓ Ap.

Proof. We build an antichain in R⇥P . Let C0 ✓ R be a maximal antichain
below ⇡ deciding ȧ0 and such that for every ⇢ 2 C0 there is b⇢ 2 ⇢ such that
b⇢  a, where a 2 P is such that ⇢ � a = ȧ0. Let D0 = {(⇢, b⇢) : ⇢ 2 C0}.
For ⇠ < !1 use the fact that R is �-closed to find a maximal antichain C⇠

below ⇡ which refines all C↵ for ↵ < ⇠, decides ȧ⇠ and for every ⇢ 2 C⇠

there is b⇢ 2 ⇢ such that b⇢  a, where a 2 P is such that ⇢ � a = ȧ⇠. Let
D⇠ = {(⇢, b⇢) : ⇢ 2 C⇠}.

Now D =
S

⇠<!1
D⇠ is an antichain in R⇥ P . To see that it is enough to

check that if ⇠0 < ⇠1, (⇢0, b⇢0) 2 D⇠0 , (⇢1, b
⇢1) 2 D⇠1 and ⇢1  ⇢0, then b⇢0

and b⇢1 are incompatible in P . Suppose c  b⇢0 , b⇢1 and put ⇢ = ⇢1 [ {c}.
Then

⇢ � c 2 Q̇ and c  b⇢1 , b⇢0

and hence ⇢ � ȧ⇠0 , ȧ⇠1 are compatible. This is a contradiction.
Since R ⇥ P satisfies uniform Axiom A via  ⇥ 0, we can find �  ⇡,

p0 0 p and a countable subset D0 ✓ D such that

{(⇢, a) 2 D : (⇢, a) is incompatible with (�, p0)} ✓ D0.

Let Ap = {a 2 P : 9⇢ 2 R (⇢, a) 2 D0}. Put ⇡0 = � [ {p0}. ⇤
Take now any ⇡ 2 R. Using Sublemma 2.5 and a bookkepping argument

we find a sequence h⇡n 2 R : n < !i such that ⇡0 = ⇡ and for each n < !
and p 2 ⇡n there is mp > n, p0 2 ⇡mp such that p0 0 p and there is a
countable Ap ✓ P such that

(??) ⇡mp � {a 2 Ȧ : a is incompatible with p0} ✓ Ap.

For each p 2
S

n<! ⇡n construct a sequence pn 2 P such that p0 = p0 2
⇡mp and if pn 2 ⇡m, then pn+1 2 ⇡m+1 is such that pn+1 0 pn. Let rp be
any condition such that rp 0 pn for all n < !..

We define ⇡! as the family of all such rp for p 2
S

n<! ⇡n. Note that
⇡!  ⇡n for each n and by (?) and (??) we have that

⇡! �
[

{Ap : p 2
[

n<!

⇡n} is predense in Q̇.

This contradicts the assumption that Ȧ is forced to be uncountable. ⇤
This ends the proof of the implication (ii))(i). ⇤
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Now we prove Corollary 1.2.

Proof of Corollary 1.2. Recall the example [14, Chapter XVII, Observation
2.12] of two proper forcing notions whose product collapses !1. The first of
them is �-closed and the other is an iteration of the form ccc ⇤�-closed ⇤ ccc.
Thus, the latter does not satisfy strong Axiom A but is forcing-equivalent
to an Axiom A forcing, since it is <!1-proper. It is not embeddable into
�-closed ⇤ ccc by Theorem 1.1. ⇤

3. Bounded forcing axioms and weak club guessing

Definition 3.1. Let  > ! be a regular cardinal, ↵ an ordinal and M =
{M" : " 2 ↵} be a sequence of countable elementary substructures of H().
We say that M is an internally approachable tower if the following hold:

(i) {M" : "  ⌘} 2 M⌘+1 for every ⌘ 2 ↵ with ⌘ + 1 2 ↵,
(ii) M⌘ =

S
{M" : " < ⌘} for every limit ordinal ⌘ 2 ↵.

As usual, H() is the collection of all sets of hereditary cardinality less
than . We will identify H() with the structure hH(),2,Ci, where C is
a fixed well order of H().

Definition 3.2. Let P be a partial order and ↵ a countable ordinal.

(a) Given q 2 P and M = {M" : " 2 ↵} an internally approachable
tower of countable elementary substructures of H() with P 2 M0,
we say that q is generic over M if q forces that Ġ \ M" is generic
over M" for every " 2 ↵.

(b) P is ↵-proper if for every su�ciently large regular cardinal , for
every internally approachable tower M = {M" : " 2 ↵} as above
and for every condition p 2 P \M0, there exists q  p such that q is
(M, P )-generic. P is <!1-proper if it is ↵-proper for each ↵ < !1.

Note that if P is proper (i.e., 1-proper), then P is n-proper for every
natural number n. Recall that a countable ordinal � is said to be indecom-

posable if there exists a nonzero ordinal ⌧ such that � = !⌧ (this is ordinal
exponentiation). Equivalently, � is indecomposable if for every � < �, the
order type of the interval (�,�) is equal to �. Now, if P is ↵-proper and
� is the first indecomposable ordinal above ↵, then P is �-proper for every
� < �.

Let ↵ be an indecomposable ordinal. We denote by PFA↵ the forcing
axiom for the class of ↵-proper forcing notions. By BPFA↵ we denote the
bounded forcing axiom for this class.

Definition 3.3. An ↵-ladder system is a sequence Ā = hA� : � < !1i such
that for each � < !1, with ↵ dividing �, the set A� is a closed unbounded
subset of � and ot(A�) = ↵. We will always assume that hA�(⌧) : ⌧ < ↵i is
the increasing enumeration of the elements of A� . We say that an ↵-ladder
system hA� : � < !1i is thin if for any � < !1 the set {A� \ � : � 2 !1} is
countable.



BAUMGARTNER’S CONJECTURE AND BOUNDED FORCING AXIOMS 9

Definition 3.4. The ↵-Weak Club Guessing principle, denoted by WCG↵

says that there is an ↵-ladder system Ā such that for every club D ✓ !1

there is � 2 D such that ↵ divides � and ot(A�\D) = ↵. The ↵-Thin Weak

Club Guessing principle, denoted by TWCG↵, also asserts the existence of
such an Ā but with the additional requirement of being thin.

Thin (full) club guessing ladder systems have been considered in the lit-
erature in [21, 9]. Zapletal mentions [21, Section 1.A] that their existence
can be derived from ⌃ and shows [21, Section 2] how to force one with a
�-closed forcing notion.

Theorem 3.5. For indecomposable ordinals ↵ < � < !1, BPFA↵ implies

the negation of TWCG�.

Proof. By the ⌃1(H(!2)) generic absoluteness characterization of BPFA↵,
it su�ces to prove that for any thin �-club guessing sequence Ā there is an
↵-proper forcing notion shooting a club in !1 which is not guessed by Ā.

Fix a thin �-club guessing sequence Ā = hA� : � < !1i. We may assume
A� = ; if � does not divide �. Let P be the following forcing notion.
Conditions in P are countable subsets C of !1 such that

• C is closed in the order topology,
• ot(C \A�) < � for each � < !1 with � dividing �.

The ordering P on P is by end-extension. We need to show that P is
↵-proper. Let  be a su�ciently large regular cardinal and let C be a well-
ordering on H(). Pick an internally approachable tower M = hM� : � < ↵i
of countable elementary submodels of hH(),2,Ci such that Ā 2 M0. Put
⇢� = M�\!1. Let p 2 M0 be any condition in P . We need to find a condition
extending p and generic for the whole tower. For so doing, consider the C-
least !-ladder system B̄ and note that B̄ 2 M0.

Say that X ✓ !1 is M-accessible if the order type of X is strictly less than
⇢0 and X \ ⇢� 2 M�+1 for every � < ↵. Note that each A� is M-accessible
by thinness. For each M-accessible X ✓ !1 we construct by induction a
decreasing sequence of conditions p(�, X) for �  ↵ such that for each �  ↵
we have

(i) p(0, X) = p,
(ii) p(�, X) is a P -generic condition for hM� : � < �i,
(iii) if � = � + 1, then p(�, X) \ (A⇢� [X) ✓ p [ {⇢" : "  �}.
(iv) p(�, X) 2 M� for successor � and p(�, X) 2 M�+1 for limit �.

Here M↵+1 = H(). In order to guarantee that (iv) holds, we will also
require the following conditions:

(v) p(�, X) =
S

n<! p(B�(n), X [A⇢� ) for limit �,
(vi) p(� + 1, X) = p(�, X) for limit �,
(vii) if � < ↵ is zero or successor, then p(�+1, X) is the C-least condition

which extends p(�, X) and satisfies (i), (ii) and (iii).

Put p(0, X) = p. Suppose �  ↵ and p(�, X) have been constructed for
all � < �. If � is limit, then p(�, X) is defined as in (v). If � = � + 1 and
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� is a limit, then p(�, X) = p(�, X). Suppose � = � + 1 and � is zero or a
successor, in which case p(�, X) 2 M�. We need to show that there exists a
condition extending p(�, X) and satisfying (ii) and (iii).

Enumerate all dense open subsets of P in M� into a sequence hDn :
n < !i (assume D0 = P ) and inductively construct a decreasing sequence of
conditions pn 2 M�\Dn such that p0 = p(�, X) and pn\(A⇢�[X) = p(�, X).
Suppose pn 2 M� has been constructed and let ⌘n = sup(pn). Consider the
function f : !1 \ ⌘n ! !1 defined as follows: for ⌫ 2 !1 \ ⌘n let q⌫ be the
C-smallest condition which extends pn [ {⌫} and belongs to Dn+1. Then
we define f(⌫) as the maximum of q⌫ . Now let E ✓ !1 be the club of those
points greater than ⌘n which are closed under f . Note that f and E are in
M�, since they are definable from parameters in this model. It follows that

ot(E \ ⇢�) = ⇢� > ot(A⇢� [ (X \ ⇢�)).

Choose two elements ⌫0 < ⌫1 < ⇢� of E such that [⌫0, ⌫1] \ (A⇢� [ (X \
⇢�)) = ;. We can choose pn+1 to be q⌫0 .

Now the condition
S

n<! pn [ {⇢�} is P -generic for M� and for the whole
subtower hM" : " < �i and satisfies (ii) and (iii). Let p(�, X) be the C-
smallest condition with these properties and note that p(�, X) 2 M� , since
this condition is definable (using the order C of H()) from p, X \ ⇢� and
hM" : " < �i. This ends the successor step of the inductive construction.
It is immediate that the condition p(↵, ;) is generic for the whole tower
hM� : � < ↵i. ⇤

The following proposition (due to Shelah) appears in [9, Proposition 3.5]
for full club guessing ladder systems. The proof for weak club guessing is
exactly the same. We provide it for the reader’s convenience.

Proposition 3.6. Let Ā = hA� : � < !1i be a thin �-ladder system and

P a �-proper notion of forcing. If Ā witness TWCG�, then Ā witnesses

TWCG� in any generic extension with P .

Proof. Let Ė be a P -name for a club and p a condition in P . It su�ces
to prove that there exist an ordinal ⇢⇤ and a condition q  p such that
q forces that the intersection of Ė with A⇢⇤ has order type equal to �.
For so doing, let  be a su�ciently large regular cardinal and consider an
internally approachable tower M = hM" : " 2 !1i of countable elementary
substructures of H() such that Ā, P , Ė and p are in M0. Let F be the
club of those countable ordinals ⇢ such that ⇢ = M⇢ \!1. Now, by TWCG�

(applied in V ), there exist ⇢⇤ 2 F such that ot(A⇢⇤ \F ) = �. Note that for
each ⇢ 2 A⇢⇤ \ F , any (M⇢, P )-generic condition forces that ⇢ 2 Ė. So, it
su�ces to prove that there is a condition extending p which is generic for all
elements of the tower M⇤ = hM" : " 2 A⇢⇤ \ F i. Given that P is �-proper,
this can be reduced to proving that M⇤ is internally approachable, which is
true by the assumptions that Ā is thin andM is internally approachable. ⇤
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Corollary 3.7. For every indecomposable ordinal � < !1 the principle

TWCG� is consistent with BPFA� (or PFA�), relative to a reflecting car-

dinal (or a supercompact).

Proof. We prove only the PFA version. The proof is very similar to the
usual proof of the consistency of PFA, and so we omit the details. We start
with a ground model with a supercompact satisfying TWCG� (there is one
by the results of [21]). The generic extension that we need is obtained by
a countable support iteration of length a supercompact cardinal, where in
each step of the iteration we only consider names for �-proper partial orders.
Since the countable support iteration of �-proper forcing notions is �-proper
[14, Chapter V, Theorem 3.5] and �-proper forcing preserves TWCG� , we
get a model of both, PFA� and TWCG� . ⇤

Together, Theorem 3.5 and Corollary 3.7 prove Theorem 1.3. The sepa-
ration of the axioms PFA↵ for indecomposable ordinals ↵ < !1 appears in
Shelah’s [14, Chapter XVII, Remark 3.15]. We are not aware, however, if the
separation with the bounded versions has ever appeared in the literature, so
we mention it in the following corollary.

Corollary 3.8. For indecomposable ordinals ↵ < � < !1, BPFA� (or

PFA�) does not imply BPFA↵, relative to a reflecting cardinal (or a su-

percompact).

Proof. By Corollary 3.7 there is a model of BPFA� (or PFA�) and TWCG� ,
relative to a reflecting cardinal (or a supercompact). It cannot satisfy
BPFA↵ by Theorem 3.5. ⇤

In the remaining part of this section we will prove Theorem 1.4. We will
need an additional piece of notation. Given an indecomposable ordinal � and
a cardinal   !1, a (�,)-system is a sequence Ā = hA↵

� : ↵ 2 , � 2 !1i
such that for every ↵ and �, with � dividing �, the set A↵

� is a closed
unbounded subset of � of order type �. A (�,)-system Ā is thin if for any
� 2 !1, the set {A↵

� \ � : ↵ < , � 2 !1} is countable.
Note that a (�,)-system Ā can be enumerated as (Ā� : � < !1), but then

we must remember that Ā� need not be cofinal in �. Such enumerations will
be used in the proof of Theorem 1.4 below.

The principle WCG
� asserts the existence of a (�,)-system Ā = hA↵

� :
↵ 2 , � 2 !1i such that for every club D ✓ !1, there exists � 2 D and
↵ 2  such that � divides � and ot(A↵

� \ D) = �. The principle TWCG
�

says exactly the same that WCG
� with the additional requirement that Ā

must be thin.

Lemma 3.9. For any indecomposable ordinal �, TWCG� is equivalent to

TWCG@0
� and the same holds for the non-thin versions.

Proof. The two statements have the same proof. We only focus on the thin
versions and we show that TWCG@0

� implies TWCG� . So, let hAn
� : n 2
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!, � 2 !1i be a (�,@0)-system witnessing TWCG@0
� . We define a thin �-

ladder system hB� : � 2 !1i as follows. First, for each � divisible by � fix a
cofinal sequence h�n : n 2 !i ✓ � of order type !. Define B� =

S
{Bn

� : n 2
!}, where Bn

� is equal to An
� \�n . Now hB� : � 2 !1i is a thin system. To see

this, notice that for each � 2 !1 if � > �, � 2 !1 is divisible by �, then only
finitely many of the �n are below � and hence B� \ � is a union of finitely
many of the sets An

� \ � \ �n. The fact that hB� : � 2 !1i witnesses TWCG�

follows directly from the assumption that hAn
� : n 2 !, � 2 !1i witnesses

TWCG@0
� . ⇤

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. The fact that TWCG↵ does not imply TWCG� fol-
lows directly from Theorem 1.3. Alternately, to derive this just in ZFC, one
can start with a model of TWCG↵ + CH + 2@1 = @2 and then force with
a countable-support iteration of length !2 of ↵-proper forcings, killing all
�-thin club sequences.

Now we prove that TWCG� implies TWCG↵. Assume TWCG↵ fails.
We will show by induction on ↵0 2 [↵,�] that TWCG↵0 fails. In fact, we
will show that if Ā = {Ā� : � 2 !1} enumerates a thin (↵0,@0)-system,
then there exists a club D such that for every � 2 !1 the intersection of Ā�

with D has order type strictly less than ↵. The case ↵0 = ↵ follows from
Lemma 3.9. Assume ↵0 > ↵ and fix an enumeration {Ā� : � 2 !1} of a thin
(↵0,@0)-system Ā. For each ordinal � find an increasing cofinal sequence
{�n : n 2 !} ✓ Ā� of limit points of the set Ā� such that the order types of

A0(�, 0) = Ā� \ �0

and
A0(�, n+ 1) = (Ā� \ �n+1) \ �n

are indecomposable ordinals greater than or equal to ↵. Now, consider the
thin system enumeration

A0 = {A0(�, n) : � 2 !1, n 2 !},
and note that for each indecomposable ⇡ in the semi-open interval [↵,↵0),
the inductive hypothesis ensures the existence of a club C⇡ such that for
every � and for every n if the order type of A0(�, n) is equal to ⇡, then
ot(A0(�, n) \C⇡) < ↵. Note that if Ā is thin, then the set of those elements
of A0 whose order type is equal to ⇡ is a (⇡,@0)-system. Let C be the
intersection of all the C⇡. Now define the set B̄� as follows:

B̄� = {�n : n 2 !} [
[

{A0(�, n) \ C : n 2 !}.

Note that this set has order type at most ↵. Also note that if � < sup Ā�,
then B̄�\� is equal to the union of Ā�\�\C together with a finite subset of
sup Ā�. Therefore the system B̄ = {B̄� : � 2 !1} is thin. Finally, find a club
D ✓ C witnessing that the system B̄ does not guess in the (↵,@0)-sense.
Now D is as desired. ⇤
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4. Remaining questions

There are some questions which this papers leaves open.

Question 4.1. Is BFA(�-closed ⇤ ccc) equivalent to BAAFA?

Question 4.2. Is strong Axiom A equivalent to the fact that the product

with every �-closed forcing is <!1-proper?

Question 4.3. Does Theorem 1.4 hold for WCG↵ in place of TWCG↵?

Question 4.4. Is every Axiom A forcing embeddable into a finite iteration

of �-closed and ccc forcings?

Question 4.5. Does BFA(�-closed ⇤ ccc) imply 2@0 = @2?
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[1] D. Asperó. A maximal bounded forcing axiom. The Journal of Symbolic Logic,
67(1):130–142, 2002.

[2] J. Bagaria. Bounded forcing axioms as principles of generic absoluteness. Archive for

Mathematical Logic, 39(6):393–401, 2000.
[3] J. E. Baumgartner. Iterated forcing. In Surveys in set theory, volume 87 of London

Math. Soc. Lecture Note Ser., pages 1–59. Cambridge Univ. Press, Cambridge, 1983.
[4] J. E. Baumgartner and R. Laver. Iterated perfect-set forcing. Annals of Mathematical

Logic, 17(3):271–288, 1979.
[5] M. Bekkali. Topics in set theory, volume 1476 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 1991. Lebesgue measurability, large cardinals, forcing ax-
ioms, rho-functions, Notes on lectures by Stevo Todorčević.
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