THE ROLE OF ENVIRONMENTAL IMPACT ASSESSMENT (EIA) IN PROTECTING ANCIENT WOODLAND POTENTIALLY AFFECTED BY MAJOR DEVELOPMENT PROJECTS

by

Philip D. Ricketts

Thesis presented in part-fulfilment of the degree of Master of Science in accordance with the regulations of the University of East Anglia

School of Environmental Sciences
University of East Anglia
University Plain
Norwich
NR4 7TJ

© 2004 Philip D. Ricketts

This copy of the dissertation has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the dissertation, nor any information derived therefrom, may be published without the author’s prior written consent. Moreover, it is supplied on the understanding that it represents an internal University document and that neither the University nor the author are responsible for the factual or interpretive correctness of the dissertation.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>2</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Methodology</td>
<td>11</td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>• Case 1</td>
<td>16</td>
</tr>
<tr>
<td>• Case 2</td>
<td>21</td>
</tr>
<tr>
<td>• Case 3</td>
<td>26</td>
</tr>
<tr>
<td>• Case 4</td>
<td>30</td>
</tr>
<tr>
<td>• Case 5</td>
<td>35</td>
</tr>
<tr>
<td>Discussion</td>
<td>39</td>
</tr>
<tr>
<td>• Case 1</td>
<td>39</td>
</tr>
<tr>
<td>• Case 2</td>
<td>40</td>
</tr>
<tr>
<td>• Case 3</td>
<td>41</td>
</tr>
<tr>
<td>• Case 4</td>
<td>43</td>
</tr>
<tr>
<td>• Case 5</td>
<td>44</td>
</tr>
<tr>
<td>Conclusions</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td>49</td>
</tr>
<tr>
<td>Appendices & Maps</td>
<td>53</td>
</tr>
</tbody>
</table>
Acknowledgements

Thank you to Alan Bond for his supervision, and to Jon Gurr for his help in the early stages of the project. Also thank you to Alan Ovenden for his help with the maps.

I would to thank the Woodland Trust for help on some aspects, particularly Graham Bradley, without whom this project may not have been possible.

I am very grateful to the staff in the planning departments of Chorley Borough Council, Surrey County Council, Rutland County Council, Sevenoaks District Council and East Dorset District Council for their help with finding documents and photocopying.

Lastly, thank you to my family and Sally.
Abstract

This is a study to assess the role of Environmental Impact Assessment (EIA) in protecting ancient woodland potentially affected by major development projects, with an aim to gaining an indication of the extent to which that role is effective in achieving the overall goals of EIA.

Ancient woodland is a valuable environmental resource to society and its protection is consistent with principles of sustainable development. EIA has been developed as a tool for sustainable development in planning, yet its effectiveness in this role is uncertain. Ancient woodland in the UK has been shown to be threatened by many factors, including by proposals for major development projects. These types of projects are commonly subject to EIA requirements, after the implementation of the EU EIA Directive in 1988.

The study is carried out by assessing the role of EIA in five different planning cases based in England, by reviewing all the relevant obtainable literature associated with those cases. Conclusions are then drawn from the five cases in turn, with an aim to drawing more general inferences about the role and effectiveness of the EIA process in protecting ancient woodland.

It was found that EIA does have a role to play in protecting ancient woodland potentially affected by major developments; largely by aiding the consideration of alternative options in design, providing adequate information on the impacts to decision makers and other stakeholders, and by proposing mitigation and management plans. However, the extent to which EIA is effective in this role is not always clear and can vary to a large extent dependent on the situations of each case.
Introduction

Environmental Impact Assessment and planning in the UK

Environmental Impact Assessment is a systematic process that examines the potential environmental consequences of development actions (Glasson et al., 1999). The establishment of formal EIA procedures became mandatory in all EU Member States, including the UK, in 1988 after the implementation of Directive 85/337/EEC (CEC, 1985). This was later amended by Directive 97/11/EC, which came into force in 1999 (CEC, 1997). The legislation outlines the types of projects that will always require an EIA (Annex I of the Directive) and those for which there is discretion allowed as to the need for an EIA (Annex II of the Directive) (Glasson et al., 1999). The projects that require EIA are typically large-scale, such that the number of Environmental Impact Statements (EISs) submitted each year in the UK typically ranges in the hundreds (Glasson et al., 1999). The EIS is the culmination of an EIA; a comprehensive document providing a range of information on the project including an assessment of the environmental aspects likely to be affected by the project and any measures proposed to prevent, reduce and offset the adverse impacts of the project (mitigation measures) (Glasson et al., 1999). The required contents of an EIS, including the environmental aspects which need to be assessed, are outlined in Annex IV of the Directive. The EIS is submitted to the relevant competent authority, which in the UK is most commonly the Local Planning Authority (LPA). The word ‘impact’ is now used less in Environmental Impact Assessment practice in the UK, after the UK government decided to avoid its use (Bond, 1997), and as such the terms EA (Environmental Assessment) and ES (Environmental Statement) are now often used. However, EIA and EIS are the terms used in this study.

The UK planning process is based on a land use planning and development control system, whereby the large majority of developments require planning permission from the LPA (Cullingworth and Nadin, 2002). The EIA Directive was implemented in the UK via a series of regulations, although those requiring planning permission are regulated under the Town and Country Planning (Environmental Impact Assessment) (England and Wales) Regulations 1999 (HMSO, 1999) and the equivalent regulations in Scotland (SE, 1999) (Morris and Therivel, 2001). The term ‘full EIA’ in this study refers to an EIA carried out as required by the relevant legislation. Before the implementation of the EIA Directive in 1988, the UK government felt that its current procedures adequately controlled environmentally unsuitable developments and indeed some EIAs were carried out voluntarily or at the request of LPAs.
However, implementation formalised procedures and standardised what was required to a greater extent (Glasson et al., 1999).

When considering an application, a LPA makes an assessment in the context of the development plan for the area. The most relevant plans are usually the Local Plan at district, borough and city council levels and the Structure Plan at county level. The Town and Country Planning Act 1990 requires that planning applications should be determined in accordance with the development plan unless material considerations indicate otherwise (Cullingworth and Nadin, 2002). ‘Material considerations’ may include many issues, including relevant environmental information. The EIS, and the result of consultations on it, are part of this information and so qualify as ‘material considerations’ (Glasson, 1999). The decision on whether to grant permission is made by the planning committee of the LPA. An appointed planning officer gathers together all the relevant information on an application, considers the issues at hand, and writes a report to the planning committee to aid their decision on the application. This will often contain a recommendation on whether to accept or reject the application, and the reasons for this. In the majority of cases the planning committee accept the officer’s recommendation without significant discussion (Cullingworth and Nadin, 2002). If the committee reject the application then the applicant can appeal, which may lead to a public inquiry where an independent planning inspector hears the evidence and then decides on the issues at hand. An application may also be subject to a ‘call in’ by the relevant Secretary of State (SoS), commonly if the SoS considers that the application may affect issues that are of wider than local importance or that there is a departure from the development plan. This will also usually result in a public inquiry. The ultimate decision on whether to give permission in these cases rests with the SoS (Cullingworth & Nadin, 2002). The EIS, as in the local authority review process, is part of the environmental information taken into account. However, by this stage the EIS is often supplemented by a larger amount of additional up to date environmental information (Weston, 1997).

Ancient woodland and the threat of development

Ancient woodland is defined in England and Wales as land continuously wooded since at least 1600 AD (Spencer and Kirby, 1992). This is not to say that ancient woods have been untouched by human activity. Ancient woodlands have often been cut and managed, for example by coppicing, and others have been planted in areas with trees for timber, such as non-native conifers (Spencer and Kirby, 1992). Only approximately 2% of the land area of Great Britain is covered by ancient woodland (LUC, 2001). Ancient woodland is now
recognised as one of our most valuable habitats because of its high level of biodiversity and cultural and historical significance (Peterken, 1977; Rackham, 1990; Thomas et al., 1997). Such woodland has been identified as the most important category of woodland for nature conservation (Thomas et al., 1997) and the importance of ancient woodland and diverse woodland habitats in general is indicated from a variety of sources. For example, the EU Habitats Directive includes various temperate forests of Europe, including old sessile oak woods with holly *Ilex* and hard-ferns *Blechnum* spp. in the British Isles (CEC, 1992). The UK’s sustainable development strategy (DETR, 1999a) and England’s forestry strategy (Forestry Commission, 1998) specifically mention the need for the conservation of ancient woodlands.

There are various threats to the survival of ancient woodland in the UK, of which major development is one (Woodland Trust, 2000). Although the level of threat to ancient woodland has generally decreased since the end of the 1970s (Rackham, 1990), ancient woodland is still at risk from development because of its lack of solid protection in the UK planning system (Woodland Trust, 2000). Eighty-five percent lies outside of areas of statutory protection, such as within Sites of Special Scientific Interest (SSSIs) (Thomas et al., 1997). National planning policy guidance (in PPG 9: Nature Conservation, DoE, 1994) refers to the nature conservation and amenity value of ancient woodlands that may lie outside non-designated sites, but offers no further guidance to LPAs on how to assess projects that affect ancient woodland (LUC, 2001). Local development plans may, however, contain policies referring to the conservation and value of ancient woodlands (LUC, 2001). Single trees, groups of trees or woods may hold a Tree Preservation Order (TPO) to prohibit their damage or destruction. TPOs are, however, issued by LPAs and therefore LPAs can give consent for the removal of trees under a TPO to make way for a development (BSI, 1991).

The initial identification of a wood as ‘ancient’ in planning cases affecting ancient woodland is obviously important. English Nature holds an Ancient Woodland Inventory (AWI) of ancient woodlands greater than two hectares in size (Spencer and Kirby, 1992). These woods were identified from historical records and field surveys. However, many fragments smaller than two hectares may not have been identified (Morris, 2001).

In 2001 a study was commissioned by the Woodland Trust (a non-statutory, woodland conservation charity) and the WWF (UK) to ascertain the level of threat to ancient woodland from development (LUC, 2001). The study concluded that ancient woodlands were under continued threat from development, including from major infrastructure projects. Such projects are commonly subject to EIA requirements. In 2002 the Woodland Trust highlighted
such a threat in a report outlining the possible impact of proposed airport expansion projects on ancient woodlands (Woodland Trust, 2002a).

The UK government has been in consultations in recent years over imminent reforms to the planning system in England and Wales (DTLR, 2001), and it is unknown exactly how these changes will affect the level of protection afforded to ancient woodland from the planning system. However, the Woodland Trust has outlined its feelings on the subject via a number of consultation responses (Woodland Trust, 2002b; Woodland Trust, 2002c).

How EIA can aid the protection of ancient woodland

Sadler (1996) divides the purposes of EIA into two categories; the ‘immediate’ purpose and the ‘ultimate’ purpose. The ‘immediate’ purpose is to ‘facilitate sound environmental decision-making in which environmental considerations are explicitly included’, and the ‘ultimate’ purpose is ‘achieving or promoting the ultimate goals of environmental protection and sustainable development’. Therefore, to summarise in an alternative way, the goals of EIA are to:

- Provide adequate environmental information to decision makers
- Minimise the environmental damage caused by developments as an aid to sustainable development

This includes, in some cases, aiding the prevention of projects gaining planning permission where unacceptable impacts on the environment are predicted to occur (Glasson et al., 1999). The destruction of ancient woodland is effectively irreversible (LUC, 2001), and so is against the principles of sustainable development (WCED, 1987). The UK government acknowledges this, as ancient semi-natural woodland is one of the government’s ‘Quality of Life Counts’ indicators of sustainable development (DETR, 1999b). Therefore the EIA process should aim to avoid damage and destruction to ancient woodland, where developments are involved which affect such woods.

The effectiveness of EIA can be judged in relation to the achievement of its goals (Sadler, 1996). In the UK the effectiveness of EIA in achieving its goals with respect to ancient woodland is unknown at present, and this is what this study aims to investigate. This will be carried out by first determining the role of EIA in protecting ancient woodland in five planning case studies. These case studies are used as a sample of planning cases requiring
EIA that affect ancient woodland as a whole. As such, an indication of the effectiveness of EIA with respect to ancient woodland shall be gained.

The ways in which EIA, in theory, can aid the protection of ancient woodland affected by major development projects is outlined in the sections below. These sections represent different stages of the EIA process and are used in this study as categories to aid the evaluation and review of the cases. Information on the role of different stages in the EIA process is taken from Glasson et al. (1999).

- **Consideration of Alternatives**

At the early stages of a project proposal an EIA can consider alternatives which may avoid impacts to ancient woodland altogether. Once the main alternatives have been chosen and the site of the proposal is largely finalised, EIA can then assess other aspects for their impacts on ancient woodland (such as alternative designs and layouts) and so identify areas where reductions in impact can be made. In this way EIA can aid the prevention of adverse impacts, rather than simply proposing measures to mitigate against them. EIA’s role in this respect is to ensure that environmental criteria are taken into account in the early stages of decision-making.

An EIA can also provide an opportunity for the public and other stakeholders to participate in the consideration of alternatives and at many stages of the process.

- **Impact Identification and Assessment**

EIA, through a thorough and systematic process can first identify and then describe the direct and indirect impacts on ancient woodland fully. Ideally, this gives decision makers an accurate and comprehensive picture of the impacts upon which to make their decisions.

- **Impact Evaluation**

EIA can then evaluate these impacts, to ensure that they are justly taken account of in the decision making process by outlining their true significance.
• Impact Mitigation and Monitoring

EIA can suggest measures to mitigate against impacts, which can be incorporated into the design of the project. In terms of the loss of ancient woodland, given the length of time needed for a new wood to acquire the characteristics of an ancient woodland (Rackham, 1990) true mitigation is impossible. However, more indirect impacts can be more effectively mitigated. Also, remedial or compensatory measures can be used when there is direct loss (Morris and Emberton, 2001), such as translocation of ancient woodland soils to create a new wood. Mitchell’s (1997) hierarchy of mitigation makes it clear, however, that compensatory measures are ‘lower’ forms of mitigation than avoiding or minimising impacts.

An EIA can also outline monitoring proposals to monitor the impacts during and after the construction of a project, to ensure that if unexpected adverse impacts occur then new measures to mitigate against them can be designed and implemented.

Previous Research

To the author’s knowledge no previous studies have investigated the relationship between EIA and ancient woodland in this way. However, a number of studies in the past ten years have attempted to investigate the effectiveness of EIA in the UK using a number of different approaches. Many have used the quality of EISs as a measure of effectiveness (e.g. Barker & Wood, 1999). Others have investigated effectiveness largely in terms of the influence that the EIA process has on planning decisions. Wood and Jones’ (1997) study is the most well known of this type. This study looked at 40 separate project decisions by reviewing the literature and interviewing the planning officers involved, and concluded that EIA has had a ‘gradual rather than revolutionary affect on decision-making’. The consensus from this and other studies (e.g. Blackmore et al., 1997) is that EIA rarely changes decisions on whether to give permission to projects, since other factors are considered more important (Glasson, 1999). However, modifications to projects and planning conditions often result from the EIA process. Planning officers have also often stated that they benefit from having a concise document of environmental information available to them (Glasson, 1999).
Aims and Objectives of the Study

As stated above the overall objective of the study is to gain an indication of the effectiveness of EIA in relation to the protection of ancient woodland. This objective shall be achieved by the following aims:

- To determine the role of EIA with respect to the protection of ancient woodland in several case studies.
- To combine the information gained on the role of EIA from the case studies to draw general conclusions.
- To use these conclusions to compare the role of EIA in this respect to its effectiveness in achieving its overall aims.
Methodology

Case Study Approach

Once the research question to be asked in this study had been accurately formulated, time was taken to consider the most effective way of evaluating it. It was determined that a case study approach, using planning cases in the recent past which had the potential to affect ancient woodland, was the best method to deliver reliable results with the resources available. Yin (1989) considers that the case study method is most suitable where the question being posed is explanatory (‘how’ or ‘why’ questions), where the investigator has little control over events, and when the focus is on a contemporary phenomenon within a real-life context. ‘Exploratory’ and ‘descriptive’ questions can also be evaluated using case studies. The question involves both explanatory (investigating ‘how’ the EIA process works when ancient woodland is involved) and exploratory elements (asking ‘what’ the role of EIA is in this situation). There is also no control over events, and the phenomenon is contemporary with a real-life context. The case study approach has been used before in EIA research (e.g. Palerm, 1999; Ahammed and Harvey, 2004).

The only reasonable alternative to a case study approach would be using a questionnaire approach. Questionnaires could be targeted at those who had most knowledge over the topic of the question, i.e. planning officers that had dealt with such cases and perhaps those with in depth knowledge of woodland conservation. However, such a questionnaire approach was considered the weaker option in this situation because of the following reasons:

- The questions asked could only be general, not specific to real cases and therefore divorced to some extent from real practice.
- Answers would be subject to bias, since the previous experience of the respondent of such cases would vary to a great extent, and their personal views on woodland conservation may also cloud their responses.
- Response numbers are likely to be low, leaving a small sample size, since those asked would be individuals with already high demands on their time. Previous students’ experience of this phenomenon gives this view weight (e.g. Morgan, 1998; Drewett, 2000).

The case study approach was therefore considered preferable because of the opportunity to look closely at real practice, by examining recent planning cases in an objective manner. The
case study approach has, however, been criticised in the past (Yin, 1989), and so care must be taken to ensure case studies are chosen in a manner that provides as representative a sample as possible to allow some form of generalisation, and that analysis is also rigorous to avoid accusations of bias.

The first step was to identify cases suitable to study and to determine a number to study that was reasonable with the time and resources available. For this task advice from the Planning Case Studies Officer at the Woodland Trust (Graham Bradley) was sought. His role in the Woodland Trust is to investigate any planning proposals where a possible threat to ancient woodland is present, and then to prompt opposition to those proposals if it is deemed worthwhile. Therefore, it was considered that given his knowledge in the subject area and the records at his disposal, he was an ideal candidate to suggest a list of possible suitable case studies. This was providing that there was no bias given in the cases suggested, and for this reason all cases that the Trust had knowledge of were requested and personal research into possible cases was also carried out.

A list of cases was selected under these criteria:

Planning applications where -

- A ‘full EIA’ was carried out
- There was potential for significant impacts on ancient woodland, either direct or indirect, at least at the time that the EIA was initiated.

The list of cases taken from the Woodland Trust and others found by personal research is shown in Appendix C. The Woodland Trust cases were selected from all cases that the Trust had knowledge of in the last five or more years, which met with the criteria. Some cases were found not to have been subject to full EIA, as was first thought (particularly some large-scale housing developments) and so these were discounted. The cases were later screened under more criteria as outlined below:

- The EIA had to be submitted after the implementation of the amended Directive (97/11/EC) in March 1999. This was in order to consider only recent practice that is relevant today, and to ensure a ‘level playing field’ on which to compare cases due to changes made by this Directive.
• Cases had to be based in England. This was due to the extra resources needed to travel to planning offices in Wales and Scotland, and because of differences in planning policy and systems outside of England. Therefore the study changed from one investigating UK practice, to a study focussing on English practice alone.

Research was carried out determine which of the cases met these criteria, and at the end of this process five remained. It was decided that these cases would be studied, and they are thought to constitute as representative a sample as possible for this study, according to the criteria above.

Information Gathering

The minimum information that needed to be viewed in order to make a reasonable judgement on the role of EIA in each case with respect to the ancient woodland, was considered to be:

• The Environmental Impact Statement
• The planning officer’s report to the planning committee
• The decision notice of the planning authority
• The decision letter of the public inquiry (if relevant)

Other supplementary information that would aid analysis was deemed to be:

• Relevant consultation responses (although many are often summarised in the planning officer’s report and EIS)
• Comments of those with in-depth knowledge of the cases
• Other relevant plans and information present in the planning file not in the EIS or planning officer’s report.

This information was viewed at the appropriate planning offices over a period of approximately one month during May and June 2004. Photocopies were made of sections of the documents most relevant to the study. The information gathered was then analysed as below.
Analysis

There are no strict rules or clear-cut approaches to analysing qualitative data (Bryman, 2001). With this in mind, two purpose-designed checklists were developed to aid analysis (copies are shown in Appendix B). The first checklist was designed to analyse the EIA process, and the second to analyse the development control process. Both checklists divided these processes into stages (or embedded units; see Yin, 1989) to look for the consideration of EIA and ancient woodland at each stage. Some stages were further broken down into specific questions to look for the fulfilment of certain criteria regarding the role of the EIA with respect to the ancient woodland involved. Therefore the analysis was to some extent, criteria-based. Various sources of information on EIA and conservation best practice were drawn from to aid designing the checklists. The stages examined in each of the two processes were:

EIA Process -

- Consideration of Alternatives
- Impact Identification and Assessment
- Impact Evaluation
- Impact Mitigation and Monitoring

Development Control Process -

- Consultations
- Planning officer’s considerations
- Planning committee decision
- Inquiry decision (if relevant)

After completion of the checklists and the summary of results from each stage, conclusions could then be drawn from each case regarding the role of the EIA in protecting the ancient woodland involved.

Limitations of the study

As it is impossible to obtain a truly representative sample of cases, the conclusions that are drawn are only strictly applicable to the particular cases studied, since each case is unique.
The greatest limitation of the study is the limits of obtainable information, and the conclusions that are drawn are only as reliable as the information obtained and my personal judgement on it. Assessing the role of EIA in isolation from other factors, such as consultations, is a complex task and clues to this effect are therefore sought in the literature.
Results

All information in this section is drawn from the EIS, planning officer’s report, and decision letters unless stated otherwise.

Case 1: Eaves Green Link Road, Chorley, Lancashire

Case Description

A proposal for a 1.35km single land road on the southern side of Chorley, Lancashire (Map 1). The purposes of the scheme were primarily to provide traffic relief on surrounding roads by completing a by-pass of the town and to improve access for the new Eaves Green residential area. Chorley Borough Council is the planning authority promoting the road.

Case History

The Eaves Green Link road proposal has a long planning history and has developed progressively over time. The first proposals for the road were made in 1974 in the New Town Outline Plan, as part of plans for extensive development to the south and west of Chorley town. In 1977 the Outline Plan was approved by the Secretary of State. In 1981 there was a public inquiry into proposed development in the Eaves Green area. By 1987, at the Chorley Town Local Plan inquiry, what became known as the ‘Red Bank Route’ for the road was favoured. In 1996 some early environmental assessment work was carried out by the Appleton Group, and it was suggested that different alignments of the route should be considered which may have less environmental impacts. Three alignments (A, B and C) proposed by the Appleton Group were considered by Lancashire County Council’s Highways Consultancy in 1998. Alternative C was the favoured option. Ancient woodland was a key consideration in decision-making, as alternative A would remove the most ancient woodland from Duxbury Woods Biological Heritage Site (BHS), and alternative B the least. However, alternative B would sever the Holy Cross School playing fields and so it was decided that an intermediate alignment (alternative C) should be favoured. In 1999 the funding for the road was secured and the full EIA process started. In 2001 the proposals were considered again at a Local Plan review inquiry where a consultation draft of the EIS was available for inspection.
In October 2002 the application was submitted and permission was granted in December 2002. Completion of the road is expected in December 2006 (Chorley Borough Council, 2003).

EIA Process

Consideration of Alternatives

As stated above, the proposals have developed considerably over time and alternatives have been considered at many stages. A chapter of the EIS is devoted to discussing the alternatives possible, from the earliest route plans to later more detailed design changes. Earlier versions of the route would sever large sections of woodland in the Duxbury Woods BHS, the majority of which is ancient woodland. Preliminary environmental assessment work, which included landscape and ecological assessments, considered the three alternatives of the Red Bank Route as outlined above. As this work was later used and was built upon in the full EIA work since 1999, it can be said that this assessment was part of the EIA process.

During 2000 the design was further developed to reduce impacts by steepening the gradient of cuttings and so reducing the land take needed, by moving the alignment further away from the woodland edge in certain areas, and by considering alternative bridge designs over the river Yarrow. Alternative options at the eastern edge of the route, which would avoid the Mill Wood river crossing (Carr Lane options) and therefore the ancient woodland at that location, are considered in the EIS. However, these were dismissed by the county council’s Environment Director since traffic would be diverted around already busy roads and close to St. Georges Primary School, which in his opinion would result in a deterioration in road safety.

Public Consultation on the alternatives occurred at the local plan review stages, and later after the initiation of the full EIA at a public exhibition in June 2000. A consultation draft version of the EIS was also available for public inspection and comments in February 2001.
Impact Identification and Assessment

Information was gathered from previous data, consultations, maps and many surveys between 1996 and 2002. A Phase 2 habitat assessment of the whole scheme corridor, utilising National Vegetation Classifications (NVC) (Rodwell, 1991 - 2000), was carried out in 2000 and many specialist species surveys were also undertaken. All statutory and many relevant non-statutory consultees were contacted.

The areas of ancient woodland affected by the route are clearly shown in the EIS, and the appendices contain diagrams showing the individual trees that would be lost. In total 0.37ha of ancient woodland in Duxbury Woods BHS was predicted to be lost. This is from two main areas, at the edge of the Holy Cross School playing fields and where the road crosses the river Yarrow and joins with the A6 Bolton Road (Map 1). This would also cause related species impacts due to the loss of habitat. Other impacts specifically in terms of the ancient woodland are predicted to be the risk of pollution incidents or run-off affecting the sensitive wet-flush habitats in the woodland, and minor effects of air pollution at the edges. Little consideration is given to the potential effects of possible further consequential development as a result of the road.

Impact Evaluation

Good practice guidance is used to assess significance, in terms of Ratcliffe’s (1977) criteria and the DETR guidance on trunk road appraisal (DETR, 1998). The loss of 0.37ha of ancient woodland is considered to be a major adverse impact, although it is stated that it is a small area (0.8% of the ancient woodland at the site). The potential for hydrological impacts on the woodland are also considered significant, although they are stated to be of low risk with mitigation measures in place. It is clear that overall the EIS considers the loss of ancient woodland as one of the most significant impacts of the development.

Impact Mitigation and Monitoring

The relevant mitigation measures proposed are:

- Salvage and translocation of ancient woodland soils together with selected trees and shrubs.
- New native woodland planting.
• Road run-off treatment and dispersed discharge to woodlands.
• Many species-specific mitigation measures.

It is acknowledged that it is impossible to recreate ancient woodland within the time scale available. The majority of the mitigation measures are described in detail.

A nature conservation and access management plan of Duxbury Woods BHS is proposed with monitoring of both habitats and species.

Development Control Process

Relevant Consultation Responses

Lancashire County Council (Ecology) expressed concern that the mitigation proposals do not represent adequate compensation for habitats of substantive nature conservation value. Lancashire County Council (Landscape) stated that ancient woodland is a priority for conservation and as such, the proposals are contrary to landscape policy. English Nature was satisfied with the mitigation proposals but would prefer to see the route diverted to avoid the BHS. The Woodland Trust objected, and would prefer an alternative route (a Carr Lane option). Concern was expressed by the Trust about the effects of having the road so close to the northern edge of the wood. They stated that the translocation of habitat as proposed has had minimal success in the past. Chorley Civic Society supported the proposals and doubt that Duxbury Woods is truly ancient woodland as it has been affected by man’s activities in the past. However, this statement represents a misunderstanding of the meaning of ancient woodland as they comment that the only woodland that can be classed as ‘ancient’ in Britain today is small remnants found on steep hillsides in Scotland. Letters of support and objection were received from the public and the loss of ancient woodland was one of the key issues highlighted.

Planning Officer’s Report

Comments on EIS quality

The EIS is described as ‘comprehensive’ and ‘providing a fully detailed assessment of the proposal’s likely environmental effects’. However, there is no mention of whether an
independent review was carried out. The EIA process is acknowledged to have resulted in changes being made to the scheme and a ‘considerable package’ of mitigation measures.

Planning Considerations and the Planning Officer’s Comments on them

It is clearly stated that the inspector at the Chorley Borough Local Plan review inquiry 2001 considered the issues involved. The inspector supported the inclusion of the scheme in the plan and considered the effect on Duxbury Woods to be the main environmental harm associated with the scheme. The planning officer had to consider whether any material considerations were of such weight that they indicated that the proposal should not be decided in accordance with the development plan, as stated by the Town and Country Planning Act 1990. Despite part of the road encroaching into Green Belt, it was considered that there were no suitable alternatives to this. The woodland areas affected are described and it is noted that the most harm would occur where the road crosses the river Yarrow and joins with the A6, where the woodland is of highest quality. The officer states that as only a small percentage of the woodland would be lost ‘the overall integrity of the very substantial area of woodland at Duxbury would not be affected’. It is also stated that ‘the intended salvage and translocation of ancient woodland soils etc., and new native woodland planting mitigate the impacts on the woodland habitat’.

Conclusions and Recommendations

The local plan inquiry inspector considered that the benefits of the proposal were sufficient to outweigh the harm caused to the various interests of planning importance. The primary benefits would be traffic relief on local roads and a second access into Eaves Green housing area. The planning officer concludes that ‘…there are no other material considerations of such weight as to indicate that the application should be decided other than in accord with the development plan’. He also notes that ‘…in any event, a very considerable package of mitigation measures has been prepared to reduce the impacts of the scheme to what I consider to be an acceptable level’.

The Council was recommended to grant permission and permission was granted in December 2002 with conditions. The conditions stated that the road ‘…shall only be constructed in conjunction with the mitigation measures specified in the Environmental Statement’.
Case 2: Copyhold Works, Redhill, Surrey

Case Description

A proposal for an Energy from Waste (EfW) incinerator plant capable of processing approximately 225,000 tonnes of municipal and commercial waste per annum. The proposed site was located immediately to the north of the A25 (Nutfield Road), just east of Redhill in the Metropolitan Green Belt (Map 2). The site extends to 16.1ha and was most recently used for quarrying and processing Fuller’s earth. The site is now no longer used for this purpose.

Case History

The site is believed to have been used for the processing and quarrying of Fuller’s earth since the turn of the 20th Century. The reserves in this area are now largely exhausted and large areas have been backfilled and restored. Processing of Fuller’s earth ceased in 1997. This case was the third planning application for an EfW plant at the site.

In October 1993, European Development Corporation Limited (EDC) submitted an application for an EfW plant, but the application was withdrawn before it could be determined by the county council.

In September 1994, EDC submitted an amended proposal where the same process was involved as the 1993 application but the floor space area was smaller. The applicant, because of non-determination by the council, lodged an appeal and a public inquiry was held in 1995/6. In July 1996 the Secretary of State (SoS) for the environment dismissed the appeal and refused planning permission. The SoS had to consider whether there were ‘very special circumstances’ to justify inappropriate development in the Green Belt. The inquiry inspector concluded that the need for the development did not constitute the ‘special circumstances,’ there would be harm to the openness and visual amenities of the Green Belt, an environmental impact would occur from the traffic generated, but the effects of pollution from the plant would not be harmful. Ecology was not considered by the inspector or the SoS to be an issue.

In May 1999, Surrey Waste Management (SWM) was selected as the contractor responsible for the disposal of Surrey’s waste over the next 25 years. As part of their contract, SWM was required to reduce the amounts of waste going to landfill. In order to help fulfil their contract obligations SWM devised a programme of development which included proposals for an EfW plant at Copyhold Works and another at Clockhouse near Capel.
In June 2000 SWM submitted their Copyhold proposal together with a large EIS. In December 2001 Surrey County Council’s planning committee refused the application. The Clockhouse, Capel application was approved but a local action group brought a Judicial Review against Surrey County Council, on the grounds that the committee had not followed due process. In November 2002 the planning committee’s decision was overturned and SWM has therefore now withdrawn both of these proposals (SWM, 2004).

EIA Process

Consideration of Alternatives

In 1995 Surrey County Council, as part of their preparation for the Surrey Waste Local Plan, undertook a survey of potential sites for EfW facilities within the county. This included some environmental assessment. SWM used the ten sites identified in this work to carry out their own limited environmental appraisal. The sites were assessed against a wide range of criteria using a three point scoring system. Ecological constraints were one of the criteria that the sites were assessed against. The analysis concluded that there were no ideal sites but Clockhouse scored highest (due to its location outside the Green Belt) with Copyhold second (due to its previous industrial use and good access to the road network). It seems, however, that the availability of the land to SWM was taken into account during this assessment. This was an approach which was later criticised by the planning officer since it was seen as not relevant.

Alternative methods of meeting the waste disposal needs of Surrey are considered in the EIS, but the proposal was considered by SWM to be the Best Practicable Environmental Option (BPEO).

Despite the early environmental appraisal of alternative sites by SWM it appears that the full EIA process began after the site was chosen. Ancient woodland impacts are not specifically mentioned in the consideration of alternatives in the EIS.

In terms of public participation, public exhibitions were held in 1999 and 2000 before submission of the application, however, this was likely to be after the main alternatives were chosen. This is suggested by the fact that the site appraisal was carried out as part of the tender process for the Surrey County Council waste contract, and so was before May 1999.
Impact Identification and Assessment

Ecological studies of the site were carried out in Summer 1993 and in the late Summer of 1999. The whole study area was mapped to Phase 1 habitat survey level (JNCC, 1993). Ecological consultees were English Nature (EN), the Surrey Wildlife Trust (SWT) and the Surrey County Ecologist. The EIS acknowledges the importance of ancient woodlands, and mentions that they are given policy protection, although only some are covered by statutory designations.

Woodland was found to occur around much of the study area, although all the woodland within the actual site area was thought to be secondary. However, on the southern side of the A25 road, which is close to the Copyhold site, is the ancient woodland of Byes Wood (Map 2), identified on the AWI but does not have any other additional designated status.

On the northern side of the road from this wood (southern area of the application site) is a block of woodland that was surveyed and thought to be secondary due to evidence of previous mineral extraction. However, a relatively large number (20) of ancient woodland indicator species (Rose, 1999) were found in these woods. This was thought to be due to the fact that when the wood was originally cleared, small fragments may have been left from which recolonisation could later proceed, and due to the close proximity of the ancient woodland Byes Wood nearby. This wood was therefore not considered to be ‘ancient’, but was considered to be of local value. The construction of a new access road would occur through this wood.

It is also mentioned that a small area of vegetation would be removed in the verge to the south of the A25 to accommodate the proposed bus bay and retaining wall, although it is not clear whether this would affect the edge of the ancient woodland. The EIS states that the significance of this would be minor.

The main indirect impact on ancient woodland is the potential effects of the plant emissions (e.g. sulphur and nitrogen oxides) on the biodiversity of the nearby woods. Bryophytes and lichens are particularly vulnerable to air pollution. The EIS states that the levels of pollutants would be well below recommended limits and that ‘the woodlands on the site and the adjacent ancient woodlands would not be subjected to pollutant loads sufficient to damage vegetation’. However, it does not appear that specific surveys or assessment occurred to substantiate this statement.
Impact Evaluation

The factors taken into account to assess significance were outlined. No ancient woodland impacts were considered significant.

Impact Mitigation and Monitoring

There were no measures specific to ancient woodland. Good practice would be used during construction and operation to prevent disturbance and contamination of groundwater etc.. Emissions would be controlled and abated under IPPC legislation and there would be ecological and landscape management plans for the site. Little indication is given as to the commitment to and nature of these management plans.

Development Control Process

Relevant Consultation Responses

There was much public opposition mainly on the grounds of visual impact and air pollution fears. Local residents’ groups all objected. Reigate and Banstead Borough Council and Nutfield Parish Council both criticised the EIS in certain areas. English Nature made comments on the retention of as much woodland as possible and future management. SWT expressed concern over the effect of air pollution on sensitive species in the ancient woodland. They requested a survey and monitoring on this issue should development proceed. English Nature and SWT raised no objection to the proposal overall.

Planning Officer’s Report

Comments on EIS quality

The EIS was reviewed by IEMA (Institute of Environmental Management and Assessment) and was considered adequate. It was also reviewed by independent air quality experts and was found to meet minimum requirements in that respect. Some further information was required, such as information on certain ecological aspects, although comprehensive new survey work was not required. The alternative site assessment was heavily criticised by the officer, which was said to constitute a restricted approach. The landscape and visual impact appraisal
methodology was questioned by the county council’s landscape consultant, who stated that the area and degree of impact were likely to be underestimated.

Planning Considerations and the Planning Officer’s Comments on them

The proposal did not comply with many planning policies, most notably Green Belt policy. The areas of tree loss are described. The potential for air pollution impacts on sensitive species in Byes Wood and other ancient woodlands is mentioned. The county council’s air quality consultant took the view that the critical level of SO₂ would not be exceeded. However, a survey and monitoring before and after could be made a planning condition for this issue, as requested by SWT. Despite fears, it is concluded that the plant would have a negligible impact on local air quality. Local planning policies referring to the conservation and management of ancient woodland are mentioned. Consideration was given to the fact that some of the woodland areas on site were found to contain a ‘considerable number’ of ancient woodland indicator species.

Conclusions and Recommendations

The recommendation was to refuse due to these main points:

- The proposal was an inappropriate development in the Green Belt, and the need for the development was not sufficient to outweigh the harm caused.
- The proposal would result in significant visual impacts on the North Downs Area of Outstanding Natural Beauty (AONB) and on the Redhill area.

The proposal was then refused by the planning committee.
Case 3: Ketton Quarry Extension, nr Stamford, Rutland

Case Description

An extension of an existing limestone and clay quarry by 85.5ha to provide additional reserves for use in the manufacture of cement. The proposal also includes the diversion of an existing road and future restoration plans for the site.

Case History

Planning permission for quarrying operations with respect to Ketton Quarry was granted in 1947. In September 1998 Castle Cement Ltd. first announced its intentions for a plan for additional reserves at the site. Castle then began an EIA and consultations with the public, statutory consultees, and the County Council. Amendments were made as a result of these consultations (The UK Parliament, 2002).

The application was submitted in February 2000. A further period of consultation with statutory consultees resulted in more changes. The council Planning and Licensing Sub Committee considered the application on 27th March 2001, where it was refused. The sub committee referred the application to full council, and the full council refused the application again on 16th July 2001 after further negotiation (The UK Parliament, 2002).

Castle Cement appealed against the decision in December 2001 and an inquiry was held in July/August 2002. The appeal was allowed and planning permission was granted subject to conditions on 3rd October 2002.

EIA Process

Consideration of Alternatives

The EIS has an appraisal of the other options available to Castle Cement in securing additional reserves to ensure the future viability of Ketton Cement Works. However, none of these options were considered environmentally or economically more preferable. They would either result in the relocation of environmental impacts or would not meet the demand for additional reserves. These options included importing limestone from other works, alternative sources of limestone, a smaller extension, quarrying deeper into the existing quarry, and
closure of the works. A detailed assessment of the environmental impacts of each was not carried out. It is not clear how much of this appraisal was written retrospectively, after the initial plans had been formalised.

Even if these options were only considered retrospectively, it is clear that many amendments were made to the proposals from the initial plans to the final refusal of the application by the council. Consultations with the public, statutory consultees and the council occurred before the submission of the application. These consultations together with the ecological surveys resulted in the application area being altered to avoid the most ‘ancient’ sections of the wood Wytchley Warren Spinney. Further amendments were made due to consultations after the submission of the application, particularly with English Nature and the County Council, although it is unclear how directly relevant these amendments were to the ancient woodland.

Impact Identification and Assessment

Impact identification and assessment methods included a desk study with consultations and an examination of the historical evidence. NVC surveys were carried out on the woodlands and Ancient Woodland Vascular Plant (AWVP) scores were calculated for Wytchley Warren Spinney.

Two major woodland areas would be affected by the proposals; Ketton Gorse and Wytchley Warren Spinney (Map 3). The majority of Ketton Gorse (2.77ha) would be lost, however, this area was not considered to be ancient, but was thought to have been semi-natural woodland for at least 200 years. The ecological and archaeological survey evidence suggested its secondary nature. Large sections of Wytchley Warren Spinney, particularly the central area, were thought to be ancient, despite not appearing on the ancient woodland inventory. The NVC and AWVP survey evidence suggested ancient woodland, together with the discovery of a large group of small-leaved lime trees thought to be over 500 years old. Groups of small-leaved limes in woods like this are strongly associated with ancient woodland (Rackham, 1990).

Three extremities of Wytchley Warren Spinney would be lost, of sizes 0.74ha, 1.41ha and 0.82ha. However, from the evidence available these sections were considered to be younger areas of woodland and not ancient, although this could not be proved.

Hydro-geological impacts are not considered in the ecology section, but are more generally considered in their own section.
Impact Evaluation

The significance of impacts is not clearly defined, although the loss of areas of Wytchley Warren Spinney is stated as likely to lead to a reduction in the structural and species heterogeneity of the woodland and some loss in habitat connectivity.

Impact Mitigation and Monitoring

Apart from the initial exclusion of most of Wytchley Warren Spinney from the development area, the relevant mitigation measures are:

- Broad rides to be cut through woodland before felling to enable woodland edge vegetation to develop.
- A stand-off area left between the quarry edge and the edge of the woodland.
- The lost woodland would be replaced (in terms of area) and new planting would take place, with the transfer of woodland soils, such that Wytchley Warren Spinney would eventually be extended northwards.

Few specific details are given in terms of mitigation and monitoring measures, although a statement is given to indicate that effective implementation will occur. Monitoring is not specifically mentioned in terms of the woodland, although restoration and on-going management proposals are.

Development Control Process

Relevant Consultation Responses

The majority of local groups and local parish councils either expressed concerns or stated that the proposals should be rejected for a variety of reasons. The reasons included adverse impacts with respect to noise, dust, traffic, hydrology, tourism and wildlife. Ketton Tree Group was concerned about the loss of Ketton Gorse as it is important for bats, and stated that a buffer zone should be kept around Wytchley Warren Spinney to protect the hydrological regime in the woodland. The Forestry Commission stated that ‘Ketton Gorse exhibits characteristics of ancient and semi-natural woodland’. English Nature initially objected due to a lack of guarantees over the management of habitats after the initial statutory five-year
aftercare period. However, this objection was removed after additional provisions for conservation and management after the five-year period were introduced, which included a large area of calcareous grassland. The Woodland Trust initially objected, but then took the same stance as English Nature, on the basis that the clearance of woodland could not be avoided.

Planning Officer’s Report

Comments on EIS quality

There are few comments made on the quality of the EIS. The main issues in the EIS are summarised at the start of the report.

Planning Considerations and the Planning Officer’s Comments on them

Various policies, plans and targets are mentioned which favour the conservation of mature trees and woodland. The areas of woodland that would be removed are outlined, and it is stated that the evidence suggests that they have been established since at least the 18th century. It is also stated that it is impossible to recreate ancient and semi-natural woodland. The Forestry Commission’s view on Ketton Gorse is mentioned. It is acknowledged that there has been concern over hydrological impacts on woodland. However, it is stated that this impact is unlikely to be significant since trees have been shown to satisfy their water needs mainly from rainfall and not from the water table. The restoration plans are outlined and it is stated that there is potential for nature conservation gains, but also that they are uncertain and some way in the future. The alternatives assessment as shown in the EIS is summarised, together with Castle Cement’s estimates of the amount of reserves lost if certain wooded areas were to be retained.

Conclusions and Recommendations

The recommendation was to refuse permission, largely because in the officer’s view, the proposal would have a cumulative adverse environmental impact due to:

- The disturbance to the local landscape (including the loss of trees and hedgerows).
- The potential noise and visual disturbance to occupiers of adjacent land.
- The loss of ecologically valuable habitats.
It was not considered that the need was sufficient to justify these impacts.

The proposal was then refused by the Planning and Licensing Sub Committee and later by the full council.

Planning Inspector’s Appeal decision letter

The inspector states that the environmental information he took into account was the EIS, a further volume of supplementary information, consultation replies and the evidence heard at the inquiry. The woodland areas affected are outlined and an estimate of the mean ages of trees in them is given. The inspector accepted that the best of the woodland would be retained and that there would be no loss of ‘truly’ ancient woodland. It is stated that after restoration quite limited harm to ecological interests would remain. Agreement is made with Castle Cement’s alternatives assessment, in that none of the alternatives outlined would meet the mineral needs with a lower environmental impact. The Section 106 agreement, that would extend the management beyond the initial five-year aftercare period, is mentioned and detailed conditions are outlined. The inspector concludes that the appeal should be allowed and that permission is granted.

Case 4: Brands Hatch Motor Racing Circuit Redevelopment (British Grand Prix 2002), Fawkham, Kent

Case Description

Redevelopment of the Brands Hatch Circuit to a standard capable of staging the British Grand Prix in 2002. This would include the erection of pit buildings, paddock, media centre, grandstand, medical centre with associated helipads, and new service roads. Alterations in the configuration of the circuit would also be made. Brands Hatch circuit runs through an area of ancient and semi-natural ash woodland (Map 4).

Case History

Between 1964 and 1986 the Formula One British Grand Prix was held at Brands Hatch and Silverstone in alternate years (Competition Commission, 2001). Since 1987 the British
Racing Drivers Club Limited (BRDC) held the sole rights to host the race at Silverstone under successive contracts with the Formula One Association (FOA). Exchanges between the BRDC and the FOA in 1998 regarding BRDC’s continued running of the Grand Prix from 2002 failed to lead to agreement.

Brands Hatch Leisure Group Limited (BHL) made a successful offer to the FOA to own the rights to stage the Grand Prix in 2002. At this stage BHL hoped to stage the race at Silverstone by acquiring the track from the BRDC. However, BRDC and BHL failed to reach agreement and so BHL entered into another contract with the FOA, giving it the right to stage the Grand Prix at Brands Hatch. However, the contract stated that by 31st December 2000 BHL had to demonstrate that it had planning permission to redevelopment the Brands Hatch Circuit in compliance with the plans agreed with the FOA (Competition Commission, 2001).

On 9th September 1999 BHL submitted its planning application to Sevenoaks District Council. An audit of the EIS accompanying the application was carried out by Environmental Resources Management (ERM) for the council, and was submitted in January 2000. A response report to this audit was completed by BHL and submitted to the council in March 2000.

On 22nd June 2000 the SoS for the Environment directed Sevenoaks District Council not to grant planning permission on the application to develop Brands Hatch without specific authorisation (Competition Commission, 2001). This was to give the SoS time to consider whether or not to ‘call in’ the application. On 26th June the planning committee of the council resolved that the application should be granted, although actual planning permission could not be given at this stage. The planning officer’s report to the committee on the proposals, however, gave no recommendation as to whether the application should be approved or refused, given the balance of interests to be considered.

On 8th September 2000 the SoS decided to ‘call in’ the application and hold a public inquiry, as it concerned issues that were of wider than local importance and might conflict with national policies on Green Belts, the countryside, transport and nature conservation (Competition Commission, 2001). This would lead to a resultant delay in a decision, which would break BHL’s contract with the FOA, and would mean that the redevelopment could not be completed in time. BHL therefore reached an agreement with BRDC to hold the Grand Prix at Silverstone. BHL later changed its name to Octagon and acquired the assets of the BRDC (Competition Commission, 2001).
Consideration of Alternatives

As BHL initially intended to stage the Grand Prix at Silverstone it could be said that alternative locations were considered at that stage. However, this proposal was only relevant to Brands Hatch, and as such an alternative site assessment was not carried out as part of the EIA process. However, it is clear that there were some design changes both before and after the preparation of the EIS. The EIS states that ‘…the application proposals have been worked up in careful consultation between architects and the environmental consultants in order to ensure that the most significant components of the landscape are retained’. This suggests that environmental impacts were at least one of the considerations when alternative building and track locations were considered. After the application was submitted further changes in design were made after extensive consultation, which are outlined in the response report. Some of these changes resulted in further protection of the remaining trees.

Impact Identification and Assessment

After ecological surveys and tree surveys were carried out the identified impacts on ancient woodland were:

- Approximately 50% loss of ancient woodland on site (later qualified as 14.3ha lost out of a total of 34.4ha in the response report).
- Possible construction disturbance impacts.
- The effects of disturbance during the few days of the Grand Prix (described as unlikely to be significant).

Impact Evaluation

The loss of ancient woodland is described as a significant negative impact at a regional level. The importance of ancient woodland and the protection it is given from various policies is mentioned. However, the EIS attempts to make clear that the ancient woodland in this case is of degraded quality mainly due to the effects of rallying and four-wheel drive activities that have occurred through it over many years. It is mentioned that ‘…there is a substantial occurrence of damage and diseased trees and a lack of regeneration of the woodland’ and that most of the woodland areas lost are those of poorest quality. This is why the impact is not
considered of national significance. It is stated that ‘…if the site were truly regarded as anything special, it would have been designated as at least a local Site of Nature Conservation Interest (SNCI), if not a SSSI’. Therefore the EIS describes the negative ecological and nature conservation impacts altogether as ‘relatively minor’.

Impact Mitigation and Monitoring

It is acknowledged that there is little mitigation possible for the loss of ancient woodland, although the relevant mitigation measures are:

- An Environmental Management Plan (EMP) will protect and enhance the remaining woodland.
- New planting will occur (described as 22ha in the response report).
- Translocation of selected soils.
- Protective fencing around certain areas.
- Construction impacts will be minimised through good practice.

Monitoring would be part of the EMP. It is stated that the EMP will be secured via detailed planning conditions.

Development Control Process

For this case it was not possible to view the planning officer’s report to the planning committee, due to problems locating it at Sevenoaks District Council. However, a large file containing draft planning documents and evidence prepared for the public inquiry were viewed (which as mentioned above, never actually occurred). This contained information on the council’s consideration of application and the issues involved; it is largely from this evidence that the following information is drawn. The documents viewed were a general draft planning inquiry evidence document, an agreed statement on ecology and nature conservation issues and Kent County Council’s planning evidence.

EIS Quality

As already noted the EIS was reviewed by ERM and was considered to satisfy the minimum regulations. The ecology chapter assessment was described as comprehensive. Attention was,
however, drawn to subjects that ERM felt it would be appropriate to expand, which resulted in the Response Report. ERM also felt that the applicant was somewhat underplaying the significance of the loss of ancient woodland.

Objectors, notably the Woodland Trust and the BRDC took the view that the EIS was fundamentally flawed by the failure to consider alternative sites. However, it was pointed out that the regulations (Schedule 4 Part II of the EIA regulations; HMSO, 1999) only stipulate that an EIS must report on alternatives if the applicant had considered any.

Relevant Planning Considerations

The key considerations in relation to the ancient woodland affected were likely to be:

- The various policies favouring the protection of ancient woodland and the fact that much of the woodland was under a Tree Preservation Order (TPO).
- The degraded quality of the woodland, in terms of how much it actually was degraded and whether this was an issue to be considered in favour of the application. This issue seemed to be contentious given that Kent County Council’s planning evidence stated ‘…apart from the rally and 4x4 tracks and some tipping of inert material there is little serious damage to the woodland’, whereas the response report stated that due to disturbance ‘substantial areas of the woodland are of low or minimal conservation interest’.
- The fact that English Nature did not oppose the application, because of the disturbance to the woodland and the EMP providing an opportunity to protect and manage the remaining areas.
- The EMP and the potential for nature conservation gain.
- Whether the benefits from granting permission outweighed the other negative material considerations (including the loss of ancient woodland).
Case 5: Strategic Link Main (Matchams Pumping Station to Knapp Mill Water Treatment Works pipeline), East Dorset

Case Description

Installation of a 600mm diameter pipeline for the transfer of water between Matchams Pumping Station and Knapp Mill Water Treatment Works (WTW). Knapp Mill WTW in Christchurch extracts water from the River Avon and supplies potable water to around 70,000 properties in the area. The works has no raw water storage and in the event that water could not be abstracted from the river (following a pollution incident or a plant failure) then customers could only be supplied for a period of up to 24 hours. The pipeline was therefore needed to transfer water from Matchams Pumping Station (which draws its water from Longham Lakes on the banks of the river Stour) to Knapp Mill in the event of an emergency.

Case History

The application was submitted to both East Dorset District Council (EDDC) and Christchurch Borough Council in November 2002, as the pipeline route runs through areas under the jurisdiction of both these authorities. The area of ancient woodland in question, Week Wood (Map 5), is at the beginning of the route and in the EDDC area. Therefore documents were only viewed at this council’s offices. After consultation, more detailed information was required than that given in the original EIS and so an addendum to the EIS was submitted in March 2003. Permission was granted by EDDC in June 2003.

EIA Process

Consideration of Alternatives

The EIS states that prior to the EIA a range of options and routes were considered for both engineering feasibility and environmental impact. At this time external consultation occurred, including a meeting with key stakeholders. The options were narrowed down to two alternative routes, known as the western route and the eastern route. An ecological appraisal was carried out on both these routes, and it was decided that the western route should be taken forward since it was less likely to result in impacts on European designated conservation sites. The area between Matchams and Knapp Mill is extremely ecologically sensitive, with areas designated as candidate Special Areas of Conservation (cSACs), Special Protection Areas...
(SPAs) and Ramsar wetland sites. The western route was deemed to have less of an impact on these sites.

Impact Identification and Assessment

Existing information, consultations, and surveys (including a Phase 1 habitat survey and specialist bird and reptile surveys) were used to identify potential impacts. Reference is made to the AWI, but the definition of ancient woodland given is not clear, as the text simply states that ‘ancient refers to woodlands which have developed particular ecological characteristics as a result of their long continuity’.

The route is described, and the first area of conservation significance that the route crosses is Week Wood, which is described as ‘a small area of deciduous woodland’. Week Wood is acknowledged as being on the AWI and as a Site of Nature Conservation Interest (SNCI). The potential impacts to Week Wood are described as disturbance to vegetation and birds during the construction phase. Two trees at the boundary of the wood would have to be felled.

Impact Evaluation

The methodology used to determine significance and the predicted significance of impacts is not clearly described. Although it is clear that in terms of habitats at least, the level of designation is an important factor in this assessment. It is also clear that no long-term impacts are expected in terms of ancient woodland and that the potential short term impacts are not considered significant.

Impact Mitigation and Monitoring

The relevant mitigation measures are stated as follows:

- The route follows a regularly mown track through the wood (avoiding the need for unnecessary felling).
- The line of the track will be fenced during construction, to prevent construction vehicles from straying.
- Work will be carried out outside the bird breeding season to minimise disturbance to birds.
These relevant mitigation measures in terms of Week Wood were described in more detail in the addendum to the EIS than the original EIS. There was an aftercare statement which included some information about monitoring proposals, however, these had little relevance to the ancient woodland as no such impacts post-construction were expected.

Development Control Process

The following only refers to the application made to EDDC.

Relevant Consultation Responses

The local parish council and the Environment Agency had no objections. The Forestry Commission and the Countryside Agency made no formal comment. Dorset Wildlife Trust did not object, and felt that the applicant had taken steps to protect Week Wood SNCI. English Nature initially objected until more information was provided. They felt that the EIS lacked sufficient detail in certain areas, such as the descriptions of the methodology used, the mitigation measures and the route.

Planning Officer’s Report

Comments on EIS quality

No comments were made, although much of the text appeared to be taken from the EIS.

Planning Considerations and the Planning Officer’s Comments on them

Week Wood is acknowledged as ancient woodland and a SNCI. The measures taken to avoid impacts on the wood are described. The trees to be removed are described as ‘two coppiced hazel trees’. The pipeline is said to be ‘…very unlikely to cause hydrological impacts’. However, it is stated that a precautionary approach will be adopted in terms of the measures taken to avoid the disruption of groundwater flows in the longer term. It is stated that ‘Week Wood is of significant importance due to its designation as ancient woodland. However, none of the trees are the subject of a Tree Preservation Order and it would not be expedient to serve one as they are of only limited amenity value’.
Conclusions and Recommendations

It is stated that ‘…the application is therefore not considered to have any significant long term impact and the measures put in place during the course of construction should limit the short term impact’. The recommendation is to approve subject to no significant objection from English Nature and the implementation of conditions. The conditions state that ‘the proposal shall be undertaken strictly in accordance with the details and plans set out in the EIA, its addendum and the associated appendices unless otherwise agreed in writing with the Local Planning Authority’.
Discussion

In this section I shall attempt to assess the role of EIA in protecting the ancient woodland potentially affected for each case in turn.

Case 1: Eaves Green Link Road

This case had a long planning history, and as such proposals were discussed and alternatives considered many years before the EIA was initiated. The alignment of the route was the primary alternative considered in this case. The full EIA began once the route had largely been finalised, but preliminary environmental assessment work was crucial in deciding the final route. It is debatable whether this preliminary work should be classified as part of the EIA, but as this work was used later in the full EIA and those who carried out the work were likely to have known that an EIA was forthcoming, then I consider that it can be classified as such. This work was instrumental in avoiding larger scale loss and disruption to ancient woodland, however, it did not result in avoiding woodland altogether because of the balance that needed to be struck in terms of avoiding loss to the school playing field area.

Once the route was largely finalised then the EIA resulted in smaller scale changes that reduced the impacts on ancient woodland, such as slight changes in alignment and the consideration of alternative bridge design options. Public consultation during the EIA occurred via an exhibition and responses to a draft EIS, however, whether this resulted in changes which reduced the impacts on ancient woodland is unclear.

It seems that the EIS, and the assessment carried out to prepare it was comprehensive. Many specialists carried out the assessment work over a number of years. The comprehensive nature of the EIS in the case of ancient woodland is demonstrated by the fact that plans are shown identifying the individual trees to be lost to the development. More indirect impacts such as pollution run-off events were also identified. The possible effects of consequential developments from the road on ancient woodland were not discussed though, and such effects can be significant for certain road schemes (Glasson et al., 1999).

The significance of the loss of ancient woodland was acknowledged as a major adverse impact and the fact that such woodland could not be replaced within the given time scale was also acknowledged. Mitigation measures were described in a manner that suggested that they
had been considered thoroughly and planned. A management plan for the remaining woodland, new planting, translocations and road run-off treatment all either compensated for or directly mitigated the identified impacts. Many species specific mitigation measures were suggested. Monitoring was part of the proposed management plan for the woods.

In the development control process the EIS was the key consultation document, and was used to a large extent by the planning officer to write his report and draw his conclusions. In his final decision, the EIA actually appears to have even strengthened the case for the project, as the ‘considerable package of mitigation measures’ is used to demonstrate the fact that the impacts of the scheme would be minimised. As the project was already part of the local development plan it is unlikely that the officer’s recommendation would be unfavourable to the proposal. The fact that the council was the project proponent and the competent authority can also not be ignored. Therefore the EIA is unlikely to have altered the decision on whether to grant permission. Despite this, the council appears to have followed due process by producing a comprehensive EIS, and by being open to public consultation throughout the process.

Therefore the role of the EIA in this case in terms of ancient woodland was to assess alternative route and design options to minimise impacts, to provide adequate information on the impacts to decision makers, to aid the consultation process, and to propose mitigation and compensation measures.

Case 2: Copyhold Works

Unlike the previous case, the impacts on ancient woodland were not considered to be a major issue. The harm to visual amenity in the Green Belt and health fears over air pollution (although maybe unfounded) were issues with much higher profile. Ancient woodland impacts were not considered to be a major issue largely because there would be no direct loss. However, the incinerator would be in extremely close proximity to ancient woodland and would lead to the loss of some secondary woodland on the boundary areas of the site. Alternative sites could therefore have been considered which would have avoided such a location. It seems that the site was chosen before the EIA was initiated, and that the initial assessment of alternative sites was limited, as noted by the planning officer involved.

The ancient woodland areas around the site were identified and the areas of woodland on site were surveyed, it appears, with an open mind as to their conservation value. The large number
of ancient woodland indicator species in these woods was not ignored and plausible explanations were given as to why, despite this, these woods were likely to be secondary. However, little work seems to have been done to investigate the possibility of air pollution impacts on the ancient woodlands in the area, and monitoring proposals to investigate this issue post-construction are not suggested.

As no significant impacts are predicted in terms of ancient woodland, then no specific mitigation measures are suggested. However, the emissions abatement technology and good practice to avoid disturbance during construction are relevant. The ecological and landscape management plans for the site may also be relevant, but this is not known as so few details are given.

The EIS was independently reviewed, was considered adequate and scored highly in some areas. However, the planning officer and others criticised some aspects of it. The planning officer took account of the possible air pollution impacts on ancient woodland in his report, but this seemed to be largely prompted by concerns raised by Surrey Wildlife Trust. Ancient woodland was not an issue in his decision to recommend refusal.

In this case therefore, the EIA provided information as to which areas of woodland were ancient and which were not but failed to adequately consider alternatives, and failed to fully investigate the possible indirect and secondary impacts on ancient woodland.

Case 3: Ketton Quarry Extension

This case was complex, because unlike the other cases the ancient woodland involved did not appear on the AWI. Therefore, more work was needed to establish the nature of the woodlands involved, and even after this work had been completed, questions could still be raised to some extent on this issue.

Alternative sites that could avoid the possible loss of ancient woodland were considered at some stage, but it was clear that Castle Cement wished to maintain quarrying operations at Ketton to supply Ketton Works. Consultations, principally with English Nature, resulted in changes to the application area to avoid some of the most valuable woodland areas. It is likely that the results of the surveys carried out as part of the EIA were crucial to informing these consultations.
The woodlands affected, Ketton Gorse and Wytchley Warren Spinney, were surveyed and evidence was sought to determine whether they were indeed ‘ancient’. The evidence clearly showed that at least the central area of Wytchley Warren Spinney was ancient. The areas of woodland to be lost; the majority of Ketton Gorse and three extremities of Wytchley Warren Spinney, were concluded to be secondary, although the evidence for this was not unequivocal. It is unlikely, however, that any more work could have been done to prove this.

Mitigation measures to protect Wytchley Warren Spinney from further damage were devised, and restoration proposals compensated to some extent for the loss of woodland. Further consultation with English Nature after submission of the EIA resulted in more extensive restoration plans and guarantees of management after the initial statutory five-year aftercare period.

As the planning officer made no direct comments about the quality of the EIS, few conclusions can be drawn about this. However, large sections of the officer’s report drew on information taken directly from the EIS. The issue over the nature of the woodlands involved is outlined and the concerns raised about hydrological impacts are mentioned. The loss of woodland (whether ancient or not) did appear to be one of the main considerations in the decision of the planning officer. The visual landscape and noise disturbance impacts of the proposal appeared to be as large, if not larger issues in the decision, however.

The planning inspector at the subsequent inquiry assessed the impacts on woodland and concluded from his evidence that there would be no loss of ‘truly’ ancient woodland. Also, in his opinion the loss of woodland would be compensated for by the restoration proposals. The restoration proposals and other conditions satisfied the inspector that the impacts of the development would be successfully mitigated in the long term, and this seemed to play a large part in his decision to grant permission.

In summary therefore, the EIA in this case attempted to identify which areas of woodland were ancient and which were not, aided consultations which resulted in areas being excluded from the development area, provided information for the decision makers involved, and helped to draw up restoration plans which compensated to some extent for the loss of habitats.
Case 4: Brands Hatch Motor Racing Circuit Redevelopment

In this case the EIA did not consider alternative sites, as the decision to locate the Grand Prix at Brands Hatch was made before the EIA had begun, and was based on non-environmental issues. Brands Hatch was the only feasible alternative to Silverstone for BHL to stage the Grand Prix in the time scale allowed. The fact that the Brands Hatch circuit ran through an ancient woodland was simply incidental. However, despite not addressing alternative sites in this way in the EIS, BHL was not breaching legislation as explained earlier, despite the criticisms of some objectors.

There was evidence to suggest that the EIA process had resulted in some design changes and alterations in the alignment of the track, although the extent to which these changes had minimised the loss of ancient woodland was unclear. A statement in the non-technical summary is perhaps revealing; ‘…it is perhaps fortunate that the area best suited to the construction of the pit and paddock facilities coincides with the area of poorest tree quality’ (emphasis added). This suggests that, initially at least, conserving areas of woodland was not a central issue in the design.

It appears that an extensive amount of tree and ecological surveying occurred to identify the present status of the trees and woodland. Although the importance of ancient woodland was recognised, it appeared that an effort was made in the EIS to downplay the significance of the loss of ancient woodland. This is clear from the text and was also noted by the independent reviewers ERM. Many references were made to the degraded quality of the woodland, but as it was pointed out in the draft planning evidence agreed statement on ecology and nature conservation, this cannot be taken as an argument in favour of its destruction. The amount of degradation involved and the ability of the woodland to naturally regenerate was also a contentious issue.

The ecological assessment concludes that ‘whilst this is a major project of international significance, the negative ecological and nature conservation impacts are relatively minor…’. It seems inappropriate for such an assessment to make such comments on the non-environmental significance of the project in this way. This suggests that the EIS was not entirely objective.

Despite this, commitment was shown in the EIS to a comprehensive Environmental Management Plan (EMP) involving new tree planting as a compensatory measure and management of the remaining woodland areas.
The loss of the woodland appeared to be the main environmental issue considered in the development control process, and the issues for and against permitting the development were clearly closely balanced, or the planning officer involved would have made a recommendation to the committee. It is also likely that the loss of ancient woodland was one of the main issues that caused the SoS to ‘call in’ the application, after pressure from objectors including the Woodland Trust.

In summary, the EIA in this case provided information on the woodland and the quality of trees to be lost, led to some changes in design to avoid impacts and outlined commitment to a comprehensive EMP. The EIS was used as a key consultation document but did not appear to provide an entirely objective analysis of the environmental issues involved.

Case 5: Strategic Link Main (Matchams Pumping Station to Knapp Mill Water Treatment Works pipeline)

In this case, as in case two, the impacts on ancient woodland were not a major issue in terms of the overall impacts of the project. This is because the area of ancient woodland involved was relatively small, only two trees would be felled, and any disturbance impacts were considered only to be short-term. Also, a number of other areas were affected with higher conservation status.

During the scoping and preliminary stages of the EIA, a number of alternative options were considered for their environmental impact and engineering feasibility. The reasons for the preferred choice are clearly described. Avoiding Week Wood ancient woodland was not an issue in this assessment, especially considering that the two final alternative routes both crossed this woodland. Avoiding other ancient woodlands in the area may have been an issue, although the emphasis seemed to be on avoiding impacts to areas with European level conservation designations.

The identification of the woodland as an ancient woodland and the impacts on it appeared satisfactory, although the description given on the significance of ancient woodland was unclear. The fact that the definition of ancient woodland was not clearly stated and that policies protecting it were not outlined demonstrates this. In the ecological part of the assessment the fact that Week Wood was ancient woodland was not even mentioned, instead it was referred to simply as a SNCI. Hydrological impacts were not mentioned specifically in
terms of the ancient woodland, when perhaps it would have been prudent to acknowledge the possibility of such impacts even if they were considered unlikely.

It was felt, particularly by English Nature, that the EIS lacked detail in a number of areas, and this resulted in some more information being provided in the addendum to the EIS.

The mitigation measures to avoid disturbance to the woodland appeared to be well planned and suitable, although clarification was required in the addendum. In particular, routing the pipeline along a track in the woodland was a sensible approach as it limited unnecessary felling.

The fact that Week Wood is an ancient woodland was given more attention in the East Dorset District Council planning officer’s report than in the EIS. The conclusions reached about the impacts to the wood in the report were the same as in the EIS and large sections of the report were taken almost directly from the EIS. The implementation of mitigation measures outlined in the EIS were the main condition of consent for the project. The fact that no significant impacts were expected on the wood appeared to be one of the main considerations in the decision to grant permission, at least in the case of the East Dorset District Council application.

In this case therefore, the EIA considered alternatives that may have avoided impacts on ancient woodland and helped to design mitigation measures to avoid disturbance. However, the EIS lacked detail in certain areas and failed to clearly outline the significance of ancient woodland.
Conclusions

These conclusions are drawn from the observations noted on the five case studies, but more general inferences with respect to EIA practice are also made.

The first observation to note is that generally, the significance and importance of ancient woodland is recognised and acknowledged in the EIS and the EIA process in general, despite the lack of statutory protection. This was true in all the cases studied, except for perhaps case five, although this may have been because significant impacts were not expected on ancient woodland in this case.

EIA does seem to play a role in the consideration of alternatives that may affect ancient woodland. However, this varies a great deal between cases due to the different circumstances involved. The consideration of alternatives is considered to be a weak point in EIA practice, because it is often stated that the EIA process begins too late after the main alternatives have been chosen (Glasson et al., 1999). In this study it has been hard to establish exactly when and why the main alternatives were chosen and therefore the influence of EIA on this process is hard to determine. EIA may help to provide a high level of information upon which decisions about the design and layout of a project can be made. There is evidence from the cases that such decisions are indeed made which result in lower impacts on ancient woodland. It seems unlikely, however, that the EIA process is likely to lead to a complete relocation of a project, and there is no evidence of this from these cases.

It is observed from the cases that, as expected, EIA often leads to a range of proposed mitigation and compensatory measures, and where projects are given permission these are often secured via planning conditions. Although as mentioned earlier, it is impossible to truly mitigate against the loss of ancient woodland, more indirect impacts can be minimised, and new planting is often proposed which can be said to compensate for the loss to some extent at least. In some cases the mitigation and monitoring measures set out in the EIS form the basis for a comprehensive Environmental Management Plan for the remaining woodland on the site.

In terms of the impact of the EIA process and EIS on the development control process, it is clear that the EIS is used as a key consultation document and is used by planning officers to formulate their decisions and create their report. As found by Wood and Jones (1997), there is evidence from the cases that the consultations on the EIS information held as much, if not
more influence than the EIS itself. The role of English Nature in this respect seems to be particularly important, as in some cases their influence resulted in more comprehensive and detailed mitigation and restoration proposals than were initially stated in the EIS itself. This is perhaps unsurprising as the planning officers, with their limited background in nature conservation matters, cannot judge for themselves whether the ecological information in the EIS is likely to be adequate or correct. Therefore they have to rely on the opinion of English Nature and other wildlife bodies. Whether the EIS information, in terms of the ancient woodland impacts, actually changed the decision on whether to give permission to projects is extremely hard to judge. Such information is obviously though one of many considerations taken into account.

To determine what these conclusions tell us about the effectiveness of EIA with respect to the protection of ancient woodland, it is necessary to refer back to the stated aims of EIA. Two key questions need to be asked:

Firstly, does the evidence from the cases suggest that the EIA process has resulted in providing adequate information on the ancient woodland impacts to decision makers?

The evidence suggests that the answer to this question is largely yes, although in some cases there were deficiencies. For example, case two failed to adequately consider possible indirect impacts in terms of air pollution, case three failed to unequivocally state which areas were ‘ancient’ and which were not (although this may have been impossible), and it seems likely that case four failed to present the issues in an unbiased manner. Wider and secondary impacts, such as the effects of possible consequential developments, seemed to be given little or no consideration.

Secondly, does the evidence from the cases suggest that the EIA process led to the minimisation of impacts on ancient woodland and therefore aided sustainable development?

Again the answer to this question appears to be yes, but is truer in some cases than others. The consideration of alternatives and the proposed mitigation and management measures have a key role to play in this respect. However, it could be argued in many cases that even though the EIA process did result in the minimisation of impacts on ancient woodland, this was small and superficial in terms of the total impacts caused. Also, it seems unlikely that an EIA would directly result in the avoidance of impacts on ancient woodland altogether.
If compared to a situation where there was no formal environmental assessment in the planning process, it is almost certain that the answer to the second question would be yes. However, to fully evaluate the effectiveness of EIA in the UK planning system with respect to ancient woodland, then the question would have to be considered in the context of what occurred before the EIA Directive was implemented in 1988 (and also perhaps before the amended Directive in 1999). A study to evaluate this question would, however, be very difficult to undertake, as cases affecting ancient woodland would need to be compared before and after the Directive, and as each case is unique, cases cannot easily be compared in this way.

In summary, it is clear that EIA does have a role to play in aiding the protection of ancient woodland potentially affected by major development projects. However, the extent to which it is effective in this role is less clear and this can vary to a large extent depending on the situations of each case. EIA does at least offer the potential to aid the avoidance and minimisation of impacts on ancient woodland, one of our key natural habitats, even if this potential is not always realised.
References

APPENDIX A

ENVIRONMENTAL IMPACT STATEMENTS AND ASSOCIATED DOCUMENTS VIEWED

APPENDIX B

EIA AND DEVELOPMENT CONTROL PROCESS CHECKLISTS
EIA Process Checklist

1. EIS Details

<table>
<thead>
<tr>
<th>1.1 Project name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Date of submission</td>
</tr>
<tr>
<td>1.3 Developer/Project proponent</td>
</tr>
<tr>
<td>1.4 Name of principal EIA consultant/EIS author</td>
</tr>
<tr>
<td>1.5 Were sections sub-contracted out to other consultants?</td>
</tr>
<tr>
<td>1.6 Who was the ecological consultant?</td>
</tr>
<tr>
<td>1.7 Has the EIS been reviewed for quality?</td>
</tr>
<tr>
<td>1.8 If so, was it considered adequate, and was it given a grade?</td>
</tr>
</tbody>
</table>

2. Consideration of Alternatives

<table>
<thead>
<tr>
<th>2.1 Was there pre-EIA consideration of alternatives that potentially affect ancient woodland?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Was there consideration of alternatives that affect ancient woodland early in the EIA process, before the final alternative was chosen?</td>
</tr>
<tr>
<td>2.3 At what stage was the final alternative chosen, and is there any indication at what stage in the project the EIA process was initiated? (i.e. before site was chosen, before design and layout were chosen, or when site, design and layout were almost certain)</td>
</tr>
<tr>
<td>2.4 How was the final alternative chosen? Are reasons given, and the environmental impacts of each option appraised to some extent?</td>
</tr>
<tr>
<td>2.5 Were alternatives considered to some extent in the EIS, even if the final alternative was clearly chosen before the EIA process had begun?</td>
</tr>
</tbody>
</table>
2.6 Was the no-action alternative considered in the EIS?

2.7 Was there public consultation on the alternatives? In what form and to what extent?

2.8 Were there design changes made later on, after the final alternative was chosen, due to the impacts on ancient woodland?

2.9 If so, were these changes due to the EIA process, development control process, or other factors?

The following largely relates to the ecology section of the EIS.

3. Impact Identification (relevant to ancient woodland impacts only)

3.1 Is the baseline environment described, such that the areas of ancient and non-ancient woodland are clearly indicated? Are maps and plans used to show this?

3.2 Which relevant statutory and non-statutory consultees were contacted?

3.3 In which other impact categories were ancient woodland impacts considered? (e.g. landscape, cultural heritage)
3.4 What methods were used in impact identification?
(i.e. previous data, new surveys, consultation, maps and GIS)

4. Impact Assessment (relevant to ancient woodland impacts only)

4.1 What were the predicted impacts on ancient woodland? (In all impact categories)

4.2 Are indirect or secondary impacts considered? (such as degradation at the edges of ancient woodland due to subsequent activities)

4.3 Are cumulative impacts, and possible consequential development impacts considered?

4.4 Is there reference to the significance of ancient woodland?

4.5 Were whole habitat/ecosystem impacts considered?

4.6 Were individual species impacts (caused by the effects on ancient woodland) covered?
5. **Impact Evaluation** (relevant to ancient woodland impacts only)

5.1 How is the significance of impacts determined?

5.2 Which ancient woodland impacts are considered most significant?

5.3 In terms of all of the impacts of the development, how significant are the ancient woodland impacts considered to be?
6. Impact Mitigation and Monitoring (relevant to ancient woodland impacts only)

<table>
<thead>
<tr>
<th>6.1 What are the mitigation measures proposed?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6.2 Are all significant impacts accompanied by specific associated mitigation measures?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6.3 Is there any indication of the commitment to these measures? Are they described in detail, with appropriate time scales attached?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6.4 Is there any indication given of the likely effectiveness of these mitigation measures?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6.5 Are any monitoring procedures proposed? (to monitor impacts and the effectiveness of mitigation measures)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6.6 If so, is there any indication of the likely commitment to these monitoring proposals?</th>
</tr>
</thead>
</table>
Development Control Process Checklist

1. Application Details

1.1 Project name

1.2 Date of application

1.3 Date of committee decision

1.4 Planning authority

2. Relevant Consultation Responses post EIS Submission
3. Planning Officer’s Report (sections relevant to EIA and ancient woodland)

3.1 Comments on EIS quality

3.2 Planning considerations and the planning officer’s comments on them
3.3 Conclusions and recommendations

4. Decision and Conditions

5. Planning Inspector’s Decision Letter (if relevant)
APPENDIX C

CASE STUDIES CONSIDERED
<table>
<thead>
<tr>
<th>Project</th>
<th>Development type</th>
<th>Location</th>
<th>Status at time of consideration</th>
<th>Reasons for unsuitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaves Green Link Road</td>
<td>Road</td>
<td>Chorley, Lancashire</td>
<td>Permission granted</td>
<td>N/A</td>
</tr>
<tr>
<td>Copyhold Works</td>
<td>Energy from waste recycling plant</td>
<td>Nutfield Rd, Redhill, Surrey</td>
<td>Application refused</td>
<td>N/A</td>
</tr>
<tr>
<td>Ketton (Grange Top) Quarry Extension</td>
<td>Quarry extension</td>
<td>Ketton, nr Stamford, Rutland</td>
<td>Permission granted after inquiry</td>
<td>N/A</td>
</tr>
<tr>
<td>Brands Hatch Redevelopment</td>
<td>Motor racing circuit redevelopment</td>
<td>Sevenoaks, Kent</td>
<td>Application withdrawn</td>
<td>N/A</td>
</tr>
<tr>
<td>Strategic Link Main Matchams-Knapp Mill</td>
<td>New water pipeline</td>
<td>East Dorset</td>
<td>Permission granted</td>
<td>N/A</td>
</tr>
<tr>
<td>Channel Tunnel Rail Link</td>
<td>Railway</td>
<td>Kent</td>
<td>Constructed</td>
<td>Pre amended EIA directive</td>
</tr>
<tr>
<td>A34 Newbury By-pass</td>
<td>Road</td>
<td>Newbury, Berkshire</td>
<td>Constructed</td>
<td>Pre amended EIA directive</td>
</tr>
<tr>
<td>Manchester Airport Second Runway</td>
<td>Airport Extension</td>
<td>Greater Manchester</td>
<td>Constructed</td>
<td>Pre amended EIA directive</td>
</tr>
<tr>
<td>A1 Ferrybridge to Hook Moor</td>
<td>New off line road</td>
<td>West Yorkshire</td>
<td>Pre Construction stages</td>
<td>Pre amended EIA directive</td>
</tr>
<tr>
<td>Hermitage Lane Quarry Extension</td>
<td>Quarry extension</td>
<td>Barning, Kent</td>
<td>Application refused</td>
<td>Pre amended EIA directive</td>
</tr>
<tr>
<td>Godinton Park Housing Development</td>
<td>Housing development</td>
<td>Ashford Borough, Kent</td>
<td>Constructed</td>
<td>Pre amended EIA directive</td>
</tr>
<tr>
<td>Lodge Wood Housing development</td>
<td>Housing development</td>
<td>Ashford Borough, Kent</td>
<td>Constructed</td>
<td>No EIA</td>
</tr>
<tr>
<td>Cheesman's Green Housing/Business development</td>
<td>Housing/Business development</td>
<td>Ashford Borough, Kent</td>
<td>Outline applications submitted 2001-2002</td>
<td>Decision not made</td>
</tr>
<tr>
<td>Hoads Wood Housing Development</td>
<td>Housing development</td>
<td>Hastings, East Sussex</td>
<td>Early construction stages</td>
<td>No EIA</td>
</tr>
<tr>
<td>Gillmans Hill Housing Development</td>
<td>Housing development</td>
<td>Hastings, East Sussex</td>
<td>Permission granted</td>
<td>No EIA</td>
</tr>
<tr>
<td>East Bank/Gainsborough link road</td>
<td>Road</td>
<td>Ipswich, Suffolk</td>
<td>Council still in talks</td>
<td>Decision not made</td>
</tr>
<tr>
<td>Rhiw road</td>
<td>New road to replace landslip affected area</td>
<td>Rhiw, Llyn peninsula, North Wales</td>
<td>CPO Inquiry just taken place</td>
<td>In Wales / final decision not made</td>
</tr>
<tr>
<td>Alton Road Sandpit</td>
<td>Re-opening and extension of former quarry</td>
<td>Farnham, Surrey</td>
<td>Permission granted</td>
<td>Pre amended EIA directive</td>
</tr>
</tbody>
</table>
Map 1.
Eaves Green Link Road, Chorley
Map 3.
Ketton Quarry Extension

Approximate area of proposed new quarry development

Scale 1:25,000

Reproduced from the 1:50,000 Ordnance Survey Landranger 141 map with the permission of Ordnance Survey on behalf of The Controller of Her Majesty’s Stationery Office, © Crown copyright, University of East Anglia, Norwich, NR4 7TJ Licence No. ED100018842
Map 4.
Brands Hatch Circuit and surrounding woodland

Scale 1 : 25,000

Reproduced from the 1 : 50,000 Ordnance Survey Landranger 188 map with the permission of Ordnance Survey on behalf of The Controller of her Majesty's Stationery Office, © Crown copyright, University of East Anglia, Norwich, NR4 7TJ, Licence No. ED100018842